Deductive reconstruction of MLT* for multi-level modeling

Manfred A. Jeusfeld®, Jodo Paulo A. Almeida, Victorio A. Carvalho
Claudenir M. Fonseca, Bernd Neumayr

! University of Skdvde, Sweden, manfred.jeusfeld@acm.org

e Understand the relationship between MLT* and DeepTelos (both power-type based)
e Specify MLT-Telos with ConceptBase/O-Telos

* Create an efficient implementation for MLT* to check large multi-level models

All sources and executable examples are published at http://conceptbase.cc/mlt-telos/


http://conceptbase.cc/mlt-telos/

Summary for the impatient

MLT* O MLT-Telos © DeepTelos

2020-10-16 ; MULTI Workshop at MODELS'20 M. Jeusfeld CCBY-SA4.0




Summary for the slightly less impatient

first order logic

MLT*

- axiomatic definition

- open-world semantics

- axioms need to be satisfied
by models

- powertype and categorization

- implemented by Alloy

I

Datalog with negation (minimal Herbrand interpretation)

MLT-Telos

- rules and constraints

- closed-world semantics

- constraints may not be violated
- powertype and categorization

- implemented by ConceptBase

D)

DeepTelos

- rules and constraints

- closed-world semantics

- constraints may not be violated
- powertype

- implemented by ConceptBase

!

partial implementation of

adds categorization



First-order vs. Datalog: A question of semantics

definitions

semantics

reasoning

First-order
theory
(formulas)

All interpretations

mll

2=Q

query processing

Datalog
program
(rules + facts)

Unique
Minimal Herbrand
Interpretation

DB = query

First-order theories can be checked on consistency (by reasoning about all interpretations),
Datalog programs can be used to compute the unique minimal Herbrand interpretation.

Integrity checking in Datalog is a form of query processing.



Two multi-level modeling approaches

* we only look at these
/ approaches here

OCJ/~ e—b /
Melanee MLT*
MLT-Telos
MetaDepth DeepTelos
FMMLX
* classes, attributes and associations e classes can hqv_e powertype qssociations
get explicit level/potency numbers * |evels are implicit (derived/optional)

Both principal approaches are capable of passing the multi-level modeling challenges, see MULTI'19



MLT* has three predefined types

* these are facts in the
ConceptBase system

-

Listing 1: MLT-Telos predefined types

ENTITY in TYPE end
TYPE in TYPE isA ENTITY end
INDIVIDUAL in TYPE isA ENTITY end

These are the three MLT* predefined types ENTITY, TYPE, and INDIVIDUAL
as O-Telos classes.

O-Telos provides instantiation ('in'), specialization ('isA"), and attribution/relations, see
http://conceptbase.sourceforge.net/userManual81/cbm003.html


http://conceptbase.sourceforge.net/userManual81/cbm003.html

Structural definitions for MLT-Telos as O-Telos frames

-~

Listing 2: Powertype and specialization

TYPE with
irreflexive, antisymmetric,single,revsingle
isPowerTypeOf: TYPE
reflexive,antisymmetric,transitive
specializes: TYPE
attribute
properSpecializes: TYPE

end

A

The 'isPowerType' and 'specializes' relations are defined for TYPE.
The categories like 'irreflexive' come with predefined rules and constraints

realizing their semantics, see also
http://conceptbase.sourceforge.net/mit-telos/SOURCES/System-oHome.sml


http://conceptbase.sourceforge.net/mlt-telos/SOURCES/System-oHome.sml

From First-order to Datalog: a lossy translation

MLT* definition of "individuals” and 'types"

Vx Individual(x) <& =3y iof(y, x)
Vx Type(x) <> Ty iof(y, x)
Approximation in MLT-Telos by constraints:

i 3

Listing 3: Individual objects

forall x/INDIVIDUAL not exists y/ENTITY (y in Xx)
forall x/INDIVIDUAL not (x in TYPE)

\ J

In Datalog, facts like (x in INDIVIDUAL) must be either explicitely stated or derived from
explicit facts by rules. In MLT*, we have true definitions of the terms.



The powertype relation in MLT*

MLT* definition of 'isPowerTypeOf'"

Vtq, t2 isPowertypeOf(ty, t2)
< type(t1) A Vits(iof(ts, t1) <> specializes(ts, t2))

Approximation in MLT-Telos by deductive rules:

~

Listing 6: Semantics of isPowerTypeOf

forall t1,t2,t3 /TYPE (t1 isPowerTypeOf t2) and
(t3 in t1) and not (t3 isA t2) ==> (t3 specializes t2)

forall t1,t2,t3/TYPE (t1 isPowerTypeOf t2) and
(t3 specializes t2) ==> (t3 in t1)




Example 1: Simple powertype relation

instance nf

instance of
.-~ - powenypeaf _ _ T
PersonType < - .-}
™ = C T -—— instance of - o =
.. ~ e Falet
R o ! !
e R
S -
~ -
-‘_ -
instance of instance of

~

- it

. Feee
! ® )
b * \

- instance of . :
instance of instance of
AY

! i !
I \ i

Model 2: Listing for figure 2

Person in TYPE end

PersonType in TYPE with isPowerTypeOf type: Person end
Man in TYPE,PersonType end Woman in TYPE,PersonType end
John in INDIVIDUAL,Man end Bob in INDIVIDUAL,Man end
Ana in INDIVIDUAL,Woman end

The expilicit facts in the listing lead to derived facts, in particular the 'specializes' relations
between 'Person’, 'Man', and 'Woman' (rule 1 of listing 6).

Note also the derived instantiation of '‘Person' to '‘PersonType' (rule 2 of listing 6).



http://conceptbase.sourceforge.net/mlt-telos/GELs/Example1.gel

Categorization in MLT*

MLT* supports besides the powertype construct the categorization of classes, e.g.
the disjoint and complete categorization of the class 'Person' by gender.

Approximation in MLT-Telos by constraints and rules (excerpt):

' A
Listing 10: Specializations deduced from categorization

forall t1,t2,s1,s2/TYPE (t1 isPowerTypeOf t2) and
(s1 completelyCategorizes s2) and (s1 specializes t1)
==> (s2 specializes t2)

forall t1,t2,s1,s2/TYPE (t1 isPowerTypeOf t2) and
(s1 categorizes s2) and (s2 specializes t2)
==> (s1 specializes t1)




Using queries to check disjointness and completeness

-~

Listing 11: Completeness and disjointness

~

IncompleteCategorization in QueryClass isA TYPE with
computed_attribute entity: ENTITY
constraint isIncomplete : $ exists t1/TYPE
(t1 completelyCategorizes this) and (~entity in this) and
not (exists t2/TYPE (t2 properSpecializes this) and
(~entity in t2)) $
end

NondisjointCategorization in QueryClass isA TYPE with
computed_attribute entity: ENTITY; type: TYPE
constraint isNondisjoint: $ exists t1,t2/TYPE
(t1 disjointlyCategorizes t2) and
(this properSpecializes t2) and
(~type properSpecializes t2) and (this <> ~type) and
(~entity in ~type) and (~entity in this) $
end

Queries in ConceptBase
are mapped to
Datalog rules.

Here, they are used
to return 'violators'
of corresponding
MLT* axioms.



Example 2: The partitions construct (disjoint and complete categorization)

IncompleteCategornization

A

instance o‘f
v 7 X

PersonType | - - - -

— powertype of

- Yoo

NondisjointCategorization

- / oot A
. L N )
instance of partltmns \ N
el - ‘ instance of
=7 : _instance of F
-7 g
instance of
PersonByGender ! A
instance of \ A\
’ N\
instance of | instance of \
: . instance of . \\
i, . * .
5
I . | N .
os] o] o)

Model 3: Listing for figure 3

Person in TYPE end

PersonType in TYPE with isPowerTypeOf type: Person end

PersonByGender in TYPE with specializes t1: PersonType
partitions t2: Person end

Man in TYPE,PersonByGender end

Woman in TYPE,PersonByGender end

John in INDIVIDUAL,Man end Bob in INDIVIDUAL,Man end

Ana in INDIVIDUAL,Man,Woman end Data in INDIVIDUAL,Person end

Answers to the queries of listing 11.:

The two queries show how models can be checked

for errors without having to reject them due to
the violation of integrity constraints.

Person in IncompleteCategorization with
entity
COMPUTED_entity_id_3470 :
end

Data

Man in NondisjointCategorization with

entity
COMPUTED_entity_id_3466 : Ana
type
COMPUTED_type_id_3457 : Woman
end



http://conceptbase.sourceforge.net/mlt-telos/GELs/Example2.gel

DeepTelos vs. MLT-Telos

The paper lists the deductive rules to map a DeepTelos model into an MLT-Telos model.
Hence, DeepTelos is a subset of MLT-Telos. It lacks the categorization constructs, the
'powertype' construct is virtually the same.

MLT* does not specifically define how to handle attributes and relations defined for classes.
MLT-Telos can take over this aspect from DeepTelos.

DeepTelos passed the MULTI'19 challenge. Hence, MLT-Telos will do as well!



Limitations

We did not yet test large models. The MLT-Telos implementation may turn out
to be inefficient for testing large multi-level models.

O-Telos (the axiomatically defined language used by ConceptBase) defines its

own specialization construct 'iIsA'. This is not completely integrated with the MLT-Telos
construct 'specializes' though they are virtually the same. This leads to a few problems
when specializing attributes or relations.

The fundamental limitation of MLT-Telos is that it uses the minimal Herbrand interpretation
of Datalog. For example, MLT-Telos cannot derive powertype relations from a given
model. Datalog distiguishes conditions and conclusions in deductive rules. First-order
logic does not. The position of a predicate in a formula does not qualify it as being
derived.

Definition of 'BasicClass' in MLT-Telos is fairly simple. Similar with 'OrderedType'.


http://conceptbase.sourceforge.net/userManual81/cbm011.html

Benefits of MLT-Telos

» Specification (O-Telos source code) fits on one page.

* Potential for an efficient implementation due to the solid Datalog engine of ConceptBase.

* Number of query classes to check correctness can be extended by query classes that
check the quality (fithess for use) of a multi-level model.

All sources and executable examples are published under CC BY-SA at
http://conceptbase.sourceforge.net/mlt-telos/

The web page contains further information on the implementation.
Check them out by installing the free ConceptBase system.


http://conceptbase.sourceforge.net/mlt-telos/SOURCES/System-oHome-MLT_telos.sml
https://creativecommons.org/licenses/by-sa/4.0/deed
http://conceptbase.sourceforge.net/mlt-telos/

Summary: MLT* © MLT-Telos © DeepTelos

Next: Understand relation to potency-based approaches
Then: Large models

http://conceptbase.cc/milt-telos/


http://conceptbase.cc/mlt-telos/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

