El

S "The System module is the root module of
' purpOSe B eptBass. It contains the pra-definsd
BN : objects and ciasses for ConceptBase.”

A4 L

attribute

MSFOLconstraint

constraint v

! N -

'

'

]

'
i

BuiltinClass
A Individual
' . B
[

A

I
1

(’ GenericQueryClass

'
eca_necessary |

'
'
i’
‘
forall AECArule exists
E/ECAassertion (r ecarule &) §

1

ConceptBase+ User Manual
Version 8.5!

Manfred A. Jeusfeld (ed.)
University of Skovde, 54128 Skovde, Sweden

2024-09-12

'Copyright 1987-2024 by The ConceptBase Team. All rights reserved. See https://conceptbase.
sourceforge.net/cbteam.html for details.

https://conceptbase.sourceforge.net/cbteam.html
https://conceptbase.sourceforge.net/cbteam.html

Abstract. ConceptBase.cc (in short ConceptBase) is a multi-user deductive object manager intended
for conceptual modeling, metamodeling, and coordination in design environments. The system implements
O-Telos, a dialect of Telos integrating deductive and object-oriented paradigms. It uniformly represents all
information regardless of its abstraction level (data, class, meta class, meta meta class etc.) in a single
data structure called P-facts. The deductive query language is seamlessly integrated into the meta class
hierarchy. Modeling is supported by meta classing, deduction and integrity checking, active rule speci-
fication, functional definition of computation, a module concept, and a rollback mechanism for querying
past database states. These principles are combined orthogonally, e.g. deductive rules can be restricted
to modules, formulated for meta classes, employed in active rules using functional definitions to compute
properties, and be revised without overwriting the earlier definitions. The Java-based user interface CBIva
offers a palette of graphical interfaces, such as an Telos editor and a graph editor. The communication
between the user clients and the object base is organized in a client-server architecture using TCP/IP. The
Java-based command line interface CBShell allows for easy scripting of commands directed to a Concept-
Base server. The CBShell source code can also be used as a programming interface to ConceptBase.

Contributions to this manual were made by: Manfred Jeusfeld, Martin Staudt, Hans Nissen, Christoph
Quix, Lutz Bauer, Rainer Gallersdorfer, Michael Gebhardt, Matthias Jarke, Thomas List, René Soiron.

Contributions to the source code of ConceptBase were made by: Masoud Asady, Lutz Bauer (module
system), Markus Baumeister, Ulrich Bonn, Stefan Eherer, Rainer Gallersdorfer (object store), Michael
Gebhardt, Dagmar Genenger, Michael Gocek, Rainer Hermanns, Manfred Jeusfeld (CB server, logic foun-
dation, function component), David Kensche, André Klemann, Eva Kriiger (integrity component), Rainer
Langohr, Farshad Lashgari, Tobias Latzke, Xiang Li, Yong Li, Thomas List (object store), Andreas Mi-
ethsam, Hans Nissen (module system), Martin P6schmann, Christoph Quix (CB server, view component),
Christoph Radig (object base interface), Achim Schlosser, Tobias Schoneberg, René Soiron (optimizer),
Martin Staudt (CB server, query component), Kai von Thadden (query component), Hua Wang (answer
formatting), Claudia Welter, Thomas Wenig, and others. If you ever contributed to the ConceptBase source
code and you are not listed here, then give us a note!

Contents

1 Introduction

1.1
1.2
1.3

1.4
1.5

1.6
1.7

2.1

22

2.3

24
2.5

2.6
2.7

Background: Telos and O-Telos i it
The architecture of ConceptBase.cc
Hardware and software requirements Lo
1.3.1 Installation e e e
Overview of thismanual
Differences to earlier versions oL
License terms e e e e e e e
Disclaimer e e e e

O-Telos by ConceptBase.cc

Propositions and frames
2.1.1 Anonymousobjectlabels oo
Rules and constraints L. e e
2.2.1 Basicpredicates e e
222 Notesonattribution. L
2.2.3 Assigning attribute categories to explicit attributeso L. L
224 Reservedwords
2.2.5 Comparison predicateso
2.2.6 Typedvariables
2.2.7 Semantic restrictions on formulas Lo 0oL
2.2.8 Rule and constraint syntax e e
229 Metaformulas
2.2.10 Further objectreferences Lo o
2.2.11 User-definable error messages for integrity constraints
2.2.12 Immutable properties e e
Query classes e e e e
2.3.1 Query definitions versus query calls
2.3.2 Query classes and deductive integrity checking
2.3.3 Nested query calls and shortcuts L oL
234 Reifiedquerycalls L
View definitions
Functions L
2.5.1 Functions as special queries Lo
2.5.2 Shortcuts for function calls and functional expressions
2.5.3 Example function calls and definitions
2.54 Programmed functions oL
2.5.5 Recursive function definitions L. o oo
Query evaluation Strategieso i e e e e e e e e e
Multi-level modeling with ConceptBase
2.7.1 Expressing semantics at the metamodel level
2.7.2 DeepTelos o

10
10
11
11
12
13

2.8

3.1
3.2

33
34

2.7.3 Crossing abstractionlevels
Datalog queries and rules
2.8.1 Extended query model
2.8.2 Datalogcode
2.83 Examples e e e
Answer Formats for Queries
Basicdefinitions.
Constructs in answer formats L. oL
3.2.1 Simple expressions in patternsol e
3.2.2 Pre-defined variables L
3.2.3 Iterations OVer Xpressions v v v v v v i e e e e e e e e
324 Specialcharacters.
325 Function patterns o v v it e e e e e e e e e e e
3.2.6 Calling queries in answer formatso
3277 BExpressionsinheadandtail L 0oL,
3.2.8 Conditional expressions
3.29 Views and path expressions
3.2.10 Encoding answers via answer formats oL oL
Parameterized answer formatso oL
File type of answer formats oL o
Bulk query calls e

35

Active Rules

4.1

4.2

43
4.4

Definition of ECArules e
4.1.1 ECA@sSertion it e e e
412 Bvents. e e e
413 Conditions e
414 ACHONS e
4.1.5 Prioritieso e e
4.1.6 Couplingmodeof an ECArule
4.1.7 Execution SemantiCso e
4.1.8 Switching Queues
4.1.9 Activate and Deactivate ECArules
4.1.10 Depth oL e e
4.1.11 User-definable Error Messages
4.1.12 Constraints e e e e
Examples
4.2.1 Materialization of views by activerules
422 COoUNter v vt i e
423 TIMeStamps e e e e e e e e e e
424 Simulationof Petri Nets
Optimization of ECArules
Limitations of the current implementation

The Module System

5.1
52
53
54
55
5.6
5.7

Definitionof modules o
Switching between module contexts Lo
Usingnested modules
Exporting and importing objects oL o
Modules and metamodelingo
Setting user home modules Lo
Limiting accesstomodules L
5.7.1 AccesstoSystemmodule

59
61
62
62
64
64
65
65
66
67
67
68
68
68
69
69

71
71
72
72
72
73
74
74
75
76
77
77
77
77
77
77
78
79
80
81
81

5.8 Listing the module content e e 93

5.8.1 Restrictions of 1istModule e 93
59 Purgingamodule 94
5.10 Saving and loading module sources Lo 94
5.11 Server-side materialization of query results 95
5.11.1 Post-exportcommand e 96
The ConceptBase.cc Server 98
6.1 CBServer parameters v v v vt e e e e e e e e e e e e e e e e 98
6.1.1 Updating the CBserver software 102
6.2 ConceptBase under Windows 10 oL oo 102
6.3 Database format 103
6.4 Modifying the system database 103
6.5 Tracingand restarting e e e e e e e e e e e 104
6.6 Public CBservers e e 104
6.7 The tabling subsystem oL 105
6.8 Database persiStenCy i .. e e e e e 106
6.9 The UNTELL operation i i ii ittt e e e e 107
6.9.1 Cascading UNTELL 108
6.10 Memory consumption and performance 109
6.11 TheJava APItothe CBserver. 109
The CBShell Utility 112
T.1 Syntax oo e e e e e e e e e e 112
T2 OPLONS . . o o vt ot e e e e e e e e e e 112
7.3 Commands L e e e e e e 113
7.3.1 Rollback time for ASK 115
7.3.2 Argumentdelimiters Lo 115
74 Interactiveuse of CBShell 116
7.5 Positional parameters e e e e e e e e e 116
7.6 Executable CBShell scripts 117
7.7 CBShell scripts within regular shell scripts 117
7.8 CBShellinapipe o o o 118
The ConceptBase.cc Usage Environment 120
8.1 TheworkbenchCBIva 120
8.1.1 Thetoolbar e 120
8.1.2 Themenubar 122
8.1.3 Thestatusbar 124
8.1.4 Teloseditor e e 124
8.1.5 Historywindow 125
8.1.6 Displayinstanceso e 125
8.1.7 Frame browser 125
8.1.8 Display queries e e e e 125
8.1.9 Display functions 127
8.1.10 Queryeditor 127
.1.11 Tree browser o v it it i e 128
8.2 The grapheditor CBGraph e 129
82.1 OVEIVIEW o e e e 129
8.2.2 Starting CBGraphviaCBlva 130
8.23 Thecbgraphcommand 130
8.2.4 Redirecting the CBserver location 132
8.2.5 Movingobjects 133
8.2.6 Menubar e 133

8.2.7
8.2.8
8.2.9
8.2.10
8.2.11

Toolbar
Popupmenu
Editing of Telos objects
Caching of query results within CBGraph
Graphfiles e e

8.3 Anexample session with ConceptBase

8.3.1
832
833
8.3.4
8.3.5
8.3.6
8.3.7

Starting ConceptBase o
Connecting CBIva to another CBserver
Loading objects from external files
Displaying objects
Browsing objects e
Editing Telosobjects L
Using the query facility

8.4 Configurationfile L

Syntax Specifications

A.l1 Syntax specifications for Telos frames
A.2 Syntax of the rule and constraint language oL
A3 Syntaxof activerules e e e
A4 Terminal symbols L e e e
A.5 Syntax specifications for SML fragments 0oL

O-Telos Axioms

Graphical Types
C.1 Thegraphical typemodel
C.2 The standard graphical types e e
C.2.1 The extended graphical typemodel
C.2.2 Default graphical types
C.3 Customizing the graphical types
C.3.1 Graphical properties of nodes and links
C32 Nodelevels
C3.3 Clickactions v it e
C.3.4 Shapes e e
C.3.5 Teons . . . oo e e e
C.4 TelosPalette: A modern graphical palette for ConceptBase
C.5 Opbject-specific graphical properties L oo
CS5.1 HTMLnodelabels e
C.6 Graphical types for derived links
C.7 Palette-specific methods to expand related objects
Examples
D.1 Example model: the employeemodel,
D.2 A Telos modeling example - ER diagrams
D.2.1 Thebasicmodel
D.22 Theuseofmetaformulas.
D.2.3 Limitations and final remarks L oo
Predefined Query Classes
E.1 Query classes and generic query classes oL
E.1.1 Instancesandclasses e
E.1.2 Specializations and generalizations
E.1.3 Attributes e
E.1.4 Links betweenobjects

154
154
155
157
158
159

161

164
164
165
165
166
167
168
170
171
172
173
175
176
178
179
180

182
182
182
182
184
189

E.1.5 Otherqueries 0 i e e 192

E2 Functions e e e e e 193
E.2.1 Computationandcounting 193

E.2.2 String manipulation functions oL 194

E.3 Builtinquery classes e e e e 195

F CBserver Plug-Ins 196
F1 Definingtheplug-in 196

F2 Callingtheplug-in e e e e 197

F.3 Programming interface for the plug-ins 198
References 199

Chapter 1

Introduction

ConceptBase.cc is a deductive object base management system for meta databases. Its data model is a
conceptual modeling language making it particularily well-suited for design and modeling applications.
Its underlying data model allows to uniformly represent data, classes, meta classes, meta meta classes etc.
yielding a powerful metamodeling environment. The system has been used in projects ranging from de-
velopment support for data-intensive applications [JJQV99], requirements engineering [RaDh92, Eber97,
NJJ*96], electronic commerce [QSJ02], and version&configuration management [RJG*91] to co-authoring
of technical documents [HIJEK90]. It has mostly been used in academia for developing specialized model-
ing languages by means of metamodeling [JJS*99, JIM*09, Jeus09].

The key features distinguishing ConceptBase.cc from other extended DBMS and meta-modeling sys-
tems are:

* Unlimited meta class hierarchy, allowing to represent information at any abstraction level (data,
class, meta class, meta meta class)

e Uniform data structure (called P-fact) for concepts, their attributes, their class memberships, and
their super- and sub-concepts; all four types of information are full-fledged objects

* Clean formal integration of deductive and object-oriented abstraction by Datalog logical theories

e Complex computations can be user-defined by recursive function definitions, e.g. the length of the
shortest path between two nodes

* Queries are defined as classes with user-defined membership constraints; queries can range over any
type of object at any abstraction level

 Active rules can be used to define the system’s reaction to events; active rules can change the state
of the database and can trigger each other

¢ Client-server architecture with wide-area Internet access

ConceptBase.cc implements the version O-Telos (= Object-Telos) of the knowledge representation lan-
guage Telos [MBJK90]. O-Telos integrates a thoroughly axiomatized structurally object-oriented kernel
with a predicative assertion language in the style of deductive databases. A complete formal definition can
be found in [JGJ*95, Jeus92]. O-Telos is purely based on deductive logic but it also supports a frame-like
representation of facts.

This user manual is tightly integrated with the ConceptBase.cc Forum. The ConceptBase.cc Forum is
an Internet-based workspace where ConceptBase.cc developers and users share knowledge and example
models. It contains numerous examples on how to solve certain modeling problems. It is highly rec-
ommended to join the workspace. More details are available at http://conceptbase.sourceforge.
net/CB-Forum.html.

ConceptBase.cc is mainly used for metamodeling and for engineering customized modeling languages.
The textbook [JIM*09]

http://conceptbase.sourceforge.net/CB-Forum.html
http://conceptbase.sourceforge.net/CB-Forum.html

Jeusfeld, M.A., M. Jarke, and J. Mylopoulos:
Metamodeling for Method Engineering.
Cambridge, MA, 2009. The MIT Press, ISBN-10: 0-262-10108-4.

introduces into the topic and provides six in-depth case studies ranging from requirements engineering
to chemical device modeling. The book and this user manual are complementary to each other.

1.1 Background: Telos and O-Telos

The knowledge representation language 7elos has been one of the earliest attempts to integrate deduction,
object-orientation and metamodeling [Stan86, MBJK90], originally intended for requirements engineering
[Koub20]. The O-Telos [Jeus92] dialect supported in ConceptBase.cc has as design goals the semantic
simplicity, symmetry of deductive and object-oriented views, metamodeling flexibility, and extensibility at
any abstraction level. This emphasis, technically supported by a careful mapping of O-Telos to Datalog
with negation (DATALOG™), has paid off both in user acceptance and ease of implementation. In essence,
ConceptBase.cc is based on deductive database technology with object-oriented abstraction principles like
object identity, class membership, specialization and attribution being coded as pre-defined deductive rules
and integrity constraints.

Development of ConceptBase.cc started in late 1987 in the context of ESPRIT project DAIDA [Jark93]
and was continued within ESPRIT Basic Research Actions Compulog 1 and 2 (1989 — 1995), the ES-
PRIT LTR project DWQ (Foundations of Data Warehouse Quality, 1996-1999), and the ESPRIT project
MEMO (Mediating and Monitoring Electronic Commerce, 1999-2001). Versions have been distributed for
research experiments since early 1988. ConceptBase.cc has been installed at more than eight hundred sites
worldwide and is seriously used by about a dozen research projects in Europe, Asia, and the Americas.

The direct predecessor of O-Telos is the knowledge representation language Telos (specified by John
Mylopoulos, Alex Borgida, Martin Stanley, Manolis Koubarakis, Dimitris Plexousakis, and others). Telos
was designed to represent information about information systems, esp. requirements. Telos was based on
CML (Conceptual Modeling Language) developed in the mid/late 1980-ties. A variant of CML was created
under the label SML (System Modeling Language)' and implemented by John Gallagher and Levi Solomon
at SCS Hamburg. CML itself was based on RML (Requirements Modeling Language) developed at the
University of Toronto by Sol Greenspan and others. Neither RML nor CML were implemented in 1987.
They were regarded as theoretic knowledge representation languages with ’possible world semantics’.
SML was implemented as a subset of CML using Prolog’s SLDNF semantics.

In 1987, we decided to start an implementation of Telos and quickly realized that the original semantics
was too complex for an efficient implementation. The temporal component of Telos included both valid
time (when an information is true in the domain) and transaction time (when the information is regarded to
part of the knowledge base). The temporal reasoner for the dimensions in ConceptBase.cc V3.0 only to see
that there were undesired effects with the query evaluator and the uniform representation of information
into objects. Specifically, the specialization of a class into a subclass could have a valid time which could
be incomparable to the valid time of an instance of the subclass. Any change in the network of valid time
intervals could change the set of instances of a class. Because of that, we dropped the valid time as a
built-in feature of objects but we kept the transaction time. A few other features like the declarative TELL,
UNTELL and RETELL operations as proposed by Manolis Koubarakis in his master thesis on Telos were
only implemented in a rather limited way - essentially forbidding direct updates to derived facts. On the
other hand, O-Telos extends the universal object representation to any piece of explicit information and
reduces the number of essential builtin objects to just five. So, some of the roots of Telos in artificial
intelligence were abandoned in favor of a clear semantics and of better capabilities for metamodeling.
More specifically, there are some important differences of O-Telos to the original Telos specification.

* Labels are not used as object identfiers in O-Telos. For example, Telos would represent an object like
”bill” as P(bill,bill,-,bill). In O-Telos, we represent such objects as P(id123,id123,bill,id123). Each
object in O-Telos has a system-generated identifier.

'The acronym SML survived in ConceptBase as the filetype . sm1 for source models.

* Telos promotes the use of level classes such as "Token”, ”SimpleClass”, "MetaClass” etc. to classify
user-defined objects into abstraction levels similar to the OMG UML Infrastructure. Besides, Telos
defines a so-called omega-level that is parallel to the abstraction levels and defines in particular the
object “Proposition”. O-Telos does not pre-define the level classes and does not need them. It is up
to the user to demand the existence of such levels.

* There are only 5 pre-defined “omega” objects in Telos to define “individual” objects, instantiations,
specializations, attributions, and the most-generic object “Proposition”. Telos has some more pre-
defined such objects like ”Class” and ”AttributeClass”. Such objects are regarded in O-Telos as
user-definable objects.

* There are about 50% more builtin axioms in O-Telos (see appendix B) compared to Telos, in par-
ticular to define attribute specialization and to forbid certain pathological databases with groups of
entangled objects.

The ConceptBase.cc server adds further capabilities to O-Telos that were not defined/implemented in
Telos:

* There are deductive rules and integrity constraints that are mapped to DATALOG™ and evaluated by
a DATALOG™ engine. The engine supports stratified negation, checked at runtime.

e There is a query language that is embedded into the notion of class specialization and realized by
the DATALOG™ engine. Query classes work like classes whose instances are derived by deductive
rules.

» There are active rules that allow to trigger actions when certain events occur.

* Arithmetic is supported as well as recursive function definitions. The implementation utilizes the
DATALOG™ engine for evaluating recursive function expressions.

* ConceptBase provides a partial evaluator for rules and constraints that range over multiple instan-
tiation levels. Example of such formulas were also proposed for Telos, in particular for cardinality
constraints. The partial evaluator makes sure that the DATALOG™ engine can always detect stratifi-
cation violations.

» ConceptBase.cc provides an elaborate module concept for O-Telos databases. Sub-modules see all
definitions from super-modules but not of sibling modules (unless imported).

« Stratification in ConceptBase.cc is solely defined in terms of logical stratification (recursive rules in
the presence of negation). There is no need on ConceptBase.cc to demand fixed abstraction levels
to constrain the instantiation relation between objects. Since ConceptBase.cc is mostly used for
metamodeling, the user can define such constraints if they are necessary for the modeling domain.

Since we wanted to be able to manage large knowledge bases (millions of concepts rather than a few
hundred), we decided to select a semantics that allowed efficient query evaluation. Telos included already
features for deductive rules and integrity constraints. Thus, the natural choice was DATALOG™ with perfect
model semantics. The deductive rule evaluator and the integrity checker were ready in 1990. A query
language (’query classes”) followed shortly later. O-Telos exhibits an extreme usage of DATALOG™:

* There is only one base relation P(0,x,l,y) called P-facts used for all objects, classes, meta classes,
attributes, class membership relationships, and specialization relationships as well as for deductive
rules, integrity constraints and queries.

* The semantics of class membership, specialization, and attribution is encoded by around 30 axiom:s,
which are either deductive rules or integrity constraints.

 Deductive rules ranging over more than one classification level (instances, classes, meta classes, etc.)
are partially evaluated to a collection of rules (or constraints) ranging over exactly one classification
level.

O-Telos should be regarded as the data model of a database for metamodeling. It is capable to represent
semantic features of (data) modeling languages like entity-relationship diagrams and data flow diagrams.
Once modeled as meta classes in O-Telos, one simply has to tell the meta classes to ConceptBase.cc to
get an environment where one can manipulate models in these modeling languages. Since all abstrac-
tion levels are supported, the models themselves can be represented in O-Telos (and thus be managed by
ConceptBase.cc).

1.2 The architecture of ConceptBase.cc

ConceptBase.cc 8.5 follows a client-server architecture. Clients and servers run as independent processes
which interact via inter-process communication (IPC) channels (Fig. 1-1). Although this communication
channel was initially meant for use in local area networks, it has been used successfully for nationwide and
even transatlantic collaboration of clients on a common server.

The ConceptBase.cc server (CBserver) offers programming interfaces that allow to build clients and to
exchange messages in particular for updating and querying object bases using the Telos syntax. We provide
support for Java and to a very limited degree for C/C++. Descriptions of the interfaces and the correspond-
ing libraries that are delivered with ConceptBase.cc can be found in the ConceptBase.cc Programmers
Manual, available via the CB-Forum at http://merkur.informatik.rwth-aachen.de/pub/bscw.
cgi/885553. We like to note that the C/C++ interfaces were not maintained since we switched the user
interface to Java.

Besides the Java/C API, the CBShell client (see section 7) can be used to interact with a CBserver
via the command line or in shell scripts. CBShell is indeed a Java client of the CBserver. The CBShell
can also serve as an example client for programming own application specific client tools. There is also
a tool that creates an HTTP interface to a CBserver, see section BrokerReproxy in the CB-Forum http:
//merkur.informatik.rwth—aachen.de/pub/bscw.cgi/895647. Clients would then interact with
ConceptBase via HTTP requests.

Graph Telos Mail
Browser#2 Editor#5 Tool#8
GBROWSE EDIT SEND
RECEIVE
Communication channel (Intemet)
TELL
ASK i T NOTFY I (sQL) I sy
CB rel. rel.

ﬁ‘ Sever#23 DBMS#1 | | DBMS#2
EE

Hél E@ ¥ Representation of enviiorment within
CB's object base

Figure 1.1: The client-server architecture of ConceptBase.cc

ConceptBase.cc comes with a standard usage environment implemented in Java which supports editing,
ad-hoc querying and browsing (CBlva). The tool CBGraph supports editing diagrams extracted from the
database, and CBShell is a command line shell for interacting with the database.

Although ConceptBase.cc provides multi-user support and an arbitrary number of clients may be con-
nected to the same server process, ConceptBase.cc does not yet support concurrency control beyond a
forced serialization of messages.

A performance comparison [Lud2010] of ConceptBase.cc with Protegé/Racer found that Concept-
Base.cc is orders of magnitude faster for queries. It lacks however the reasoning capabilities of Pro-
tegé/Racer.

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/885553
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/885553
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/895647
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/895647

1.3 Hardware and software requirements

The ConceptBase.cc server (CBserver) can be compiled on at least the following platforms” including
* 1386 CPUs under Linux Kernel 3.0 or higher,
* x86_64 (AMD64) CPUs under Linux Kernel 3.0 or higher,

* x86_.64 (AMD64) CPUs under Windows 10 (Creators Update or later) with Linux sub-system en-
abled.

¢ ARMv7 (ARM) CPUs under Raspbian (Raspberry Pi)

Pre-compiled binaries are provided for Linux (and thus also Windows 10). Compilation from the Con-
ceptBase.cc sources on Mac OS-X and other platforms should be possible in principle, though we cannot
provide support for them. See instructions distributed with the ConceptBase.cc source files for further
details.

Implementation languages for the CBserver are Prolog® (in particular for logic-based transformation
and compilation tasks) and C/C++ (in particular for persistent object storage and retrieval).

The ConceptBase.cc usage environment (CBIva, CBGraph, CBShell) executes on any platform with a
compatible Java Virtual Machine. Java 6, Java 7, or Java 8 should all work. We recommend the most recent
stable version of Java 7 or Java 8.

The CBserver is dynamically linked with a couple of shared libraries. Under Linux/Unix can check
whether all required libraries are installed by

export PATH=$CB_HOME/bin:$PATH
1dd $CB_HOME/ ‘CBvariant ‘/bin/CBserver

The installation of ConceptBase.cc requires about 50 MB of free hard disk space. The main memory
requirements depend on the size of the object base loaded to the ConceptBase.cc server. The initial main
memory footprint is just about 8 MB. We recommend about 20 MB of free main memory for small appli-
cations and 200 MB and higher for large applications of ConceptBase.cc. The server can handle relatively
large databases consisting of a few million objects. Response times depend on the size of the database and
even more on the structure of the query.

Since clients connect to a CBserver via Internet, the server requires the TCP/IP protocol to be available
on both the client and the server machine (can be the same computer for single-user scenarios). Note that
a firewall installed on the path between the client and the server machine might block remote access to a
CBserver. The default port number used for the communication between server and client is 4001. It can
be set to another port number by a command line parameter.

The CBserver is by default multi-user capable, i.e. multiple clients can connect to the same CBserver.
This feature is by default disabled when you start the CBserver from within the user interface. See section
6 for more details.

The standard ConceptBase.cc client are CBIva and CBGraph (see section 8). The distribution also
contains a client CBShell that can be used to interact with a ConceptBase.cc server using a command/shell
window. The CBShell client can also be used to run non-interactive scripts, e.g. for loading a sequence of
files with Telos source models into the CBserver.

1.3.1 Installation

The download and installation instructions are available from the ConceptBase.cc home page at http://
conceptbase.sourceforge.net/CB-Download.html. The binaries are installed via a self-extracting
Java Archive (CBinstaller.jar).

2 All trademarks are property of their respective owners.
3ConceptBase.cc now relies on SWI-Prolog [http://www.swi-prolog.org/]. Formerly, ProLog by BIM had been
used. We only use constructs of SWI-Prolog 5.6 but later versions, in particular SWI-Prolog 6.x, should be compatible.

10

http://conceptbase.sourceforge.net/CB-Download.html
http://conceptbase.sourceforge.net/CB-Download.html
http://www.swi-prolog.org/

The sources are made available as a ZIP archive CBPOOL.zip. Compilation from sources on platforms
different from Linux requires in-depth expertise due to the manifold of programming languages used for
ConceptBase (Prolog, C, C++, Java).

You can also install a virtual appliance (Linux) that includes the binaries, sources, and the complete
development environment.

The default installation directory under Windows is c : \conceptbase. Under Linux, ConceptBase
is installed by default in the user’s home directory $SHOME /conceptbase.

1.4 Overview of this manual

This manual provides detailed information about using ConceptBase.cc. Information about the installation
procedure can be found in the Installation Guide in directory doc/TechInfo. New users are advised to
follow the installation guide for getting the system started and then to work through the ConceptBase.cc
Tutorial. More information about the knowledge representation mechanisms, the applications, and the
implementation concepts can be found in the references. Chapter 2 describes the ConceptBase.cc version
of the Telos language and gives some examples for its usage. Chapter 6 discusses the parameters that can
be set when starting the CBserver. Finally, section 8 describes the ConceptBase.cc Usage Enviroment.
Appendices contain a formal definition of the Telos syntax and internal data structures (A). Appendix
C summarizes the mechanism for assigning graphical types to objects and adapting the graphical brows-
ing tool for specific application needs. Appendix D contains the full Telos notation of an example model
(D.1) and a case study on the modeling of entity-relationship diagrams with Telos (D.2). Plenty of fur-
ther examples for particular application domains and add-ons for metamodeling can be retrieved from the
ConceptBase.cc Forum at http://conceptbase.sourceforge.net/CB-Forum.html.

1.5 Differences to earlier versions

ConceptBase.cc 8.5 should be largely source-compatible to its direct predecessor. The binary database
files and the graph files have a new format and are not compatible with their counterparts created by earlier
releases.

The CBserver has now the ability to maintain module sources and query results formatted in external
formats in the file system. The module sources allow to co-develop models both via the ConceptBase.cc
user interface and by external text editors. Exporting query results in external formats is useful when
they are post-processed by external tools. For example, one can generate program source code from a
ConceptBase.cc model and have that code processed by a compiler.

The active rule component now supports constructs to enforce a transactional execution of delayed
triggers. Triggers can be passed to different queues that are processed with different priorities. This feature
allows to delay certain triggers until the consequences of the current trigger are all processed.

The graph editor is now a stand-alone tool and has the ability to store connection details plus a snapshot
of the module sources in its graph files. The graph files are then self-contained and can be viewed and
updated without having to maintain the module sources elsewhere. It also can display a background image
in the graph window. Nodes can now be configured to be resizable. Lines are now drawn with anti-aliasing,
yielding much better graph images.

The CBShell utility now behaves more like a Linux/Unix shell. It provides easy shortcuts like ’cd’
for changing the module context. It also allows the use of positional parameters, hence making it a better
companion to Linux/Unix scripts.

The release notes to ConceptBase.cc 8.5 lists all major changes and issues. You find the release notes
in the subdirectory doc/TechInfo of your ConceptBase.cc installation directory or via the web site
https://conceptbase.sourceforge.net.

The system still has about the same memory footprint as it used to be 10 years ago. You can easily
install the complete system for all supported platforms on a 32 MB memory stick.

11

http://conceptbase.sourceforge.net/CB-Forum.html
https://conceptbase.sourceforge.net

1.6 License terms

ConceptBase.cc is distributed under a FreeBSD-style copyright license since June 2009. Both binary and
source code are available via http://sourceforge.net/projects/conceptbase/files.
The FreeBSD-style copyright license of ConceptBase.cc reads like follows:

The ConceptBase.cc Copyright
Copyright 1987-2024 The ConceptBase Team. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE CONCEPTBASE TEAM ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CONCEPTBASE TEAM OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors
and should not be interpreted as representing official policies, either expressed or implied,
of the ConceptBase Team.

This license makes ConceptBase.cc free software as promoted by the Free Software Foundation. The
license is upwards-compatible to the GNU Public License (GPL), i.e. developers can combine GPL-ed
software with ConceptBase.cc software as long as they include the above FreeBSD-style license for the
ConceptBase.cc components. It should also be compatible with many other free license models. The
source code is copyrighted by The ConceptBase Team, consisting of all contributors to the source code at
the central code repository of the system.

Binary and source distributions of ConceptBase.cc may contain third-party software. Their licenses are
listed in the directory doc/ExternalLicenses of the installation directory.

You are welcome to contribute the ConceptBase.cc project! Join the ConceptBase.cc Forum at http:
//conceptbase.sourceforge.net/CB-Forum.html to do so. We are also happy to learn about your
research/application, in which ConceptBase.cc plays a role. If you publish results of your work, then please
include a reference pointing to this user manual and/or to the standard ConceptBase.cc reference [JGJ*95].

The ConceptBase.cc system is published under the liberal FreeBSD-style license, which allows com-
mercial use and modification of the source code. This user manual is however published under a less
liberal copyright license. Use is permitted for private and academic purposes. Moreover, commercial
users may use the manual to self-study the ConceptBase.cc system. Only members of The Concept-
Base Team, see https://conceptbase.sourceforge.net/cbteam.html, are allowed to modify
the user manual. Re-publication of the user manual in print or online is not permitted. If you make
changes to your own copy of the source code of ConceptBase.cc, then you may not document them in
this user manual (or its sources). You rather should write a companion report that lists the differences
of your version of ConceptBase.cc to the user manual distributed via the home page of ConceptBase.cc
(https://conceptbase.sourceforge.net).

The ConceptBase.cc Forum (http://conceptbase.sourceforge.net/CB-Forum.html) contains
material submitted by different authors. The default license for the material on the CB-Forum is ”Creative
Commons BY-NC 4.0”, which does not permit commercial use of its content.

The ConceptBase.cclogoathttp://conceptbase.sourceforge.net/conceptbase-cc—logo.
gif is created and copyrighted by Manfred Jeusfeld. It may be used on official ConceptBase.cc web sites,
the ConceptBase.cc User Manual and Tutorials, and the ConceptBase.cc Forum. It may also be included
in binary distributions created by members of the ConceptBase Team. If you are not a member of the
ConceptBase.cc Team and like to use the logo for your own binary distribution of ConceptBase.cc, then
you need to ask the copyright holder for a permission.

12

http://sourceforge.net/projects/conceptbase/files
http://conceptbase.sourceforge.net/CB-Forum.html
http://conceptbase.sourceforge.net/CB-Forum.html
https://conceptbase.sourceforge.net/cbteam.html
https://conceptbase.sourceforge.net
http://conceptbase.sourceforge.net/CB-Forum.html
http://conceptbase.sourceforge.net/conceptbase-cc-logo.gif
http://conceptbase.sourceforge.net/conceptbase-cc-logo.gif

1.7 Disclaimer

All trademarks are owned by their respective owners. This report may contain flaws based on human
errors. We disclaim liability for any such flaws. It may also be that the ConceptBase.cc does not provide
all functionality described in this report, or that the functionality is provided by other mechanisms as
described in this report. Links to external websites are provided for informational (academic) purposes.
We disclaim responsibility for the views expressed on these websites.

We sometimes use the short form ConceptBase. We then always refer to ConceptBase.cc.

13

Chapter 2

O-Telos by ConceptBase.cc

ConceptBase.cc is an implementation of the O-Telos data model. O-Telos is derived from the knowledge
representation language Telos as designed by Borgida, Mylopoulos and others [MBJK90]. While Telos
was geared more to its roots in artificial intelligence, O-Telos is more geared to database theory, in par-
ticular to deductive databases. Nevertheless, O-Telos is to a large degree compatible to the original Telos
specification. In some respects, it generalizes Telos, for example by removing the requirement to classify
objects into the levels for tokens, simple classes, and meta classes. In O-Telos, we have just five predefined
objects (see appendix on the axioms of O-Telos).

Telos (and O-Telos) as well also have strong links to the semantic web, in particular to the triple
predicates used for defining RDF(S) statements. The main difference is that O-Telos is based on quadruples
where the additional components identifies the statement. While RDF(S) has to use special link types to
reify triple statements, i.e. to make statements about statements, O-Telos statements are simply referred to
by their identifier.

Telos’ structurally object-oriented framework generalizes earlier data models and knowledge represen-
tation formalisms, such as entity-relationship diagrams or semantic networks, and integrates them with
predicative assertions, temporal information, and in particular metamodeling. This combination of fea-
tures seems to be particularly useful in software information applications such as requirements modeling
and software process control. A formal description of O-Telos can be found in [MBJK90, Jeus92]. The
following example is used throughout this section to illustrate the language:

A company has employees, some of them being managers. Employees have a name and
a salary which may change from time to time. They are assigned to departments which
are headed by managers. The boss of an employee can be derived from his department and
the manager of that department. No employee is allowed to earn more money than his boss.

This section is organized as follows: first, the "logical” and “frame” representations of O-Telos are
explained. Then, the predicative sublanguage for deductive rules and integrity constraints are presented.
Subsection 2.3 presents a declarative query language which introduces queries as classes with optional
predicative membership specification.

2.1 Propositions and frames

As a hybrid language O-Telos supports two different representation formats: a logical (”propositions”) and
a frame representation. The latter format is based on the logical one. As explained in the next subsections
the logical representation also forms the base for integrating a predicative assertion language for deductive
rules, queries, and integrity constraints into the frame representation. We start with the so-called P-fact
representation of a O-Telos database.

A historical O-Telos database is a finite set of propositions (=P-facts=objects):

OB = {P(0id, x,n,y,tt)|oid, x,y,tt € ID,n € LABEL}

14

where oid has the key property within the set, ID is an infinite but countable set of identifiers. The
set LABEL is a set of names over some alphabet. The components oid, x, n, y, tt are called
identifier, source, label (or name), destination and transaction time of the propositionl. We read them as
follows:

The object x has a relationship called n to the object y. This relationship is believed by the
system for the time interval tt.

The transaction time tt is represented by two time points tt(a, b), where a is the time when the zell
time and b the untell time of the P-fact. The historical O-Telos database is the basis for the rollback O-Telos
database that is visible at a given point of time.

OB+ = {P(0id, x,n,y)|P(0id,x,n,y,tt) € OB,rbt < tt}

The clause t; < to expresses that the time interval ¢; is contained in time interval ¢, i.e. t1 is during
to. The value of the rollback time depends on the kind of formula to be processed: integrity constraints are
always evaluated against the current database OB,,0.,2 (now=the smallest time interval that contains the
current time). The rollback time of queries is usually provided together with the query when it is submitted
from a user interface to a ConceptBase server. By default, it is now as well. Subsequently, we shall use
OB,.;; rather than OB. Note that OB,; strips the transaction time tt from the P-facts. We shall still
call both a P-fact. Any P-fact from OB,.;; has a unique counterpart in OB, hence the transaction time can
always be looked up in OB. We demand that any OB, is consistent but do not demand it for the database
OB, which stores the whole history of updates.

O-Telos imposes some structural axioms on databases, e.g. referential integrity, correct instantiation
and inheritance ([Jeus92]). The complete list of axioms is contained in appendix B. The axioms are linked
to predefined objects that are part of each O-Telos database. There are five predefined O-Telos objects for
five patterns of propositions:

* Proposition contains all propositions as instances. A proposition is any P-fact in an O-Telos
database OB, that has the form P (oid, x, n, y). Any proposition must fall into exactly one of
the subsequent cases.

e Individual is a the class of all P-Facts that have the form P (oid, oid, n, oid). Such P-facts
are denoted as nodes in the graphical representation of an O-Telos database.

* InstanceOf contains all explicit instantiation objects as instances. This is exactly the set of P-
facts matching the pattern P (oid, x, rinstanceof, c). We say that x is an (explicit) instance
of c. In the graphical representation, an instantiation object is a link between some object x and its
class c. Note that any such explicit instantiation is also an object/proposition with identifier oid.

* TIsA contains all explicit specialization objects as instances. Specialization P-facts match the pattern
P (oid, ¢, »isa, d) A specialization object is graphically displayed as a link between a subclass
c and its superclass d.

e Attribute contains all explicit attribution/relation objects as instances. An attribution/relation
object matches the pattern P (0oid, x, m, y) where m must be different from xrinstanceof and
xisa. Itis displayed by a link between the source object x and the destination object y. The label of
the attribution object is the name of the attribute link starting from x. The object y is also called the
value or destination of the attribute. In O-Telos, the class Att ribute subsumes relations between
objects since values are just objects in O-Telos. In ConceptBase, Attribute is a shortcut for
Proposition!attribute,i.e. thelink attribute of Proposition.

'We will see in section 2.2 that the predicative language operates on a snapshot of the database, i.e. on those propositions that are
believed at a specified reference time called rollback time. This time is an interval. The of the interval is the time when the object
has been told/created. The end of the interval is either the time when the object was untold/deleted, or it is a special symbol infinity,
indicating that the object is currently believed, i.e. it is not deleted.

20nly objects that have a right-open belief time shall be visible OB ,04,. This is due to the fact that the end time of an object can
only be changed once, namely when the object is untold. The UNTELL operation can only have happened in the past when O By, ow
is built.

15

ConceptBase supports deductive rules for deriving the instantiation of an object to a class and at-
tributes/relations between objects. This derived information has no object property, i.e. it is not identified
and it is not represented as a proposition. Specifically, the instantiation of propositions to the above five
pre-defined objects is derived by deductive rules, specifically by axioms 18-22 in appendix B.

Additional to the above predefined classes?, there are the builtin classes Class, Integer, Real and
String. Class contains all so-called classes (including itself) as instances. The only special property
of Class is the definition of two attribute categories rule and constraint. Hence, instances of
classes can have deductive rules and integrity constraints. Integer and real numbers are written in the usual
way, strings are character sequences, e.g. "this is a string". These three classes are supported
by comparison predicates like (x < y) discussed in section 2.2, and by functions like PLUS, MINUS
discussed in section 2.5.

As legacy support, ConceptBase provides the pre-defined classes Token, SimpleClass, Meta~—
Class, and MetametaClass to structure the database into objects that have no instances (tokens),
objects that have only tokens as instances (simple classes), objects that have only simple classes as instances
(meta classes), and finally objects that have only meta classes as instances (meta meta classes). These
classes are provided only for compatibility with older Telos specifications. In fact, an absolute hierarchy
from tokens to simple classes to meta classes etc. is not an essential ingredient of O-Telos and in many
situations too restrictive.

Instead, meta class levels are implicitely expressed via instantiation. If an object x is an instance of
object c and object c is an instance of object mc, then mc is also called a meta class of x, and c a class of
x. Being a class or a meta class is relative to the object x that we consider. For example, mc is the class of
c. This implicit definition of the meta class concept is far more flexible than a fixed structure:

1. There is virtually no limit in the meta class hierarchy: there can be meta classes, meta meta classes,
meta meta meta classes etc.

2. A class can have object from different meta class levels as instances. This is in particular important
for extending the capabilities of the O-Telos language. An example of a class that has objects from
different levels as instances is Proposition: it has all objects as instances.

3. A user does not need to decide to which meta class level an object belongs.

Strict conformance to the membership to meta class levels can still be enforced by user-definable integrity
constraints.

As a user, you don’t work directly with propositions but with textual (frame) and graphical (semantic
networks) views on them. Both are not based on the oid’s of objects but on their label components. To
guarantee a unique mapping we need the following naming axiom:

Naming axiom (see also axioms 2,3,4 in appendix B)

1. The label (“name”) of an individual object must be unique, i.e. if two objects have the
same label than they are the same.

2. The label of an attribute must be unique within all attributes with a common source
object, i.e. no two explicit attributes of the same object can have the same label. However,
two different objects can well have attributes sharing the same label.

3. The source and destination of an instantiation object are unique, i.e. between two objects
x and y may be at most one explicit instantiation link.

4. The source and destination of a specialization object are unique.
The frame syntax of O-Telos groups the labels of propositions with common source o around the label

of o. The exact syntax is given in appendix A. In this section we introduce it by modeling the employee
example:

3Strictly speaking, we should better use the term predefined object or predefined proposition.

16

Employee in Class with
attribute
name: String;
salary: Integer;
dept: Department;
boss: Manager
end

Manager in Class isA Employee end

Department in Class with
attribute
head: Manager
end

The label of the “common source” in the first frame is Employee. It is declared as instance of the
class Class and has four attributes. The class Manager is a subclass of Employee.

Oid’s (preceded by ‘#” in our examples) are generated by the system. This leads to the following set of
propositions corresponding to the frames above. The transaction time inserted by the system is denoted by
omission marks.

P (#E, #E, Employee, #E)

P (#1, #E, rinstanceof, #Class)
P (#3, #E, name, #String)

P (#4, #E, salary, #Integer)

P (#5, #E, dept, #D)

P (#6, #E, boss, #M)

P (#M, #M, Manager, #M)

P (#7, #M, xinstanceof, #Class)
P (#8, #M, xisa, #E)

P (#D, #D, Department, #D)

P (#9, #D, xinstanceof, #Class)
P (#10, #D, head, #M)

Instantiation to the pre-defined class Individual is implicitly given by the structure of the three
individual propositions named Employee, Manager, and Department. Analogously, the attributes
#3, #4, #5, #6 and #10 are automatically regarded as instances of the class At t ribute. The instances
of Attribute are also called attribution objects or explicit attributes. Propositions #1, #2, #7 and #9
are instances of the class InstanceOf (holding explicit instantiation objects), and #8 is an instance of the
class IsA (explicit specialization objects). Note that all relationships are declared by using the identifiers
(not the names) of objects. Thus, #Class, denotes the identifier of the object Class etc.

The identifiers are maintained internally by ConceptBase’s object store. Externally, the user refers to
objects by their name. A standard way to describe objects together with their classes, subclasses, and
attributes is the frame syntax. Frames are uniformly based on object names.

The next frames establish two departments labelled PR and RD and state that the individual object mary
is an instance of the class Manager. Mary has four attributes labelled hername, earns, advises and
currentdept which are instances of the respective attribute classes of Employee with labels name,
salary and dept.

mary in Manager with

name

hername: "Mary Smith"
salary

earns: 15000
dept

17

advises:PR;
currentdept :RD
end

PR in Department end

RD in Department end
The corresponding propositions for the frame describing mary are:

#mary, #mary,mary, #mary)

#E1, #fmary, rinstanceof, #M)

#E3, #mary, hername, "Mary Smith")
#E4, #E3, xrinstanceof, #3)

#E5, #mary, earns, 15000)

#E6, #E5, xinstanceof, #4)

#E7, #mary, advises, #PR)

#E8, #E7, rinstanceof, #5)

#E10, #fmary, currentdept, #RD)

P
P
P
P
P
P
P
P
P
P (#E11, #E10, *instanceof, #5)

(
(
(
(
(
(
(
(
(
(

The attribute categories name, salary and dept must be defined in one of the classes of mary. In
this case mary is also instance of Employee due to the following axiom which defines the inheritance of
class membership in O-Telos, and hence can instantiate these attributes:

Specialization axiom (axiom 13 in appendix B)

The destination (“‘superclass”) of a specialization inherits all instances of its source (“sub-
class™).

An example is the specialization #8: all instances of Manager (including mary are also instances of
Employee. O-Telos enforces typing of the attribute values by the following general axiom:

Instantiation axiom (axiom 14 in appendix B)

If p is a proposition that is instance of a proposition P then the source of p must be an instance
of the source of P, and the destination of p must be an instance of the destination of P.

For example, “Mary Smith” must be an instance of String. The individual mary also shows
another feature: attribute classes specified at the class level do not need to be instantiated at the instance
level. This is the case for the boss attribute of Employee. On the other hand, they may be instantiated
more than once as e.g. dept.

In some cases for attribute categories occuring in a frame the corresponding objects which are instanti-
ated by the concrete attributes, can not uniquely be determined*. This multiple generalization/instantiation
problem is solved® by the following condition which must hold for O-Telos databases:

Multiple generalization/instantiation axiom (axiom 17 in appendix B)

If pl and p2 are attributes of two classes c1 and c2 which have the same label component 1, and
iis a common instance of c1 and c2 which has an attribute with category 1, then there must exist
a common specialization c3 of cl and c2 with an 1 labelled attribute p3 which specializes p1l
and p2, and i is instance of c3. Particularly if c1 is specialization of c2 and p1 is specialization
of p2, cl and p2 already fulfill the conditions for ¢3 and p3.

“Subsection 2.2 contains an example for this problem in the context of linking logical formulas to O-Telos objects.
SFor specialization relationships between two objects we need an axiom similar to the instantiation axiom which requires special-
ization relationships between their sources and destination components. [Jeus92] contains the complete axiomatization.

18

O-Telos treats all three kinds of relationships (attribute, isa, in) as objects. Thus each attribute,
instantiation or generalization link of Employee may have its own attributes and instances. For example,
each of the four Employee attributes is an instance® of an attribute class denoted by the label at t ribute
but can also have instances of its own. The attribute with label earns of mary is an instance of attribute
salary of class Employee. Syntactically, attribute objects are denoted by appending the attribute label
with an exclamation mark to the name of some individual. The relationship between salary and earns
could be expressed as

mary'!earns in Employeel!salary
end

Instantiation links are denoted by the operator ”—>" and specialization links by ”=>". They should
always be enclosed in parentheses:

(mary->Manager)
end

(Manager=>Employee)
end

The operators can be combined to form complex expressions. The next example shows how to reference
the instantiantion link between the attribute mary!earns and its attribute class Employee!salary.
The second frame shows that arbitrarily complex expressions are possible. The parentheses have to be
used to make the operator expressions unique. The attribution operator ”’!” has a stronger binding than
the instantiation and specialization operators. According to our own experience, complex expressions for
denoting objects are rare in modeling. It is good to know that any object in O-Telos can be uniquely
referenced in the frame syntax.

(mary'!earns—->Employee!salary) with
comment
coml: "This is a comment to an instantiation between attributes"
end

(mary'!earns—->Employee!salary) !coml with

comment

com2: "This is a comment to the the previous comment attribute"
end

The labels InstanceOf, IsA and Attribute for the three Telos system classes are indeed alias
names for the following object expressions:

Attribute <---> Proposition'!attribute
InstanceOf <---> Proposition->Proposition
IsA <-—--> Proposition=>Proposition

Hence, Attribute as the alias name for the attribute with label attribute of Proposition.
InstanceOf is the alias name for the instantiation link between Proposition and Proposition.
The object Proposition is indeed an instance of itself because it has the shape of an individual object,
which is a special case of the shape of a proposition. Finally, T sA is an alias name for the specialization link
between Proposition and Proposition. This representation is deviates slightly from the axioms in
appendix B because it was originally implemented in ConceptBase in this way. The reflexive definition
of InstanceOf (IsA) as instantiation (specialization) links is redundant since O-Telos axioms 18-22
derive these instantiations anyway.

SThese instantiations were left out in the set of propositions for the employee example above.

19

Figure 2.1 shows the graphical representation of mary and her relationships to the other example ob-
jects. Labelled links are attributes/relations. The thicker link from Manager to Employee is a specialization.
The other links are instantiations. If a link is dotted, then it is derived. Individual objects are displayed as
nodes.

------------------ »{Framositon] e

salary | n

/./V
advises »

currentdept

earns —»| 15000

hername

"Mary Smith"

Figure 2.1: Graph representing the example database

O-Telos propositions have a temporal component: the transaction time’. The transaction time of a
proposition is not assigned by the user but by the system at the the time of an update (TELL, UNTELL,
RETELL). ConceptBase uses right-open and closed predefined time intervals. Right-open time intervals
are represented like in the subsequent example:

P (#mary, #mary,mary, #mary,tt (millisecond(1992,1,11,17,5,42,102),
infinity))

The object mary is believed since 17:05:42 on January 11, 1992. The label ’infinity’ denotes that
the end time of the object lies in the future and is not yet known. In any case, the current time 'now’ is
regarded to be smaller than ’infinity’. Right-open transaction times indicate objects that are part of the
“current” knowledge base.

Closed intervals (denoted by binary tt-terms) indicate “historical” objects, i.e. objects that have been
untold. Example:

P (#E1, #mary, *instanceof, #M,tt (millisecond(1992,1,11,17,5,42,0),
millisecond(1995,12,31,23,59,59,999))

The object #E1, i.e. the instantiation of mary to the class Manager is believed from 17:05:42 on
January 11, 1992, until the end of the last millisecond of the year 1995. We call the first component of the
transaction time also the start time object and the second component the end time. Start and end time of
an object can be retrieved by the predicates Known, and Terminated (see section 2.2). Transactions in
ConceptBase usually add or terminate several propositions. At the begin of the transaction, ConceptBase

"The original specification of Telos has two temporal components. The valid time and the transaction time. The valid time is
defined as the time interval when the statemment made by a Telos proposition is true in the world. The transaction time is the time
when this statement is part of the knowledge base. O-Telos skipped the valid time because it is virtually impossible to have a tractable
implementation of Allen’s interval calculus [All83], when in interplays with deductive rules. Earlier versions of ConceptBase until
version 3.1 did however implement both time components.

20

reads the current time and uses it to set the transaction time of all affected propositions. Consequently, all
inserted propositions get the same start time of their transaction time and all terminated propositions get the
same end time of their transaction time. The database does not change between two transactions, hence the
finite sequence of transaction times can be used to enumerate all updates to the database. Examples on how
to inspect the database using the transaction time are in the CB-Forum at http://merkur.informatik.
rwth—aachen.de/pub/bscw.cgi/1921789.

2.1.1 Anonymous object labels

Each attribute definition in a frame has at least one attribute category and exactly one attribute label. In
some situations, the attribute label carries no specific semantics. You can then use the anonymous label ”_”
to let the ConceptBase system generate a unique attribute label.

Employee in Class with
attribute
salary: Integer
end

bill in Employee with
salary
1000
end

In this example, the whole semantics of bill’s salary attribute is carried by the ”salary” label at the class
level. This feature may be useful when no object-level attribute label is known, e.g. when translating CSV
files to ConceptBase frames. A second definition of the same attribute (bill salary/_ 1000) will
not create a duplicate attribute in ConceptBase.

2.2 Rules and constraints

The ConceptBase predicative language CBL [JK90] is used to express integrity constraints, deductive rules
and queries. The variables inside the formulas have to be quantified and assigned to a “type” that limits
the range of possible instantiations to the set of instances of a class. ConceptBase offers a set of predicates
for the predicative language defined on top of an O-Telos database as visible for a given rollback time, i.e.
OB,.;; for some rbt. Any rule, constraint or query is run against OB,.;; rather than the full database OB.

2.2.1 Basic predicates

The following predicates provide the basic access to an O-Telos database. Some have both an infix and a
prefix notation. As usual we employ the object identifer to refer to an object.

1. (x in ¢) orIn(x,c)
The object x is an instance of class c.

2. (¢ isA d) orIsa(c,d)
The object c is a specialization (subclass) of d

3. (x m y) orA(x,m,y)
The object x has an attribution link to the object y and this link has the attribute category m. Structural
integrity demands that the label m belongs to an attribute of a class of x.

4, Al (x,m,0)
The object x has an explicit attribute o. This attribute is instance of an attribute category with label
m.

21

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1921789
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1921789

5. (x m/n y) orAL(x,m,n,y)
The object x has an attribution link labelled n to the object y. The attribution has the category m.

6. From (p, x)
The object p has source x.

7-TO(PIY)
The object p has destination y.

8. Label (p, 1)
The object p has label 1. If 1 is used as a variable, it must be quantified over the class Label.

9-P(p,X,nrY)
There is an object P (p, x, n, y) in the database OB,.;;.

10. Pa (p,x,n,vy)
There is an attribution object P (p, x, n, y) in the database OB,.;;, i.e. a proposition that is neither
an individual object, nor an instantiation object, nor a specialization object. See also axiom 22 in
appendix B.

11. Known (p, t) The object p is known in OB, since t, i.e. an object P (p, x, n, y, tt) is part of
the database OB and t is the start time of t t. The argument t is a string of the format "tt (millisecond (yr,mo, d,
It is regarded as an instance of the class TransactionTime.

12. Terminated (p, t) The object p is unknown in OB, after t, i.e. an object P (p, x, n, vy, tt)
is part of the database OB and t is the end time of tt. The argument t is represented like with
Known. An object that has not yet been untold has the end time "tt (infinity) ".

13. (x [in] mc) or In2 (x, mc)
The object x is an instance of class ¢ and c is an instance of class mc. In other words, (x [in]
mc) is equivalentto exists c¢/VAR (x in c) and (c in mc)

14. (x [m] y) orA2(x,m,y)
The object x and y are linked by an attribute al. The attribute al is an instance of an attribute a2
which itself is an instance of an attribute a3 with label m. The predicate is equivalent to the formula
exists c¢,d,n/VAR (x in c¢) and (y in d) and (¢ m/n d) and (x n y).

The predicates In2 and A2 are also called macro predicates since they are standing for sub-formulas.
They are fully supported in constraints of query classes. The predicate A2 is not yet supported for deduc-
tive rules and integrity constraints due to limitations of the formula compiler. You can use the AL predi-
cate instead. Examples on using macro predicates are available from the CB-Forum (http://merkur.
informatik.rwth—aachen.de/pub/bscw.cgi/877047). They are also discussed in more detail in
section 2.7.

The relation of the above predicates and the P-facts of the database is defined by the O-Telos axioms
(appendix B). For example, axiom 7 states

Yo,x,n,y,p,¢,m,d P(o,x,n,y) A P(p,c,m,d) ANn(o,p) = AL(x,m,n,y)

So, if an attribute object o of an object x is an instance of an attribute object p of the object c, then
AL (x,m,1,y) (also written as (x m/n y) can be derived. This axiom provides those solutions to the
AL predicate that are directly based on P-facts. Further solution can be derived via user-defined deductive
rules. The other predicates are based on P-facts as well. The Ai predicate is for historical reasons not
included in the list of axioms. It is defined as

Y o,x,n,y,p,¢,m,d P(o,x,n,y) A P(p,c,m,d) A In(o,p) = Ai(x,m,o0)

There are a few variants for the predicates for instantiation, specialization and attribution to check
whether a fact is actually stored or deduced:

22

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/877047
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/877047

1. In.s(x,c)
The object x is an explicit instance of class c.

2. Ine(x,c)or:(x in c):
The object x is an explicit instance of class c, or of one of the sub-classes of c, or of the system class
of x. The system class of individual objects is Individual, attribution objects have the system
class Attribute, instantiation objects the system class InstanceOf, and specialization objects
have the system class IsA.

3. Ae(x,m,y)or:(x my):
The objects x and y are linked by an explict attribute with attribute category m. The attribute category
is either explicitly assigned to the attribute or derived by a rule (see subsection 2.2.3).

4, Isa_e(c,d) or:(c isA d):
The class c is a direct subclass of class d.

5. AD (p, X, V)
The objects x and y are linked by an explicit or derived relation/attribute of category m, where
P (p, c,m,d) defines the attribute category. This predicate is only used for internal purposes of
ConceptBase. The predicate is computationally expensive when the first argument is a variable.

The above predicates can be used, for example, to define defaults values (see http://merkur.
informatik.rwth—-aachen.de/pub/bscw.cgi/2396075) Since deduction should be transparent to
the user, one should avoid using the above predicates if the proper predicates In (x,c) or (x in c)
and A (x,m,y) or (x m y) can do the job.

2.2.2 Notes on attribution

The attribution of objects in O-Telos (axioms 7 and 8 in appendix B) is more generic than in object-oriented
approaches, in particular UML. In O-Telos, an attribution relates two arbitrary objects. In languages such
as UML, attributes are defined at classes to declare which states an object (instance of the class) may
have. This is well possible in O-Telos as well, e.g. by declaring the integer-valued salary attribute of a
class Employee and using it for instances of the class. However, O-Telos does not restrict attributes to
just values. The target of an attribute can be any object. Hence, the concept of an attribute in O-Telos is
the generalization of an UML association and an UML attribute. A second difference is that an O-Telos
attribute has essentially several labels tagged to it: its own label (object label) and the labels of its attribute
categories (class labels). The latter are the labels of the attributes declared at the classes of an object,
the first is the label of the attribution at the level of the object that has the attribute. We illustrate this
subsequently.

Attributes at the instance level are instances of attributes at the class level (=attribute categories). An
attribute category at the class level can be instantiated several times at the instance level. For example,
consider the frame for Mary:

mary in Manager with
name, aliasname
hername: "Mary Smith"
salary
earns: 15000
dept
advises:PR;
currentdept :RD
end

The object mary has four attributes with object labels hername, earns, advises, and current -
dept. The attribute categories are name, aliasname, salary, and dept. The last category is instan-
tiated twice. ConceptBase uses the following predicate facts (infix variant of the AL predicate) to express
the content of the frame:

23

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2396075
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2396075

mary in Manager)

mary name/hername "Mary Smith")

mary aliasname/hername "Mary Smith")
mary salary/earns 15000)

mary dept/advises PR)

mary dept/currentdept RD)

So, there are four attributes using four attribute categories. Like an object can have multiple classes,
an attribute can have multiple categories. In fact, explicit attributes in O-Telos are just objects and their
attribute categories are their classes. At the lowest abstraction level (tokens), the object labels of the at-
tributions frequently do not carry a specific meaning and can then be neglected when formulating logical
expressions. The attribution predicate (x m y) performs just this projection. In the example, the follow-
ing attributions facts are true:

(mary name "Mary Smith")
(mary aliasname "Mary Smith")
(mary salary 15000)

(mary dept PR)

(mary dept RD)

The class labels name, aliasname etc. are defined at an abstraction level where the meaning of some
application domain is captured. The class label (attribute category) of an attribute is defined as an object
label of an attribute at the class level. For example, the name and aliasname attributes could be defined
for the class Employee as follows:

Employee in Class with
attribute, single
name: String
attribute
aliasname: String
end

Here, the following predicate facts would be true:

(Employee in Class)

(Employee attribute/name String)
(Employee single/name String)
(Employee attribute/aliasname String)
(Employee attribute String)

(Employee single String)

The mechanism for attribution is exactly the same as for instances like mary. Note that the 3-argument
attribution predicate expressing (mary name "Mary Smith") represents a meaningful statement for
some reality to be modeled. On the other hand, the predicate fact (Employee attribute String)
is less significant because the label att ribute does not transport a specific domain meaning. Here, the
4-argument attribution predicate such as used for the fact (Employee attribute/name String)
is required. Still, from a formal point of view, there is no different treatment of predicates at the class and
instance level. This uniformity is the basis for meta-modeling, i.e. the definition of modeling languages
by means of meta classes. The class labels attribute and single need to be defined at the classes
of Employee. Those are Class and the pre-defined class Proposition, to which any object includ-
ing Employee and mary is instantiated. In this case, both attribute and single are defined for
Proposition:

(Proposition attribute/attribute Proposition)
(Proposition attribute/single Proposition)

24

Note that attribute has itself as category. This is the most generic attribute category and applies
to any (explicit) attribution. For this reason, the category attribute can also be omitted in frame
definitions of objects. The above definition of Employee is equivalent to

Employee in Class with
single
name: String
attribute
aliasname: String
end

Both the attribution predicate (x m y) and its long form (x m/n y) can be derived, i.e. occur
as conclusion of a deductive rule. In such cases, there are no explicit attribute objects between x and y.
ConceptBase demands, that in such cases one of the classes of x has an attribute with label m. Deductive
rules for (x m/n y) are introduced with ConceptBase V7.1. They allow to simulate multi-sets, i.e.
derived attributes where the same value can occur multiple times. Examples are available in the CB-Forum
(http://merkur.informatik.rwth—aachen.de/pub/bscw.cgi/2330042).

2.2.3 Assigning attribute categories to explicit attributes

The instantiation of an explicit attribute to an attribute category can be explicit (see above), or via inheri-
tance, or via a user-defined rule. Explicit instantiation is typically established when telling a frame like the
Employee example to the database. Instantiation by inheritance is more rarely used but is in fact just the
application of the specialization principle to attribution objects:

Employee with
attribute
salary: Integer

end
Manager isA Employee with
attribute
bonus: Integer
end

Manager!bonus isA Employee!salary end

Here, the bonus attribute is declared as specialization of the salary attribute. Any instance of
the bonus attribute will then be an instance of the salary attribute via the usual class membership
inheritance of O-Telos. For example,

mary in Manager with
bonus
bonl: 10000
end

shall make the following attribution facts true:

mary bonus/bonl 10000)

mary bonus 10000), A_e(mary,bonus,10000)

mary salary/bonl 10000)

mary salary 10000), A_e(mary,salary,10000)

mary attribute/bonl 10000)

mary attribute 10000), A_e(mary,attribute,10000)

The third method to instantiate an explicit attribute to an attribute category is via a user-defined rule.
We use the employee example again:

25

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2330042

Employee in Class with
attribute
salary: Integer;
premium: Integer;
country: String

rule
premrule: $ forall e/Employee prem/Employee!premium
(e country "NL") and Ai(e,premium,prem)
==> (prem in Employee!salary) $
end

Now, consider the following instances:

marijke in Employee with
salary sal: 50000
premium pr: 3000
country ctr: "NL"

end

This makes the following attribution facts true:

(marijke salary/sal 50000)
(marijke salary 50000), A_e(marijke,salary,50000)
(marijke premium/pr 3000)
(marijke premium 3000), A_e (marijke,premium,3000)
(marijke salary/pr 3000)
(marijke salary 3000), A_e (marijke,salary,3000)
(marijke country/ctr "NL")
(marijke country "NL"), A_e(marijke,country, "NL")
Hence, any explicit premium attribute of an employee of the Netherlands is regarded as an explicit
salary as well.
Note that the three cases discussed here are for explicit attribution objects. You may also define rules
that derive (x m y) or (x m/n y) directly. In such cases, there is no need for an explicit attribute
between x and y. The attribution is complelety derived.

2.2.4 Reserved words

In order to avoid ambiguity, neither in and isa nor the logical connectives and and or are allowed as
attribute labels3. Likewise, names of predicates such as A, Ai, In should not be used as object names or
variable names. The same holds for the keywords with and end, which are used in the frame syntax.

2.2.5 Comparison predicates

The next predicates are second class citizens in formulas. In contrast to the above predicates they cannot
be assigned to classes of the O-Telos database base. Consequently, they may only be used for testing, i.e.
in a legal formula their parameters must be bound by one of the predicates 1 - 8.

. (x <vy), (x>vy), (x <=vy), (x> vy)
x and y may be instances of any class. If they are instance of Integer or Real, they are or-
dered numerically. If they are instance of TransactionTime they are ordered according to the
time they are representing (newer times are greater than older times). Otherwise, they are ordered
alphabetically.

8For the example of subsection 2.1 among others the ground predicates (mary in Manager), (Manager isA
Employee) and (mary earns 15000) are valid facts describing the contents of the database. We suggest to choose verbs
(e.g. earns in our example) for attribute labels to get more natural and readable predicates.

26

2. (x =)
The objects x and y are equal.

3. (x <> y)or(x \=y)
The objects x and y are not the same.

All comparison predicates may use functional expressions as operands. They are evaluated before
the comparison predicates is evaluated. See section 2.3.3 for examples. The predicates (x == y),
UNIFIES (x,y) and IDENTICAL (x,y) defined in earlier releases of ConceptBase are deprecated. It
is recommended to use (x = y) instead.

2.2.6 Typed variables

The exact syntax of CBL is given in appendix A. The types of variables (i.e. quantified identifiers) are
interpreted as instantiations:

e forall x/C F — forall x (x in C) ==> F

e exists x/C F — exists x (x in C) and F

The class C attached to variable x is called the variable range. The anonymous variable range VAR is
treated as follows.

e forall x/VAR F — forall x F

* exists x/VAR F — exists x F

Anonymous variable ranges are only permitted in meta formulas, see section 2.2.9.

2.2.7 Semantic restrictions on formulas

We demand that each variable is quantified exactly once inside a formula. This is no real restriction: in
case of double quantification rename one of the variables. More important is a restriction similar to static
type checking in programming languages that demands a strong relationship between formulas and the
knowledge base:

Predicate typing condition

(1) Each constant (= arguments that are not variables) in a formula F must be the name of an
existing object in the O-Telos database, or it is a constant of the builtin classes Integer, Real,
or String.

(2) For each attribution predicate (x m y) (or Ai (x,m, 0), resp.) occuring in a formula
there must be a unique attribute labelled m of some class ¢ of x in the knowledge base, the
so-called concerned class.

(3) For each instantiation predicate (x in c), the argument c must be a constant.

All instantiation and attribution predicates need to be “typed” according to the predicate typing condi-
tion. Formally, we don’t assign types to such predicates but concerned classes. Any instantiation predicate
and any attribution predicate in a formula must have a unique concerned class. It is determined as follows:

* The concerned class of an instantiation predicate (x in c) is the class c. The argument ¢ may
not be a variable.

27

* The concerned class of attribution predicates (x m y) and Ai (x,m, o) is principally the most
special attribute with label m of all classes of x°. The O-Telos axioms listed in appendix B, in par-
ticular axiom 17, make sure that there may not be more than one candidate attribute if x is the name
of an existing object. If x is a variable, we demand that there is at most one candidate in the variable
range of x and its superclasses. If no class of x (i.e. also no superclass of any class of x) defines such
an attribute and the CBserver has been started with the predicate typing mode ’extended’, then the
concerned class is determined from the subclasses of the classes of x. Theoretically, one can choose
the common superclass of all such attributes of subclasses of the classes of x (if existent). However,
ConceptBase currently demands that there must be a single such attribute in the subclass hierarchy.

Example: The concerned class of (e boss b) inthe SalaryBound constraint in subsection 2.2.8
is the Employee !boss. The class of variable e is Employee. This is the most special superclass of
itself and indeed defines the attribute Employee !boss.

The purpose of the predicate typing condition is to allow ConceptBase to compile attribution predicates
(x m y) to an internal form Adot (cc, x, y) that replaces the attribute label m by the object identifier
cc of the concerned class. This enourmously speeds up the computation of predicate extensions. A similar
effect is applicable to instantiation predicates. Here, the concerned class of (x in c¢) is c. Another
effect of the predicate typing condition is that certain semantically meaningless predicate occurrences are
detected at compile time. For example, (x m y) can only have a non-empty extension, if some class of
x defines an attribute with label m.

If the argument x in a predicate (x m y) is a variable, then the initial class of x is determined by
the the variable range in the formula. The variable this of query class constraints can have multiple
initial classes, being the set of superclasses of the corresponding query class. All superclasses of c are
also regarded as classes of x. If x is a constant, then the classes of x are determined by a query to the
database. A formula violating the first clause of the predicate typing condition would make a statement
about something that is not part of the database. As an example, consider the following formula:

forall x/Emplye not (x boss Mary)

With the example database of section 2.1, we find two errors: There are no objects with names Emplye
and Mary.

There are two possible cases to violate the second part of the restriction. The first case is illustrated by
an example:

forall x/Proposition y/Integer (x salary y) ==> (y < 10000)

In this case the classes of x, Proposition and any of its superclasses, have no attribute labelled salary.
Therefore, the predicate (x salary y) cannot be assigned to an attribute of the database. Instead, one has to
specify

forall x/Employee y/Integer (x salary y) ==> (y < 10000)

or

forall x/Manager y/Integer (x salary y) ==> (y < 10000)

depending on whether the formula applies to managers or to all employees.

The second clause of the predicate typing condition is closely related to multiple generalization/instan-
tiation. Suppose, we add new classes Shop, Guest and GuestEmployee to the given class Employee:

Shop in Class
end

Guest in Class with
attribute
dept: Shop
end

GuestEmployee in Class isA Guest,Employee
end

9Since any object is an instance of Proposition, ConceptBase will include this class when searching the concerned class of an
attribution predicate.

28

The following formula refers to objects of class GuestEmployee and their dept attribute. The prob-
lem is that two different attributes, Employee !dept and Guest !dept, apply as candidates for the
predicate (x dept PR):

forall x/GuestEmployee (x dept PR) ==> not (x in Manager)

In order to solve this ambiguity, we demand that in such cases a common subclass exists that defines
an attribute dept which conforms to both definitions, e.g.

Shop in Class
end

GuestEmployee with
attribute
dept: ShopDepartment
end

ShopDepartment in Class isA Shop,Department
end

The third clause of the predicate typing condition is forbidding instantiation predicates with a variable
in the class postion. The restriction is a pre-condition for an efficient implementation of the incremental
formula evaluator of ConceptBase. Without a constant in the class position of (x in c) any update of
the instances of any class matches the predicate. Hence, ConceptBase would need to re-evaluate the for-
mula that contains the predicate. Since any update (TELL,UNTELL,RETELL) is containing instantiation
facts, any formula with an unrestricted predicate (x in c) has to be re-evaluated for any update. This
inefficiency can be avoied by demanding that the class position is a constant. A relaxation to this clause
(and clause 2) is discussed in sub-section 2.2.9.

When compiling the frames, ConceptBase will make sure that the attribute GuestEmployee!dept
is specializing the two dept attributes of Shop and Department. As a consequence, the attribution
predicate (x dept PR) canbe uniquely attached to its so-called concerned class GuestEmployee ! dept.

The predicate typing condition holds for all formulas, regardless whether they occur as constraints or

rules of classes or within query classes'”.

2.2.8 Rule and constraint syntax

A legal integrity constraint is a CBL formula that fulfills predicate typing condition. A legal deductive rule
is a CBL formula fulfilling the same condition and having the format:

forall x1/cl ... =xn/cn R ==> lit(al,...,am)

where

* 1it is a predicate of type 1 or 3, and
e the variables in al, ..., amare contained in x1, . .., Xn

In O-Telos, rules and constraints are defined as attributes of classes. Use the category constraint
for integrity constraints, and the category rule for deductive rules. The text of the formula has to be
enclosed by the character “$’°. The choice of the class for a rule or constraint is arbitrary (except for query
classes which use the special variable ’this’).

Continuing our running example, the following formula is a deductive rule that defines the boss of an
Employee. Note that the variables e, m are both forall-quantified.

10The enforcement of the restriction has been extended to query classes as of ConceptBase release 6.1. To support applications
that were written for earlier releases, a CBserver option —cc (predicate typing) has been introduced to disable the check for query
classes. Details are in section 6. With ConceptBase 7.2 (March 2010), the predicate typing has been further extended and now will
scan subclasses of of the classes of x in attribution predicates (x m y) in case that superclasses do not provide a matching attribute
class. You need to set the CBserver option —cc to "extended’ to activate this behavior. The extended mode creates more cases that
the predicate type (=concerned class) is found. It should be noted that objects like x that are not instance of a class that defines and
attribute with label m will lead to a failure of the predicate (x m y), i.e. its negation is then true.

29

Employee with
rule
BossRule : $ forall e/Employee m/Manager d/Department
(e dept d) and (d head m)
==> (e boss m) $
constraint
SalaryBound : $ forall e/Employee b/Manager x,y/Integer
(e boss b) and (e salary x) and (b salary vy)
=> (x <= y) $
end

The second formula is an integrity constraint that uses the boss attribute defined by the above rule. The
constraint demands a salary of an Employee does not exceed the salary of his boss. Note that
you can define multiple salaries for a given instance of Employee. The constraint is on each individual
salary, not on the sum''! Also note that the arguments of the <= predicate are bound by the two
predicates with attribute label salary.

2.2.9 Meta formulas

Some formulas violating the predicate typing condition can be re-written to a set of formulas that do not
violate the condition. The so-called meta formulas are a prominent category of such formulas. They
have occurrences of predicates with so-called meta variables. There are two cases. First, an instantiation
predicate (x in c),:(x in c¢) :,or In_s (x, c) where the class argument c is a variable. Second, an
attribution predicate (x m y) or : (x m y) : where the label argument m is a variable. In such cases, the
concerned class cannot be determined directly even though the formula as such is meaningful. ConceptBase
relies on predicate typing for the sake of efficiency and static stratification. The concerned class is internally
used as predicate name. This increases the selectivity and reduces the chance on non-stratified deduction
rules. Fortunately, all meta formulas can be re-written to formulas fulfilling the predicate typing condition.
The re-writing replaces the meta variables by all possible value. Since all variables are bound to finite
classes, the re-writing yields a finite set of formulas. However, if a meta variable is bound to a class with a
large extension, the re-writing will also yield a large set of generated formulas.

Meta formulas allow to specify assertions involving objects from different levels and hence significantly
improve flexibility of O-Telos models. An example for the usage of meta formulas can be found in the
appendix D.2 where the enforcement of constraints in ER diagrams is solved in an elegant way.

As instructional example, assume we want to define that a certain attribute category M is transitive,
ie.if (x M y) and (y M z),then (x M z) shall hold. Many attribute categories are supposed to be
transitive, for example the ancestor relation of persons, or the connect ion relation between cities in
a railway network.

The following meta formula defines transitivity once and forever:

Proposition in Class with
attribute
transitive: Proposition
rule
trans_R:
$ forall x,y,z,M/VAR
AC/Proposition!transitive
C/Proposition
P(AC,C,M,C) and (x in C) and
(y in C) and (z in C) and
(x My) and (y M z) ==> (x M z) $
end

"Use multi-sets as discussed in http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/
2330042 if you want to constrain the sum of salaries.

30

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2330042
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2330042

The rule is a meta formula because C and M are meta variables. In this case, one can re-write the
formula by replacing all possible fillers for AC, i.e. by the instances of Proposition!transitive
A filler for AC will determine fillers for C and M since the first argument of a proposition P (AC, C, M, C)
is identifying the proposition.

As a consequence, one can define the ancestor relation to be transitive by simply telling

Person in Proposition with
transitive
ancestor: Person
end

ConceptBase will match the attribute Person!ancestor with the variable AC in the above meta
formula. This yields P (Person!ancestor, Person, ancestor, Person), which binds the meta
variable C to Person and M to ancestor. The resulting generated formula is:

forall x,y,z/VAR (x in Person) and (y in Person) and (z in Person)
and (x ancestor y) and (y ancestor z)
==> (x ancestor z)

which can be shortened to

forall x,y,z/Person (x ancestor y) and (y ancestor z)
==> (x ancestor z)

The technique to generate such ’shortened’ formulas is called partial evaluation. Its input are facts like
(Person'!ancestor in Proposition!transitive) and the output are formulas that special-
ize the original meta formulas for the case of the input facts.

The above formula is fulfilling the O-Telos predicate typing condition. Likewise, the connection rela-
tion of cities gets transitive via:

City in Proposition with
transitive
connection: City
end

The advantage of meta formulas is that they save coding effort by re-using them in different modelling
contexts. If a meta formula is linked to an attribute category (like t ransitive in the example above, then
the semantic of several such attribute category can be combined by just specifying that a certain attribute
has multiple categories. Assume for example that we have defined acyclicy with a similar meta formula:

Proposition in Class with
attribute
acyclic: Proposition
constraint
acyclic_IC:
$ forall x,y,M/VAR
AC/Propositionlacyclic
C/Proposition
P(AC,C,M,C) and (x in C) and
(y in C) and
(x M y) ==>not (y M x) $
end

Then, the ancestor attribute can be specified to be both transitive and acyclic by

31

Person in Proposition with
transitive, acyclic
ancestor: Person
end

The more categories like transitive and acyclic are defined with meta formulas, the greater is
the productivity gain for the modeler. Not only does it save coding effort. It also reduces coding errors since
formula specification is a difficult task. Meta formulas are a natural extension to classical metamodeling.
They allow to specify the meaning of modeling constructs at the meta class level. The mapping to simple
formulas allows an efficient evaluation. It also allows to retrieve the specialized semantics definition of a
model (instance of a metamodel) since the generated simple formulas are attached to the constructs of the
model (in the example above they are attached to classes Person and City). The meta formula compiler
is fully incremental, i.e. if the database is updated, then the set of generated simple formulas is also updated
if necessary. For example, if one removes the category t ransitive from the connection attribute of
City, then the generated simple formula will also be removed.

Meta formulas that contain meta variables under existential quantification cannot be compiled directly,
but there is an elegant trick to circumvene this restriction. Consider for example the formula:

$ forall x/VAR SC/CLASS spec/ISA_complete
(spec super SC) and (x in SC) ==>
exists SUBC/CLASS (spec sub SUBC) and (x in SUBC) $

The meta variable SUBC is under an existential quantifier. To circumvene the problem, we write an
intermediary rule replacing the predicate (x in SUBC):

$ forall x/Proposition spec/ISA SUBC/CLASS
(spec sub SUBC) and (x in SUBC) ==> (x inSubRel SUBC) $

and then re-write the original constraint to

$ forall x/VAR SC/CLASS spec/ISA_complete
(spec super SC) and (x in SC) ==>
exists SUBC/CLASS (spec sub SUBC) and (x inSubRel SUBC) $

So essentially, we pass the meta variable to the condition of the intermediary rule. The attribute
inSubRel is just used to be able to specify a dedicated conclusion predicate for the intermediary de-
ductive rule. It is defined as attribute of Proposition. The complete example is at http://merkur.
informatik.rwth—aachen.de/pub/bscw.cgi/d3070600/mp—ISA-complete.sml.txt.

Many more re-usable examples for meta formulas are in the ConceptBase-Forum at http: //merkur.
informatik.rwth-aachen.de/pub/bscw.cgi/1042523.

Tell order for meta formulas

Meta formulas are compiled by ConceptBase using the partial evaluation strategy. Facts matching certain
predicates of the meta formula trigger the partial evaluation, which then leads to new formulas that need to
be compiled by ConceptBase. In certain cases, the generated formulas are themselves meta formulas, that
need to be further partually evaluated when other matching facts are inserted to the system.

The implementation of the incremental compilation suggests that the meta formula and the input facts
should not be defined in the same TELL transactions. When creating your models that involve meta for-
mulas, you should put the definition of the meta formula in a different file than the class/object definitions
hat utilize the meta formulas. It may also be wise to store the definitions in different modules (see section
5). Specifically, the meta formulas should be defined in a super-module of the modules that use these
definitions.

32

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3070600/mp-ISA-complete.sml.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3070600/mp-ISA-complete.sml.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1042523
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1042523

2.2.10 Further object references

In addition to the so called select expressions ! , =>, —> already introduced above for directly refering to
attributes, specializations and instantiations as objects, three other basic constructors may be used within
frames and assertions.

» /A is the counterpart of ! and denotes the target of an attribute instead of the attribute object itself,
e.g. mary”advises is the same as PR.

e The set valued . operator has the commonly used meaning as in paths in object-oriented models and
relates an object with the set of all attribute values of a certain category, i.e. mary .dept contains
both PR and R&D.

* As . can be understood as the set variant of * but employing the attribute category instead of the
concrete attribute label, the same holds for | (with respect to !). Thus mary | dept is the set of all
attributes (as objects) that belong to category dept and have source mary.

Note, that . and | are only allowed to occur within assertions whereever classes may be interpreted as
range restrictions, e.g. in quantifications or at the right hand side of in predicates. The full syntax which
allows combinations of all basic constructors can be found in the appendix. For illustration we just give two
examples here. The first is an alternative representation for the rule above, the second could be a constraint
stating that all bosses of Mary earn exactly 50.000.

1. forall e/Employee m/Manager (m in e.dept.head) ==> (e boss m).

2. forall b/Mary.dept.head (b salary 50000)

2.2.11 User-definable error messages for integrity constraints

ConceptBase provides a couple of errors messages in case of an integrity violation. These errors messages
refer to the logical definition of the constraint and are sometimes hard to read. To provide more readable er-
ror messages, one can attach so-called hints to constraint definitions. These hints are attached as comments
with label hint to the attribute that defines the constraint.

Consider the salary bound constraint above. A hint could look like:

Employee!SalaryBound with
comment
hint: "An employee may not earn more than her/his manager!"
end

It is also possible to attach hints to meta-level constraints. In this case, the hint text can refer to the
meta-level variables occuring in the meta-level constraint. These variables will be replaced by the correct
fillers when the meta-level constraint is utilized in some modeling context.

Assume, for example, we want to have a symmetry category and attach a readable hint to it:

Proposition with
attribute
symmetric: Proposition
end

RelationSemantics in Class with
constraint
symm_IC: $ forall AC/Proposition!symmetric C/Proposition x,y/VAR M/VAR
P(AC,C,M,C) and (x in C) and (y in C) and
(x My) ==> (y Mx) $
end

RelationSemantics!symm_IC with

33

comment
hint: "The relation {M} of {C} must be symmetric,
i.e. (x {M} y) dimplies (y {M} x)."
end

Note that the references to the meta variables'> M and C are surrounded by curly braces, and that these
meta variables are also occurring in the meta-level constraint. Now, use the symmet ric concept in some
modeling context, e.g. to define that the marriedTo attribute of Person should be symmetric:

Person with
symmetric
marriedTo: Person
end

At this point of time, ConceptBase will find the hint text for the symmetric constraint and will adapt it
to the context of C=Person and M=marriedTo. When an integrity violation occurs, the substituted hint

"The relation marriedTo of Person must be symmetric,
i.e. (x marriedTo y) implies (y marriedTo x)."

will be presented to the user. An example violation is:

bill in Person with
marriedTo ml: eve
end

eve in Person end

One can also define a hint for the meta-level constraint that refers only to a (non-empty) subset of the
meta variables. If a hint for a meta formula cannot be substituted as shown avove, ConceptBase will not
issue the hint but rather the text of the generated formula.

Examples of user-defined error messages can be found in the ConceptBase-Forum at http: //merkur.
informatik.rwth-aachen.de/pub/bscw.cgi/1543277.

2.2.12 Immutable properties

Immutable attributes cannot be changed (retold) once they are defined for their respective source object.
For example, the two spouses in a marriage contract cannot be changed once the marriage contract object
has been created. Key attributes in the entity relationship model are another example. Once an entity gets
its key, the key may never be changed. Of course, the object as a whole can be removed.

ConceptBase provides an attribute category for such objects:

Proposition with
attribute
immutable: Proposition
end

The semantics cannot be expressed by a static integrity constraint but by an active rule that guards
the deletion of immuntable attributes. See also http://merkur.informatik.rwth-aachen.de/pub/
bscw.cgi/d3452001/Immutable.sml.txt in the CB-Forum. The immutable attribute category is pre-
defined in ConceptBase, but the active rule implementing its semantics is not. Include it from the CB-
Forum and add it to your source models when needed. The definition below shows the use of immutable
attributes. The spouses are created when the source object marriagel is created. Afterwards, they shall
not be updated for the whole time span of marriagel.

”mmmmmmwmwmw%mmwMMmeWMm&uqummmmWMmaumwmuwmmm
the running example, C and M are meta variables.

34

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1543277
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1543277
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3452001/Immutable.sml.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3452001/Immutable.sml.txt

Marriage in Class with

immutable
spousel : Person;
spouse2 : Person
end

marriagel in Marriage with

spousel sl : mary
spouse2 s2 : bill
end

The immutable attribute category instructs the integrity constraint compiler to prune unnecessary in-
tegrity checks on updates of these attributes. This feature can be disabled by setting the CBserver parameter
—o to a value smaller than 4, see also section 6.1.

2.3 Query classes

ConceptBase realizes queries as so-called query classes, whose instances fulfill the membership constraint
of the query [Stau90]. This section first defines the structural properties of the query language CBQL and
then introduces the predicative component. Queries are instances of a system class QueryClass which
is defined as follows:

QueryClass in Class isA Class with
attribute
retrieved_attribute: Proposition;
computed_attribute: Proposition
single
constraint: MSFOLquery
end

A super classes of query class imposes a range condition of the set of possible instances of the query
class: any instance of the query class must be an instance of the superclass. Example: “socially interested”
are those managers that are member of a union.

Union in Class
end

UnionMember in Class with
attribute
union:Union
end

SI_Manager_0 in QueryClass isA Manager,UnionMember
end

QueryClass SI_Manager in QueryClass isA Manager,UnionMember with
retrieved_attribute
union: Union;
salary: Integer
end

Super classes themselves may be query classes, which is the first kind of query recombination. The
second frame shows the feature of retrieved attributes which is similar to projection in relational algebra.
Example: one wants to see the name of the union and the salary of socially interested managers. The
attributes must be present in one of the super-classes of the query class. In this example, the union
attribute is obviously inherited from the class UnionMember and salary is inherited from Manager.
CBQL demands that retrieved attributes are necessary: each answer must have at least one value for them.

35

If an object does not have such an attribute then it will not be part of the solution. As usual with attribute
inheritance, one may specialize the attribute value class, e.g.

Well_off_ SI_Manager in QueryClass isA SI_Manager with
retrieved_attribute
salary: HighSalary
end

HighSalary in Class isA Integer with
rule
highsalaryrule: $ forall m/Integer
(m >= 60000)
==> (m in HighSalary) $
end

The new attribute value class HighSalary is a subclass of Integer so that each solution of the
restricted query class is also a solution of the more general one. It should also be noted that HighSalary
also could have been another query class. This is the second way of query recombination.

Retrieved atributes can well be derived by a deductive rule. In such cases, ConceptBase generates a
label for the derived attribute. For example, consider a boss rule discussed earlier for instances of Employee

Employee in Class with
attribute
salary: Integer;
boss: Manager
rule
BossRule $ forall e/Employee m/Manager d/Department
(e dept d) and (d head m)
==> (e boss m) $
end

The following query shall then return employees together with their salaries and bosses:

EmpSalBoss in QueryClass isA Employee with
retrieved_attribute
salary: Integer;
boss: Manager
end

The derived boss attributes get a system-generated label in the answer produced by ConceptBase. Note
that retrieved attributes are necessary but there may be more than one value per attribute category, e.g. more
than one boss.

Retrieved attributes and super-classes already offer a simple way of querying a knowledge base: pro-
jection and set intersection. For more expressive queries there is an predicative extension, the so-called
query constraint. We use the same many-sorted predicative language as in section 2.2 for deductive rules
and integrity constraints and introduce a useful abbreviation:

Let Q be a query class with a constraint F that contains the predefined variable this. Then, the query
class is essentially an abbreviation for the two deduction rules

forall this F’ ==> Q(this)

forall this Q(this) ==> (this in Q)

The deduction rules are generated by the query compiler and only listed here for discussing the meaning
of a query class. The variable this stands for any answer object of Q. We call this also the answer
variable. The sub-formula F’ is combined from the query constraint F' and the structural properties of the
query, in particular the super-classes and the retrieved attributes. Each super-class C of Q contributes a
condition (this in C) to the sub-formula F’ . Each retrieved attribute like a : D contributes a condition
((this a v) and (v in D)) toF’.Moreover, each retrieved attribute add the new argument v to
the predicate Q. The following example shows the translation.

36

QueryClass Well_off_ SI_Managerl isA SI_Manager with
retrieved_attribute
union: Union
constraint
well off_rule: $ exists s/HighSalary
(this salary s) $
end

The generated deduction rules for this query class are:

forall this,v

(this in SI_Manager) and

(this union v) and (v in Union) and

(exists s (s in HighSalary) and (this salary s))
==> Well_ off_ SI_Managerl (this,v)

forall this,v Well_off_ SI_Managerl (this,v)
==> (this in Well_off_ SI_Managerl)

Classes occuring in a query constraint may be query classes themselves, e.g. HighSalary. This is
the third way of query recombination.

The next feature introduces so-called computed attributes, i.e. attributes that are defined for the query
class itself but not for its super-classes. The assignment of values for the solution is defined within the
query constraint. Like retrieved attributes, computed attributes are included in the answer predicate so that
the proper answer can be generated from it.

The following example defines a computed attribute head_of that stands for the department a man-
ager is leading. The attribute head_of is supposed to be computed by the query. It is not an attribute of
SI_-Manager or its super-classes. We expect that and answer to the query includes the computed attribute.
Note that a reference “head_of to the computed attribute occurs inside the query constraint.

QueryClass Well_off_ SI_Manager2 isA SI_Manager with
retrieved_attribute
union: Union
computed_attribute
head_of: Department
constraint
well off_rule: $ exists s/HighSalary
(this salary s) and
("head_of head this) $
end

The variable “head_of in the constraint is prefixed with ~ to indicate that it is a placeholder for the
computed attribute with the same label head_of. We recommend to use the prefix to avoid confusion
of the placeholder variable in query constraints and corresponding attribute label in the query definitions.
Analogously, you can use the prefixed answer variable “this instead of the plain version t his. Concept-
Base will accept both the prefixed and the non-prefixed version for the answer variable and the placeholder
variable of computed attributes. Non-prefixed placeholders in constraints are replaced internally by the
prefixed counterparts.

The generated deduction rules for above query would be:

forall this,vl,v2
(this in SI_Manager) and
(this union vl1) and (vl in Union) and
(v2 in Department) and
(exists s (s in HighSalary) and (this salary s)
and (v2 head this))
==> Well_ off_ SI_Manager2 (this,vl,v2)

37

forall this,vl,v2 Well off_ SI_Manager2 (this,vl,v2)
==> (this in Well_off_ SI_Manager?2)

Computed attributes are treated differently from retrieved attributes. The retrieved attribute union
causes the inclusion of the condition (this union vl) and (vl in Union). The corresponding
variable v1 does not occur in the sub-formula generated for the query class constraint. The computed
attribute causes the inclusion of the condition (v2 in Department) but typically also occurs in the
query constraint. Like retrieved attributes computed attributes are necessary, i.e. any solution of a query
with a computed attribute must assign a value for this attribute. There is no limit in the number of retrieved
and computed attributes. The more of them are defined for a query class, the more arguments shall the
answer predicate have.

Recursion can be introduced to queries by using recursive deductive rules or by refering recursively to
query classes. The example asks for all direct or indirect bosses of bi11:

QueryClass BillsMetaBoss isA Manager with
constraint
billsBosses:
S (bill boss this) or
exists m/Manager
(m in BillsMetaBoss) and
(m boss this)$
end

Further examples can be found in the directory
SCB_HOME/examples/QUERIES.

Queries are represented as O-Telos classes and consequently they can be stored in the knowledge base
for future use. It is a common case that one knows at design time generic queries that are executed at
run-time with certain parameters. CBQL supports such parameterizable queries:

GenericQueryClass isA QueryClass with
attribute
parameter: Proposition
end

Generic queries are queries of their own right: they can be evaluated. Their speciality is that one
can easily derive specialized forms of them by substituting or specializing the parameters. An important
property is that each solution of a substituted or spezialized form is also a solution of the generic query.
This is a consequence of the inheritance scheme. The example shows that parameters can also be retrieved
and computed attributes. Note, that variable for the parameter in the constraint is prefixed here with ~; you
may also omit the prefix in the constraint as explained above).

What_SI_Manager in GenericQueryClass isA Manager,UnionMember with
retrieved_attribute, parameter
salary: HighSalary;
union: Union
computed_attribute, parameter
head_of: Department
constraint
well_off_rule: $ ("head_of head this) $
end

There are two kinds of specializing generic query classes:

1. Specialization of a parameter [a:C’]
Example: What_SI_Manager[salary:TopSalary]

In this case TopSalary must be a subclass of HighSalary. The solutions are those managers in
What_SI_Manager that not only have a high but a top salary.

38

2. Instantiation of a parameter [v/a]
Example: What_SI_Manager [Research/head_of]

The variable head_of is the replaced by the constant Research (which must be an instance of
Department).

One may also combine several specializations, e.g.
What_SI_Manager[salary:TopSalary,Research/head_of].
The specialized queries can occur in other queries in any place where ordinary classes can occur, e.g.

110000 in Integer end
QueryClass FavoriteDepartment isA Department with
retrieved_attribute
head: What_SI_Manager[110000/salary]
end

Parameters that don’t occur as computed or retrieved attributes are interpreted as existential quantifica-
tions if they are not instantiated. Note that parameters need to be known as objects before using them in
query calls.

2.3.1 Query definitions versus query calls

Telling a frame that declares an instance of QueryClass (as well as its sub-classes GenericQuery—
Class, and Function) constitutes the definition of a query. It shall be compiled internally into Datalog
code not visible to the user. Once defined, a query can be called simply by referring to its name. Hence, if
Q is a the name of a defined query class, then Q is also an admissable query call. It results in the set of all
objects that fulfill the membership constraint of Q. ConceptBase regards these objects as derived instances
of the query class Q.

If a query class has parameters, then any of its specialized forms is also an admissable query call. For
example, if Q has two parameters pl, p2 in its defining frame, then Q [v1/pl, v2/p2] is the name of
a class whose instances is the subset of instances of Q where the parameters p1 and p2 are substituted by
the values v1 and v2. The substitution yields a simplified membership constraint that precisely defines the
extensionof Q[v1/pl,v2/p2].

If a generic query class is called with all parameters substituted by fillers, then one can omit the param-
eter labels. Assume that the query Q has just the parameters p1l and p2. Then the expression Q [v1, v2]
isequivalentto Q [v1/pl, v2/p2]. ConceptBase uses the alphabetic order of parameter labels to convert
the shortcut form to the full form.

2.3.2 Query classes and deductive integrity checking

ConceptBase regards query classes as ordinary classes with the only exception that class membership
cannot be postulated (via a TELL) but is derived via the class membership constraint formulated for the
query class. A consequence of this equal treatment is that a constraint formulated for an ordinary class can
refer directly or indirectly to a query class, e.g.:

Unit in Class with

attribute
sub: Unit
end
BaseUnit in QueryClass isA Unit with
constraint
cl: $ not exists s/Unit!sub From(s, “this) $
end
SimpleUnit in Class isA Unit with
constraint
c: $ forall s/SimpleUnit (s in BaseUnit) $
end

39

Here, the constraint in the class SimpleUnit refers to the query class BaseUnit.

ConceptBase supports references to query classes without parameters'? in ordinary class constraints
and rules. A prerequisite is that the the query class is an instance of the builtin class MSFOLrule. Mem-
bership to this builtin class is necessary to store the generated code for an integrity constraint (or a rule that
an integrity constraint might depend upon) and to enable the creation of a dependency network between
the query class and the integrity constraints. There are two simple methods to achieve membership to
MSFOLrule.

Method 1: Make sure that any query class is an instance of MSFOLrule. This can simply be achieved
be telling the following frame prior to your model:

QueryClass isA MSFOLrule end

Method 2: Decide for each query class individually. You tag only those query classes that are used
in rules or constraints. This individual treatment saves some code generation at the expense of being less
uniform. Such an individual tagging would look like

BaseUnit in QueryClass,MSFOLrule isA Unit with
constraint
cl: $ not exists s/Unit!sub From(s, “this) $
end

ConceptBase will reject an integrity constraint or rule if it refers to a query class that is not an instance
of MSFOLrule.

If a query class is defined as instance of MSFOLrule, then it should not have a meta formula as
constraint! This is a technical restriction that can easily be circumvened by using normal deductive rule.

For example, instead of the query class

UnitInstance in QueryClass,MSFOLrule isA Proposition with
constraint
cl: $ ("this [in] Unit) $
end

you should define

UnitInstance in Class with
rule
rl: $ forall x/VAR (x [in] Unit) ==> (x in UnitInstance) $
end

The example uses the macro predicate (x [in] Unit) explained earlier in this section. It is equiv-
alent to the sub-formula exists ¢ (x in ¢) and (c in Unit).

2.3.3 Nested query calls and shortcuts

ConceptBase has capabilities to form nested expressions from generic query classes. The idea is to com-
bine them like nested functional expressions, e.g. f(g(x), h(y)). The problem is however that queries stand
for predicates and nested query calls are thus formally higher-order logic (predicates occur as arguments
of other predicates), and consequently outside Datalog. Still, the feature is so useful that we provide it. A
nested query call is like an ordinary parameterized query call except that the parameters can themselves
be query calls. For example, COUNT [What_SI_Manager[10000/salary]/class] counts the in-
stances of the parameterized query call What_SI_Manager [10000/salary]. Syntactically, query
calls can be arbitrarily deep, e.g.

Union[Intersec[EmpMinSal[800/minsal] /X,
EmpMaxSal[1400/maxsall]l/Y]/X,
Manager/Y]

131f the CBserver option —cc is set to off, we also allow calls to generic query classes in rules and constraints. In such cases,
incremental integrity checking will be incomplete and thus potentially wrong. Only experienced users should employ them.

40

ConceptBase does perform the usual type check on the parameters by analyzing the instantiation of the
core class of a query call. For example, the core class of EmpMinSal [800/minsal] is EmpMinSal.
Thus, ConceptBase will check whether EmpMinSal is an instance of the class expected for the parameter
X.

Nested query calls are mostly used in combination with functional expressions, i.e. nested query calls
where queries are functions (see section 2.5). A function in ConceptBase is a query class that has at most
one answer object for any combination of input parameters. Of particular interest for nested query calls
are functions that do not operate on values (suchs as integers) but rather on classes such as the class of all
employees with more than two co-workers. ConceptBase provides a collection of aggregate functions that
operate on classes. For example, the COUNT function returns the number of instances of a class. The input
of such a function can be any nested query call.

QueryClass EmployeeWith2RichCoworkers isA Employee with
constraint
c2: $ (COUNT[RichCoworker[this/worker]/class] = 2) $
end

The outer predicate (here: COUNT) is an instance of Function, i.e. delivers at most one value for the
given argument. It is also possible that both operands of a comparison predicate are nested expressions:

QueryClass EmployeeWithMoreRichCoworkersThanWilli isA Employee with
constraint
c2: $ (COUNT[RichCoworker[this/worker]/class] >
COUNT [RichCoworker [Willi/worker]/class]) $
end

ConceptBase supports shortcuts for query calls and function calls (see section 2.5) in case that all pa-
rameters of a query (or function) have fillers in the query call. In such cases, one can write Q [x1, x2, . . .]
instead of Q[x1/p2,x2/p2, ...]. ConceptBase shall replace the actual parameters x1, x2 etc. for
the parameter labels p1, p2 in the alphabetic order of the parameter labels. For example, the expression
RichCoworker [this] isequivalentto RichCoworker [this/worker] since worker is the only
parameter label of the query. Likewise, COUNT [c] is a shortcut for COUNT [c/class]. Since COUNT is
also a function, we support COUNT (c) as well to match the usual notation for function expressions. The
last query class is thus equivalent to:

QueryClass EmployeeWithMoreRichCoworkersThanWilli isA Employee with
constraint
c2: $ (COUNT (RichCoworker[this]) > COUNT (RichCoworker[Willi])) $
end

Since the COUNT function is frequently used, ConceptBase provides the shortcut #c for COUNT (c) .
Consequently, the shortest form of the above query would be:

QueryClass EmployeeWithMoreRichCoworkersThanWilli isA Employee with
constraint
c2: $ (#RichCoworker[this] > #RichCoworker[Willi]) $
end

The shortcut is also applicable to the Union example above. The expression below computes the
numbers of instances of the set expression.

#Union[Intersec[EmpMinSal[800], EmpMaxSal[1400]],Manager]

The definitions for Union and Intersec can be found in the ConceptBase-Forum at http://
merkur.informatik.rwth—-aachen.de/pub/bscw.cgi/896920.

Besides COUNT, ConceptBase supports aggregation function for finding the minimum, maximum and
average of a set. Aggregation functions are not limitered to numerical domains. For example, one can
define a function that returns an arbitrary instance of a class:

41

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/896920
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/896920

selectrnd in Function isA Proposition with
parameter
class: Proposition
end

The membership constraint has to be provided as so-called CBserver plug-in, see chapter F. A call
selectrnd (RichCoworker [Willi/worker])

would then return an arbitrary instance of RichCoworker [Willi/worker]. Random functions can
be useful in the context of active rules (section 4), e.g. to initiate the firing of a rule with an arbitrary
candidate out of the set of candidates. The code for selectrndis accessible via the ConceptBase-Forum
at http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1694234.

2.3.4 Reified query calls

You might want to memorize certain query calls that you want to call over and over again. ConceptBase
provides a built-in class QueryCall, which you can instantiate by such query calls as ordinary objects,
i.e. reified query calls. The following example defines the class count as a query call object:

COUNT [Class/class] in QueryCall end

Of course, you can ask the query call COUNT [Class/class] without having told it as an object.
Reifying COUNT [Class/class] additionally allows you to use it as an attribute of another object, or
to browse it with the graph editor. Examples for query calls, in particular for using integer intervals as
class attributes, are available in the CB-Forum at http://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/2571997.

2.4 View definitions

The view language of ConceptBase is an extension of the ConceptBase Query Language CBQL. Besides
some extensions that allow an easier definition of queries, views can also be nested to express n-ary rela-
tionships between objects.

The system class View is defined as follows:

Class View isA GenericQueryClass with
attribute
inherited_attribute : Proposition;
partof : SubView
end

Attributes of the category inherited_attribute are similar to retrieved attributes of query classes,
but they are not necessary for answer objects of the views, i.e. an object is not required to have a filler for
the inherited attribute for being in the answer set of the view.

The partof attribute allows the definition of complex nested views, i.e. attribute values are not only
simple object names, they can also represent complex objects with attributes. The following view retrieves
all employees with their departments, and attaches the head attribute to the departments.

View EmpDept isA Employee with
retrieved_attribute, partof
dept : Department with
retrieved_attribute
head : Manager
end
end

42

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1694234
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2571997
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2571997

As the example shows, the definition of a complex view is straightforward: for the “inner” frame the
same syntax is used as for the outer frames. The answers of this view are represented in the same way, e.g.

John in EmpDept with
dept
JohnsDept : Production with
head
ProdHead : Phil
end
end

Max in EmpDept with
dept
MaxsDept : Research with
head
ResHead : Mary
end
end

To make the definition of views easier, we allow some shortcuts in the view definition for the classes of
attributes.

For example, if you want all employees who work in the same departments as John, you can use the
term John . dept instead of Department. In general, the term object . attrcat refers to the set of
attribute values of object in the attribute category at t rcat. This path expressions may be extended to
any length, e.g. John.dept . head refers to all managers of departments in which John is working.

A second shortcut is the explicit enumeration of allowed attribute values. The following view retrieves
all employees, who work in the same department as John, and earn 10000, 15000 or 20000 Euro.

View EmpDept2 isA Employee with
retrieved_attribute

dept : John.dept;

salary : [10000,15000,20000]
end

As mentioned before, “inner” frames use the same syntax as normal frames. You can also specify
constraints in inner frames which refer to the object of an outer frame.

View EmpDept_likes_head isA Employee with
retrieved_attribute, partof
dept : Department with
retrieved_attribute, partof
head : Manager with
constraint ¢ : $ A(this,likes,this::dept::head) $
end
end
end

The rule for using the variable “this” in nested views is, that it always refers the object of the main
view, in this case an employee. Objects of the nested views can be referred by this: :label where
label is the corresponding attribute name of the nested view. In the example, we want to express that
the employees must like their bosses. Because the inner view for managers is already part of the nested
view for departments we must use the double colon twice: this: :dept refers to the departments and
this: :dept: :head refers to the managers.

If you reload the definition of a view into the Telos Editor, the complex structure of it is lost. During
compilation of the view, the view is translated into several classes and some additional contraints are
generated, so the resulting objects might look quite strange if you reload them.

43

2.5 Functions

Functions are special queries which have mandatory input parameters and return at most one result for a
given input. Functions can either be user-defined by a membership constraint like for regular query classes,
or they may be implemented by a PROLOG code, which is defined either in the OB.builtin file (this file is
part of every ConceptBase database) or in a LPI-file (see also section 4.2.2).

A couple of aggregation functions are predefined for counting, summing up, and computing the min-
imum/maximum/average. Furthermore, there are functions for arithmetic and string manipulation. See
section E.2 for the complete list. Since functions are defined as regular Telos objects, you can load their
definition with the Telos editor of the ConceptBase User Interface.

Unlike as for user-defined generic query classes, you have to provide fillers for all parameters of a
function. We will refer to any query expression whose outer-most query is a function as a functional
expression.

The intrinsic property of a function is that it returns at most one answer object'* for a given combination
of input parameters. This property allows to form complex functional expressions including arithmetic
expressions. Functions are also special query classes, hence you you use them whereever a query class is
expected. Subsequently, we introduce first how to define and use functions like queries. Then, we define
the syntax of functional expressions and the definition of recursive functions such as the computation of
the length of the shortest path between two nodes.

2.5.1 Functions as special queries

Assume that an attribute (either explicit or derived) has at most one filler. For example, a class Project
may have attributes budget and managedBy that both are single-valued. A third attribute pro jMember
is multi-valued (default for category ’attribute’).

Project with
single
budget: Integer;
managedBy: Employee
attribute
projMember: Employee
end

The two functions get Budget and getManager return the corresponding objects:

getBudget in Function isA Integer with
parameter
proj: Project
constraint
cl: $ (proj budget this) $
end

getManager in Function isA Employee with
parameter
proj: Project
constraint
cl: $ (proj managedBy this) $
end

The two functions share all capabilities of query classes, except that the parameters are required (one
cannot call a function without providing fillers for all parameters) and that there is at most one return object
per input value.

14 A function returns the empty set nil if it is undefined for the provided input values.

44

Function can be called just like queries, for example get Budget [P1/proj] shall return the project
budget of project P1 (if existent). You can also use the shortcut get Budget [P1] like for any other query,
and the functional form getBudget (P1). The latter is the preferred form for function calls. Note that
ConceptBase adopts the mathematical style for function calls rather that the object-oriented one'>.

If your function has several arguments, then use alphabetically sorted parameter names in the function
definition:

f in Function isA D with
parameter
al: R1;
az: R2
constraint
c: $... $

end
This corresponds to the mathematical function signature
fiRixRy— D
Functions without parameters are also possibe, e.g. a function magicnumber that returns a fixed number:

magicnumber in Function isA Integer with
constraint
cmagic: $ (this = 42) $
end

You can call it with an empty argument list: magicnumber ().

2.5.2 Shortcuts for function calls and functional expressions

Since functions require fillers for all parameters, ConceptBase offers also the functional syntax f (x) to
refer to function calls. The expression £ (x) is a shortcut for £ [x/paraml], where paraml is the only
parameter of function £. If a function has more than one parameter, then they are replaced according their
alphabetic order:

g in Function isA T with
parameter
x: T1;
y: T2
constraint

end

A call like g (bil1,1000) is a shortcut for g[bill/x, 1000/y] because x is occurs before
y in the ASCII alphabet. The shortcut can be used to form complex functional expressions such as
f(g(bill, getBudget (P1))). There is no limitation in nesting function calls. Function calls are
only allowed as left or right side of a comparison operator. They are always evaluated before the compari-
son operator is evaluated. For example, the equality operator

S ... (f(g(bill,getBudget (P1l))) = f(g(mary,1000))) $

will be evaluated by evaluating first the inner functions and then the outer functions. Note that the
parameters must be compliant with the parameter definitions.

As a special case of functional expressions, ConceptBase supports arithmetic expressions in infix syn-
tax. The operator symbols +, —, *, and / are defined both for integer and real values. ConceptBase shall
determine the type of a sub-expression to deduce whether to use the real-valued or integer-valued variant
of the operation. Examples of admissable arithmetic expressions are

15 An object-oriented style for the first function would be P1 . getBudget () rather than getBudget (P1).

45

a+2x (b-15)
n+f (m) /3

Provided that a and b are variables holding integers, the first expresssion is equivalent to the function
shortcut

IPLUS (a, IMULT (2, IMINUS (b, 15)))
and to the query call
IPLUS[a/il, IMULT[2/il, IMINUS [b/11,15/1i2]1/i2]1/1i2]

The second arithmetic expression includes a division which in general results in a real number. Hence,
the function shortcut for this expression is

PLUS (n,DIV (£ (m),3))

The whole expression returns a real number.
The arguments in functional expressions must be object names (including instances of Integer and Real)
or variables.

2.5.3 Example function calls and definitions

1. The following three variants all count the number of instances of Class:

COUNT [Class/class]
COUNT (Class)
#Class

The result is an integer number, e.g.
119

The operator # is a special shortcut for COUNT.

2. The subsequent query sums up the salaries of an Employee:

SUM_Attribute[bill/objname, Employee!salary/attrcat]
SUM_Attribute (Employee!salary,bill)

Note that the parameter label attrcat is sorted before objname for the function shortcut. The
result is returned as a real number, even if the input numbers were integers.

2.5001000000000e+04
You can also use functions also in query class to assign a value to a “computed_attribute”:

QueryClass EmployeesWithSumSalaries isA Employee with
computed_attribute

sumsalary : Real
constraint

c: $ (sumsalary = SUM_Attribute (Employee!salary,this)) $
end

3. Complex computations can be made by using multiple functions in a row. This query returns the
percentage of query classes wrt. the total number of classes.

46

Function PercentageOfQueryClasses isA Real with

constraint
c: $ exists il,i2/Integer r/Real
(i1l = COUNT[QueryClass/class]) and (i2 = COUNT[Class/class]) and
(r = DIV[il/rl1l,1i2/r2]) and (this = MULT[100/rl,r/r2]) $

end

The query can be simplified with the use of function shortcuts to

Function PercentageOfQueryClasses isA Real with
constraint
c: $ (this = MULT(100,DIV(COUNT (QueryClass),
COUNT (Class)))) $
end

and with arithmetic expressions to

Function PercentageOfQueryClasses isA Real with
constraint

c: $ (this = 100 » #QueryClass / #Class) $
end

The function PercentageOfQueryClasses has zero parameters. You can use it as follows in
logical expressions

$... (PercentageOfQueryClasses() > 25.5) ... $

So, a function call F () calls a function F that has no parameter.

Functions that yield a single numerical value can directly be incorporated in comparison predicates.
For example, the following query will return all individual objects that have more than two attributes:

ObjectWithMoreThanTwoAttributes in QueryClass isA Individual with
constraint
cl : $ (COUNT_Attribute (Proposition'!attribute,this) > 2) $
end

The functional expression used in the comparison can be nested. See section 2.3.3 for details. You can
also re-use the above query to form further functional expressions, e.g. for counting the number of objects
that have more than two attribute. You find below all three representations for the expression.

COUNT [ObjectWithMoreThanTwoAttributes/class]
COUNT (ObjectWithMoreThanTwoAttributes)
#ObjectWithMoreThanTwoAttributes

2.5.4 Programmed functions

If your application demands functional expressions beyond the set of predefined-functions, you can extend
the capabilities of your ConceptBase installation by adding more functions. There are two ways: first,
you can extend the capabilities of a certain ConceptBase database, or secondly, you can add the new
functionality to your ConceptBase system files. We will discuss the first option in more details using the
function sin as an example, and then give some hints on how to achieve the second option.

A function (like any builtin query class) has two aspects. First, the ConceptBase server requires a
regular Telos definition of the function declaring its name and parameters. This can look like:

47

sin in Function isA Real with
parameter
x : Real
comment
c : "computes the trigonometric function sin(x)"
end

The super-class Real is the range of the function. i.e. any result is declared to be an instance of
Real. The parameters are listed like for any regular generic query class. The comment is optional. We
recommend to use short names to simplify the constructions of functional expressions. The above Telos
frame must be permanently stored in any ConceptBase database that is supposed to use the new function.

The second aspect of a function is its implementation. The implementation can be in principal in any
programming language but we only support PROLOG because it can be incrementally addded to a Con-
ceptBase database. An implementation in another programming language would require a re-compilation
of the ConceptBase server source code. The syntax of the PROLOG code must be conformant to the Prolog
compiler with which ConceptBase was compiled. This is in all cases SWI-Prolog (www.swi-prolog.org).
For our sin example, the PROLOG code would look like:

compute_sin(_res,_x,_C) :-
cbserver:arg2val (_x,_v),
number (_v),
_vres 1is sin(_v),
cbserver:val2arg(_vres,_res) .

tell: ’sin in Function isA Real with parameter x : Real end’.

The first argument _res is reserved for the result. then, for each parameter of the function there are
two arguments. The first is for the input parameter (_x), the second holds the identifier of the class of the
parameter (here: _C). It has to be included for technical reasons. The clause ’tell:” instructs ConceptBase
to tell the Telos definition when the LPI file is loaded. Instead of this clause you may also tell the frame
manually via the ConceptBase user interface.

There are a few ConceptBase procedures in the body of the compute_sin that are of importance
here. The procedure cbserver:arg2val converts the input parameter to a Prolog value. ConceptBase
internally always uses object identifiers. They have to be converted to the Prolog representation in order to
enter them into some computation. The reverse procedure is cbserver:val2arg. It converts a Prolog
value (e.g. a number) into an object identifier that represents the value. If necessary, a new object is created
for holding the new value.

The above code should be stored in a file like sin.swi.lpi. This file has to be copied into the
ConceptBase database which holds the Telos definition of sin. You will have to restart the ConceptBase
server after you have copied the LPI file into the directory of the ConceptBase database.

If you want the new function to be available for all databases you construct, then you have to copy
the file sin.swi.1lpi to the subdirectory 1ib/SystemDB of your ConceptBase installation. Note that
your code might be incompatible with future ConceptBase releases. If you think that your code is of
general interest, you can share it with other ConceptBase users in the Software section of the CB-Forum
(http://merkur.informatik.rwth—aachen.de/pub/bscw.cgi/2768063).

2.5.5 Recursive function definitions

Some functions like the Fibonacci numbers are defined recursively. ConceptBase supports such recur-
sive definitions. If the function is defined in terms of itself, then express the recursive definition in the
membership constraint of the function:

fib in Function isA Integer with
parameter
n: Integer
constraint

48

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2768063

cfib: $ (n=0) and (this=0) or
(n=1) and (this=1l) or
(n>1) and (this=fib(n-1)+fib(n-2))

end

The variable t hi s stands for an answer object that fulfills the constraint c £ ib. Note that ConceptBase
regards integers also as objects. ConceptBase shall internally compile the disjunction into three formulas:

forall n,this/Integer (n=0) and (this=0) ==> fib(this)
forall n,this/Integer (n=1) and (this=1) ==> fib(this)
forall n,this/Integer (n>1) and (this = fib(n-1)+fib(n-2)) ==> fib(this)

ConceptBase employs a bottom-up query evaluator to evaluate the recursive function. Thus, the result
of a function call £ib (n) shall only be computed once and then re-used in subsequent calls.

If the recursion is not inside a single function definition but rather a property of a set of function/query
definitions, then you must use so-called forward declarations. They declare the signature of a func-
tion/query before it is actually defined. A good example is the computation of the length of the shortest
path between two nodes.

spSet in GenericQueryClass isA Integer with
parameter
x: Node;
y: Node
end
sp in Function isA Integer with
parameter
x: Node;
y: Node
constraint
csp: $ (x=y) and (this=0) or
(x nexttrans y) and (this = MIN(spSet[x,y])+1)

end
spSet in GenericQueryClass isA Integer with
parameter
x: Node;
y: Node
constraint
csps: $ exists x1/Node (x next x1) and (this=sp(xl,y)) $
end

Here, the query class spSet computes the set of length of shortest path between the successors of
a node x and a node y. The length of the shortest path is then simply O if x=y or the minimum of
the spSet [x, y] plus 1 if there is a path from x to y, and undefined else. The signature of spSet
must be known for compiling sp and vice versa. ConceptBase has a single-pass compiler. Hence, it
requires the forward declaration. The query spSet is not a function because it returns in general several
numbers. The complete example for computing the length of the shortest path is in the CB-Forum, see
http://merkur.informatik.rwth—aachen.de/pub/bscw.cgi/1694234.

Recursive function definitions require much care. Deductive rules shall always return a result after a
finite computation. This does not hold in general for recursive function definitions when they use arithmetic
subexpressions. These subexpressions can create new objects (numbers) on the fly and could thus force
ConceotBase into an infinite computation. On the other hand, they are more expressive than pure deductive
rules and thus useful to analyze large models in a quantitative way.

49

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1694234

2.6 Query evaluation strategies

ConceptBase employs an SLDNF-style query evaluation method, i.e. query predicates are evaluated top-
down much like in standard Prolog. This is known to cause infinite loops for certain recursive rule sets.
To overcome this, the SLDNF evaluator is augmented by a tabling sub-system [SSW94], which detects
recursive predicate calls and answers them from the cached results of a query (the so-called table) rather
than entering an infinite loop. This tabled evaluation computes the fixpoint (=answer) of a query provided
that the overall rule set is stratified. Even more, dynamically stratified rule sets are supported as well. Other
than with the static stratification test, a violation is detected at run time of a query rather than at compile
time.

For a precise definition of stratification, we refer you to the literature on deductive databases. For the
purposes of this manual, consider the following rule:

forall p/Position (exists pl/Position (p moveTo pl) and not (pl in Win))
==> (p in Win)

ConceptBase internally compiles such rules into a representation where Position, moveTo, and
Win are predicate symbols:

forall p
(exists pl Position(p) and Position(pl) and moveTo (p,pl) and not Win(pl))
==> Win (p)

Static stratification requires that one can consistently assign stratification levels (=numbers) to the set
of predicate symbols such that

1. If there is a rule with conclusion predicate A and positive condiction predicate B (=not negated), then
the level of A must be greater or equal the level of B.

2. If there is a rule with conclusion predicate A and negated condiction predicate B , then the level of
A must be strictly greater the level of B.

In the example above, the conclusion predicate Win depends on the condition predicate not Win.
Since we only can assign one level to Win, we cannot find a static stratification for the above rule. The
same argument also works in case of multiple inter-dependent rules. Static stratification can be tested at
compile-time of a rule.

Dynamic stratification is an extension of static stratification, i.e. any statically stratified rule set is also
dynamically stratified. It is not only considering predicate symbols but also the arguments with which a
predicate is called at run-time. Obviously, this depends on the database state at a certain point of time.
The global rule of dynamic stratification is that the answer to a predicate call A (x) may not depend on its
negation not A (x). Such a clash can be detected by maintaining a stack of active predicate calls.

ConceptBase reports a violation of dynamic stratification in the log window of the CB client with a
message indicating the predicate that participated in the stratification violation. There dymanic stratification
test of ConceptBase catches different cases that result in slightly different error messages. Essentially, they
all are reduced to the pattern that P and — P cannot be true at the same time for a predicate that is part of a
recursive chain of calls.

In practice, most rule sets are already statically stratified, i.e. no violation can occur regardless of
the data in the database. Counter examples are in the CB-Forum (see http://merkur.informatik.
rwth-aachen.de/pub/bscw.cgi/888832) in the models Russel.sml and Win.sml. These examples
are neither statically nor dynamically stratified. Note also the example WinNim.sml which uses the same
query as Win.sml but is dynamically stratified. Even in the case of stratification violations, ConceptBase
will display an answer to a query. The user can then decide which parts of the answer are usable. The
stratification test can be enabled or disabled for the ConceptBase server via the parameter —st (section
6.1).

50

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/888832
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/888832

2.7 Multi-level modeling with ConceptBase

Multi-level modeling is about the use of multiple abstraction levels (classes, metaclasses, metametaclasses,
etc.) to define the types of a database. Traditionally, there were only two abstraction levels (database
schema=M1 and database instance=MO0) but even very early proposals like Abrial’s binary data model had
already three abstraction levels (adding metaclass schema=M2).

In multi-level modeling, the metaclasses are regarded as first-class citizens of the database, i.e. they
are objects too. This coincides with the Telos data model, which regards any explicit information as ob-
ject. A feature of multi-level modeling that is not part of the Telos data model is the so-called ”potency”
of attributes and relation. The potency roughly specifies how many times the source (or target) of an
attribute/relation must be instantiated in order to form a factual instance of the attribute/relation.

Assume that there is a metaclass Product, which defines an attribute serialnumber with potency
2. Assume further that the class Car is an instance of Product and myCar is an instance of Car.
Then, myCar can form a factual attribute for serialnumber, since it is 2 instantiation levels below
Product. While this form of attribution is not part of Telos, one can well axiomatize potencies using
rules and constraints in ConceptBase [NJS*14]. The example specifications are also available at https:
//conceptbase.sourceforge.net/ddi/.

As stated in [RLGW14], ConceptBase was one of the earliest systems supporting a simple form of
multi-level modeling. Before the dual deep instantiation formalization [NJS*14], the materialization con-
struct, a precursor of multi-level modeling, was also formalized with ConceptBase by Dahchour et al.
[DPZ2002].

2.7.1 Expressing semantics at the metamodel level

ConceptBase does not have builtin support for explicit potencies of attributes (and relations). Instead, all
attributes have source and target potency 1: when instantiating the attribute, one has to instantiate both the
source and the target of the attribute, yielding a new attribute with its own label. However, one can use
the "macro” predicates (x [in] c) and (x [m] y) to specify the semantics of modeling language
constructs such as the key property for attributes of entity types.

Consider the following definitions about the ERD modeling language:

Entity in Class end
Domain in Class end

EntityType in Class with
attribute field: Domain
single key: Domain
rule
rl: $ forall e/VAR (e [in] EntityType) ==> (e in Entity) $
end

Value in Class end
Domain in Class with
rule
rl: $ forall v/VAR (v [in] Domain) ==> (v in Value) $
end

Figure 2.2 visualizes the classification of entities and values. The class Ent ity subsume all instances
of instances of EntityTpe and Value subsumes all instances of instances of Domain. The directed
links with broken lines are instantiations.

The rules for classifying entities and values exploit a fundamental principle of ConceptBase/Telos: all
explicit facts in the database are uniformly represented as propositions P (id, x, n, y), and consequently
they have a system-generated object identifier, serving as a persistent memory address. This principle
allows deriving predicates like (e in Entity). The variable ’e’ is standing for the object identifier of
the respective object. This stands in contrast to the relational data model, in which tuples are identified
by the key attributes defined for their respective relation. The case of Domain is even more interesting.

51

https://conceptbase.sourceforge.net/ddi/
https://conceptbase.sourceforge.net/ddi/

e

+

M1

Mo

Figure 2.2: Classifying entities and values

In ConceptBase, all values like numbers and strings are also objects with system-generated identifiers.
Hence, they can be classified just like entities are classified. In relational databases (and most other data
models), there is a strict separation of objects and values. In ConceptBase, all stored information has object
identifiers, i.e. an address where it can be looked up and linked. The dichotomy of values and identifiers in
object-oriented (programming) languages is not present in ConceptBase'®.

In the OMG terminology [OMG11], the constructs EntityType and Domain are at the M2 level
(meta classes). The predicate (e [in] EntityType) isequivalent to

exists ET/VAR (e in ET) and (ET in EntityType)

Thus, rule r1 of Ent ity designates it as a simple class, or a class technically at the OMG M1 level.
However, it is indeed a construct of the ERD modeling notation since certain properties of ERDs such as
the key property require to refer to objects at the data level (OMG level MO):

EntityWithSharedKey in QueryClass isA Entity with
computed_attribute
entity2: Entity;
keyvalue: Value
constraint
cshare: $ ("this [key] “keyvalue) and
("entity2 [key] T“keyvalue) and (“entity2 \= “this) $

16There is however a different dichotomy in ConceptBase that resembles the object-vs-value separation: Each proposi-
tion P(id,x,n,y) has an identifier ’id’ and a label 'n’. A number like 120’ is for example represented by a proposition
P(id123,id123,120,id123). The label is always the representation of the object as used in the universe of discourse. The identifier is
used to look it up and lets it participate in formulas.

52

end

The above query shall return all those entities that share the key with another entity. The result objects
are all at the data level, however, we do not refer to any specific entity types here. This is an example of
defining a construct like "key’ at the meta class level and using it to query objects at the data level. The ’key’
attribute is available to all ERD diagrams. It shows that three OMG levels (M2, M1, MO) are considered
at the same time to define and evaluate the semantics of a modeling language. From an ontological point
of view, the concept Ent ity is interesting. It subsumes all entites that are instances of some entity type
(M1 level). Thus, is is the super class of all possible entity types. Telos represents all factual information
as propositions with object identity. This allows us to store facts at any abstraction level (objects, classes,
meta classes, and even objects not belonging to any of the classical OMG levels) in the same uniform data
model.

The class Entity is semantically an M1-level object, because its instances (a.k.a. its extension) are
MO-level objects representing some objects of a reality. It is the most general entity type. Figure 2.3
contrasts the deductive definition of Ent ity (left side) with the definition using sub-class relations (right
side). The deductive rule defining the instances of Ent ity is equivalent to placing Ent ity as superclass
of all entity types, i.e. all instances of Ent ityType. While Entity is semantically an M1-level object,
it is not part of the domain model (here the domain of employees and projects). It is rather part of the
definition of the ERD language, enriching it with the semantics of its constructs.

The pattern of entity classification can also be applied to attributes and relations. For example, the
metaclass EntityType has an attribute key for qualifying attributes that identify entities. On the M1
level, this becomes an attribute identifier of Entity. The classifying rule is

forall kv/VAR (kv [in] EntityTypel!key) ==> (kv in Entity'!identifier)

Figure 2.4 shows an example that leads to the classification of key attributes. Note that this al-
lows to retrieve the identifiers of any entity, regardless of the schema definition at the M1 level. The
complete example is available from the CB-Form at http://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/d2230805/MacroFormulas.sml.txt. The complete example also introduces the class
Relationship as M1 counterpart of the M2 metaclass RelationshipType in the same style as
Entity and Value as counterparts of EntityType and Domain. All three classes are connected
(role and value links) and thus allow to query the MO data level without referring to any schema class like
Employee. It thus supports schema-less querying.

2.7.2 DeepTelos

DeepTelos is a set of three axioms to realize multi-level modeling in harmony with the existing O-Telos
axioms on instantiation, specialization, attribution (see appendix B). The idea is use a new predicate
(m IN c)
to declare m as most general instance [JN2016] of the class c. Any ordinary instance of c then becomes a

sub-class of m. The three rules are defined as follows:

Proposition with

attribute
ISA: Proposition; IN: Proposition
end
DeepTelosRules in Class with
rule
mrulel: $ forall m,x,c/Proposition (x in c) and (m IN c¢) ==> (x ISA m) $;
mrule2: $ forall x,c,d/Proposition (c ISA d) and (x in c) ==> (x in d) $;
mrule3: $ forall c¢,d,m,n/Proposition
(m IN ¢) and (n IN d) and (c ISA d) ==> (m ISA n) $
end

Further discussion and examples of DeepTelos are available at ht tps://conceptbase.sourceforge.
net/ddi/deeptelos.

53

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2230805/MacroFormulas.sml.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2230805/MacroFormulas.sml.txt
https://conceptbase.sourceforge.net/ddi/deeptelos
https://conceptbase.sourceforge.net/ddi/deeptelos

4

GRS

M1

#

| Projectl I Employeel

Zr JAN JA
Completed| . [Manager] Regular | [completed Vianager] | Regular
Project |/ % ‘g Employee Project Employee
K o T H

A *,

(] [man]

Figure 2.3: Entity classification vs. sub-classing

2.7.3 Crossing abstraction levels

OMG demands strict separation between models at different abstraction levels. The only allowed relation
is the instantiation between objects at two neighoring levels. For example, the object Employee at the
M1 (model) level can be declared as instance of the object Ent ity Type at the M2 (model) level. Other
relations are forbidden. ConceptBase/O-Telos does not have such restrictions. It has so-called omega
classes (Proposition is the most important such class), which have objects from any abstraction level
as instance. Even more, there is no builtin notion of abstraction level in O-Telos. Abstraction levels in-
troduce a form of rigor into metamodeling that is beneficial to avoid semantic confusions, e.g. to avoid
instantiating real-world objects into meta-classes. One can enforce such a rgor in ConceptBase by defining
level objects like Token, SimpleClass, MetaClass, MetametaClass and so forth and then en-
forcing constraints that only allow instantiation between neighbor levels. This was in fact discussed with
the original Telos specification but abondoned with O-Telos.

The following example shows that there are applications were level-crossing relations are useful. The
principle idea is that there is a modeling level that describes the reality) and a parallel level of the cre-
ation process of the models. Each construct is man-made, regardless of the abstraction level. Hence,
it makes perfect sense to specify who has created a given construct. Such information is very common

54

ry H ry

Manager s ~—mno | Integer

+ : K Iy

mary HEd ml » 1234

Figure 2.4: Classifying key attributes

in software engineering, where the updates to the code base are associated to members of the devel-
opment team. Consider the Figure 2.5 about an excerpt of the ERD language and its history (see also
http://conceptbase.sourceforge.net/meta-modeling.html).

Concept with
attribute created: "1-Jan-2004: 12:03" {* from M3 to MO =}
end

EntityType in Concept with
attribute attr : Domain
end

Person in EntityType with
attr name: String
end

PC in Person with

name pcname: "Peter Chen"

attribute proposed: EntityType {* from MO to M2 x}
end

There are two relations that cross abstraction levels. First, the relation created of Concept (M2
level) points to a time object at MO level. Second, the relation proposed links the object PC to the
object EntityType. Both relations use the builtin attribute category attribute of the omega class
Proposition.

55

http://conceptbase.sourceforge.net/meta-modeling.html

A

created

el atr—> CGamai>
)

h

"1-Jan-2004: 12:03"

"Peter Chen"

Figure 2.5: Links crossing abstraction levels

To state that Peter Chen proposed the ERD language is a different type of statement than the statment
that Peter Chen is a person, which is a type of entity. Still, both types of statements can co-exist and
allow for more expressive metamodels. For example, one can define that certain constructs of a modeling
language are only available to experienced modelers, or that development projects from a certain domain
should use a subset of the available constructs.

2.8 Datalog queries and rules

The definition of queries in ConceptBase is often complicated by the limitations of the expressiveness of
the query language or by the limitations of the query optimizer to find the best solution. The concept of
datalog queries and rules was introduced to overcome these limitations. Datalog queries and rules give the
experienced user the possibility to define the executable code of query (or rule) directly, including the use
of standard PROLOG predicates such as ground/1 to improve the performance of a query or rule.

Although datalog queries and rules can be used as any other query (or rule), they can cause an inconsis-
tent database. This is due to the fact, that the datalog queries and rules will usually not be evaluated while
the semantic integrity of the database is checked.

2.8.1 Extended query model

Datalog queries are defined in a similar way as standard query classes. They must be declared as instance
of the class DatalogQueryClass.

Class DatalogQueryClass isA GenericQueryClass with
attribute

code : String
end

The attribute code defines the executable code of the query as string.
Datalog rules have to be defined as an instance of DatalogInRule or DatalogAttrRule, de-
pending on whether their conclusion should be an In-predicate or an A-predicate.

56

Class DatalogRule with
attribute
concernedClass : Proposition;
code : String
end

Class DatalogInRule isA DatalogRule
end

Class DatalogAttrRule isA DatalogRule
end

The attribute concernedClass specifies the class for the In-predicate or the attribute class for the
A-predicate.

2.8.2 Datalog code

The datalog code is a list of predicates, separated by commas (,). As in Datalog or Prolog, this will be
interpreted as a conjunction of the predicates. To use disjunction, the code attribute has to be specified
multiple times.

All predicates that may be used in standard rules and queries may also be used in datalog queries (see
section 2.2 for a list). An argument of a predicate may be one the following:

* an object name: If the object name starts with an upper case letter or includes special characters such
as ! or ", it must be written in single quotes (*). This also holds for string object,e.g. "a string"
must be writtenas ' "a string"’.

* a predefined variable, defined by the context of the query or rule: If the query has a super class,
the variable this refers to the instances of this class. If the query has parameters or computed
attributes, variables with the names of the parameters or computed attributes will be predefined.
In a DatalogInRule, the variable this refers to the instances of the concerned class. In a
DatalogAttrRule, the variables src and dst refer to the source and destination object of the
attribute. Note, that all predefined variables have to be prefixed with ~ and must be encoded in
single quotes ('),e.g. / "this’,’ “src’,’ "param’.

* existential variables: These variables must be declared in a special predicate vars (1ist), which
has to be the first predicate of the code. For example, the predicate vars ([x,y]) defines the
variables x and y.

A query expression of the form query (q) may be also used as predicate, or as second argument of an
In-predicate. g may be any valid query expression, e.g. just the name of a query class, or a derive expression
including the specification of parameters (for example, find_instances[Class/class]).

In addition, PROLOG predicates can be used as predicates. You can define your own PROLOG predi-
cates in a LPI-file (see section 4.2.2 for an example).

2.8.3 Examples

This section defines a few datalog queries and rules for the standard example model of Employees, Depart-
ments and Managers (see $CB_HOME /examples/QUERIES).
The first example defines a more efficient version of the recursive MetabossQuery.

DatalogQueryClass MetabossDatalogQuery isA Manager with

parameter
e : Employee
code

57

rl : "In('"e’,’Employee’),A(’' e’ ,boss,’” “this’)";
r2 : "vars([m]),
In(’""e’",’Employee’),
In (m, query (' MetabossDatalogQuery[“e/el’)),
A (m,boss,’” "this’)"
end

Note that the disjunction of the original query is represented by two code-attributes. The example
shows also the use of query expressions and existential variables.

The second example is the datalog version of the rule for the HighSalary class. The infix-predicate >=
is represented by the predicate GE.

Class HighSalary2 isA Integer
end

DatalogInRule HighSalaryRule2 with

concernedClass

cc: HighSalary2
code

c: "In(’ "this’,’Integer’),GE(’ "this’, 60000)"
end

The last example shows the definition of a rule for an attribute. It also shows, how the performance of
a rule can be improved by specifying different variants for different binding patterns. The example defines
two rules, depending on the binding of the variable src. The rule defines the transitive closure of the
boss attribute. Rule r1 is applied, if both arguments src and dst are unbound. The second rule is used,
if at least src is bound, and the last rule will be applied, if we have a binding for dst but not for src.

DatalogAttrRule MetabossRule with
concernedClass
cc : Employee!boss

code
rl : "vars([m]),var(’ “src’),var(’ "dst’),In(m, " Manager’),
A (m,boss,’ "dst’),A(’ "src’,boss,m)";
r2 : "vars([m]),ground(’ “src’),
A(’" "src’,boss,m),A(m,boss,’” "dst’)";
r3 : "vars([m]),ground(’ “dst’),var(’ “src’),
A (m,boss,’ "dst’),A(’ "src’ ,boss,m)"
end

Note, that the predicates var and ground are builtin predicates of PROLOG. Thus, this is also an
example for calling PROLOG predicates in a query or rule.

58

Chapter 3

Answer Formats for Queries

The ConceptBase server provides an ASK command in its interface, which allows to specify in which
text-based format the answer should be returned. There are two pre-defined formats: one for returning a
list of object names, and one for returning a list of object frames. These two formats can be extended by
user-defined answer formats.

Examples for answer formats are available from the CB-Forum, see http://merkur.informatik.
rwth-aachen.de/pub/bscw.cgi/861803.

To understand ConceptBase answer formats, we first look at the syntax of the ASK command at the
programming interface. We use here the syntax of CBshell (section 7) since it can be tested directly in a
command terminal:

ask "<querydefinition>" FRAMES <answer—-format> <roll-backtime>
ask <querycall> OBJNAMES <answer—-format> <roll-backtime>

The first variant is for queries where the query is provided as a Telos frame, the second one is for pa-
rameterized query calls like O [abc/paraml]. If the query call contains special characters or is computes
of several query calls then surround them by double quotes. The rollback time is typically Now, i.e. the
query refers to the current database state. There are four options for the answer format:

LABEL: the answer shall be returned as a comma-separated list of object names, e.g. bill, mary,
john

FRAME: the answer shall be returned as a list of Telos frames.
JSONIC: the answer shall be returned as a list of JSON-like frames (experimental).
FRAGMENT: return the answer objects as so-called SMLfragments (deprecated)

FRAGMENTswi: return the answer objects as a SWI-Prolog list of terms smlFragment(O,In1,In2,Isa,With),
each representing one answer object

VIEW: return the as complex Telos frames (a frame can contain another frame as attribute); to be used
when you ask a View query

answer-format-name: Finally, the name of a user-defined answer format can be provided, like MyFormat.
This will override any answer format that is assigned via the forQuery attribute for the given query.
Hence, one can maintain several answer formats for the same query.

default: This value is leaving the choice to the ConceptBase server. For function calls, the answer
format LABEL is selected, for other query calls, ConceptBase first checks if an answer format was
defined for the query (attribute forQuery). If that exists, it is selected, otherwise the format FRAME
is selected. If there are more than one, the first one is selected.

59

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/861803
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/861803

The answer format JSONIC is an alternative to FRAME. Here is an example contrasting the two formats.
The first two entries are in FRAME format, the latter two in JSONIC.

Employee in Class isA Person,Agent with
attribute
salary: Integer;
name: String
rule
rl: $ forall e/Employee exists s/Integer (e salary s) $
end

bill in Employee with
salary
bsal: 1000
name
firstname: "William";
lastname: "Smith"
attribute
creator: mjeu
end

{ "id" : "Employee",
"type" : ["Class"],
"super" : ["Person","Agent"],
"salary" : "Integer",
"rule/rl" : "$ forall e/Employee exists s/Integer (e salary s) $"

{ "id" : "bill",
"type" : ["Employee"],
"salary/bsal"™ : "1000",
"name/firstname" : "\"William\"",
"name/lastname" : "\"Smith\"",
"attribute/creator": "mjeu"

The command ask <querycall> is a shortcut for
ask <querycall> OBJNAMES LABEL Now

Assume, we want to execute a query call Q [abc/paraml] on the current database and have the
answer formatted according as frames, we would issue:

ask Qlabc/paraml] OBJNAMES FRAME Now

We assume here that there is no user-defined answer format for query Q. If there is a user-defined answer-
format like MyFormatA and MyFormatB, but the answer formats are not assigned via forQuery to Q,
we can call:

ask Q[abc/paraml] OBJNAMES MyFormatA Now
and also
ask Q[abc/paraml] OBJNAMES MyFormatB Now

If we assign MyFormatB to Q via the forQuery attribute, the last call is equivalent to the first call using
default as answer format name.
Subsequently, the specification of such user-defined answer formats is presented.

60

3.1 Basic definitions

By default, ConceptBase displays answers to queries in the FRAME format (see ‘A’ and ‘B’ below). For
many applications, other answer representations are more useful. For example, relational data is more
readable in a table structure. Another important example are XML data. If ConceptBase is integrated into
a Web-based information system, then answers in HTML format are quite useful. For this reason, answer
format definitions are provided.

Answer formats in ConceptBase are based on term substitutions where terms are evaluated against
substitution rules defined by the answers to a query. A substitution rule has the foom L — R with
the intended meaning that a substring L in a string is replaced by the substring R. The object of a term
substitution is a string in which terms may occur, for example:

this is a string called {a} with aterm {b}
Assume the substitution rules:
* {a} — string no. {x}
e {b} — that was subject to substitution
e (x} — 123

The derivation of a string with terms proceeds from left to right. First, the term occurence {a} is
dealt with. The next term in the string is then {x} which is evaluated to 123. Finally, {b} is substituted
and the result string is this is a string called string no. 123 with a term that
was subject to substitution.

We denote a single derivation step of a string 57 to a string Sy by 57 = S5. It is defined when there
occurs a substring L in S1,1.e. Sy =V + L 4+ W and a substitutionrule L — Rand So =V + R+ W.
The substrings V' and W may be empty. A string S is called ground when no substition rule can be applied.
A sequence S —> S1 = ... = 5, is called a derivation of S. A complete derivation of S ends with a
ground string. In our example, the complete derivation is:

this is a string called {a} with a term {b}.

= this is a string called string no. {x} with a term {b}.

= this is a string called string no. 123 with a term that was
subject to substitution.

An exception to the left-to-right rule are complex terms like {do ({y}) }. Here, the inner term {y} is
first evaluated (e.g. to 20) and then the result {do (20) } is evaluated.

In general, term substitution can result in infinite loops. This looping can be prevented either by re-
stricting the structure of the substitution rule or by terminating the substitution process after a finite number
of steps. The end result of a substitution process of a string is called its derivation. In ConceptBase, the
substitution rules are guaranteeing termination except for the case of external procedures. The problem
with the exception is solved by prohibiting cyclic calls of the same external procedure during the substi-
tution of a call. A cyclic call is a call that has the same function name (e.w. query class) and the same
arguments (expressed as parameter substitutions).

In ConceptBase, an answer format is an instance of the new pre-defined class ‘AnswerFormat’.

Individual AnswerFormat in Class with
attribute
forQuery : QueryClass;
order : Order;
orderBy : String;
head : String;
pattern : String;
tail : String;
fileType: String
end

61

The first attribute assigns an answer format to a query class (a query may have at most one answer
format). The second and third attribute specify the sorting order of the answer, i.e. one can specify by
which field an answer is sorted, and whether the answer objects are sorted ‘ascending’ or ‘descending’
(much like in SQL). The "orderBy’ attribute specifies the property by which the answer shall be sorted.
The most common value is the expression “this”, i.e. sort the answer by the name of the objects in the
answer. You can also specify an attribute expression such as this.name” referring to an answer variable.
If you specify “none” for ’orderBy’, then the answer is not sorted. If the number of objects in an answer
exceeds 5000, then no sorting is applied due to memory limitations.

The ‘head’, ‘pattern’, and ‘tail’ arguments are strings that define the substring substitution when the
answer is formatted. They contain substrings of type expr that are replaced. The head and tail strings are
evaluated once, independent form the answer to the query. Usually, they do not contain expressions but
only text. The response to a query is a set of answer objects A1,A2,.... The pattern string is evaluated
against each answer object. For each answer object, the derivation of the pattern is put into the answer text.
Hence, the complete answer consists of

derivation of head string
+ derivation of pattern string for answer object Al
+ derivation of pattern string for answer object A2

+ derivation of tail string
The £ileType attribute is explained in section 3.4.
In the next sections, we will explain more details about answer formats using the following example:
An answer object A to a query class QC has by default a ‘frame’ structure

A in QC with

catl
labelll: v11;
labell2: v12
[...]

cat2
label2l: v21

[...]

end
In case of a complex view definition VC, the values vij can be answer objects themselves, e.g.

B in VC with
catl
labelll: v11;
labell2: v12
[...]

catz2
label2l: v21 with
cat2l
label211l: v211

[...]
end

[...]

end

3.2 Constructs in answer formats

3.2.1 Simple expressions in patterns

We first concentrate on the pattern attribute, i.e. they are not applicable in the head or tail attribute of an
answer format. The pattern of an answer format is applied to each answer object of a given query call,

62

effectively transforming it according to the pattern. The following expressions are allowed. Capital letters
in the list below indicate that the term is a placeholder for some label occuring in the query definition or
the answer objects.

{this} denotes the object name of an answer object (e.g. ‘A’). The syntax for object names is defined in
section 2.1. In particular, attribution objects have names like mary!earns.

{this. ATTRIBUTE_CAT} denotes the value(s) of the attribute ‘ATTRIBUTE_CAT’ of the current answer
object ‘this’. The attribute must be defined in the query class (retrieved_attribute, computed_attribute)
or view (inherited_attribute). Note that some attributes are multi-valued. For the answer object ‘A,
{this.catl} evaluates to v11,v12 and {this.cat2} evaluates to v21. For the complex
object ‘B’, a path expression like {this.cat2.cat21} is allowed and yields v21. Note that all
such expressions are set-valued.

{this"TATTRIBUTE_LABEL} denotes the value of the attribute ‘ATTRIBUTE_LABEL’ of the current
answer object ‘this’. The attribute_label is at the level of the answer object, i.e. not at the class
level but at the instance level. Therefore, this expression is rarely used because the instance level
attribute labels are usually unknown at query definition time. Example A and B: {this~labell2}
evaluates to v12.

{this|] ATTRIBUTE_CAT} denotes all attribute labels of the answer object ‘this’ that are grouped under
the category ‘ATTRIBUTE_CAT’ (defined in the query class). Example: {this|catl} evaluates
to labelll, labell2.

The derivation of pattern is performed for each answer object that is in the result set of a query. The
answer object ‘A’ induces the following substition rules:

{this} — A

{this.catl} — wv11,v12

{this.cat2} — v21
{this"labelll} — wvl1
{this"labell2} — vVv12
{this"label2l} — v21

{this|catl} — 1labell, label2

{this|cat2} — 1label2l

Extended examples for these simple expressions are given in simple_answerformatsl.sml and
simple_answerformats?2.sml in the directory $CB_HOME/examples/AnswerFormat/.

Note that only objects that match the query constraint are in the answer. Particularly, the categories
computed_attribute and retrieved_attribute require that at least one filler for the respective
attribute is present in an answer object! Use ConceptBase views (‘View’) and inherited_attribute
in case that zero fillers are also allowed for answers.

There are few other simple expressions that may be useful. They just list attributes without having to
refer to specific attributes.

{this.attrCategory} denotes all attribute categories that are present in an answer object. Example: For
answer object ‘A’ {this.attrCategory} evaluatesto catl, cat2.

{this|attribute} lists all attribute labels occuring in an answer object. Example: for answer object ‘A’,
{this|attribute} evaluatesto labelll, labell2, label21.

{this.attribute} lists all attribute values occuring in an answer object. Example: for answer object ‘A’,
{this.attribute} evaluatestovll, v12,v21.

{this.oid} displays the internal object identifier of the answer object {this}.

For the answer object A, these expressions induce the following additional substitution rules:
{this.attrCategory} — <catl,cat2
{this|attribute} — 1labelll,labell2,label2l
{this.attribute} — wv11,v12,v21l

63

3.2.2 Pre-defined variables

The following variables can be used in the head, tail, and pattern of an answer format. They do not refer to
the variable this.

{user} outputs the user name of the current transaction; typically has the structure name @address

{transactiontime} the time when the current transaction was started; has format YYYY-MM-DD hh:mm:ss
and is based on Coordinated Universal Time (UTC), formerly known as Greenwhich Mean Time

{cb_version} the version number of ConceptBase
{cb_date_of release} the version number of ConceptBase
{currentmodule} is expanded to the name of the current module.

{currentpath} is expanded to the complete module path (starting with root module System) that was
active when starting the transaction

{database} is expanded to relative or absolute path of the database that was specified with the —d option
of the CBserver (section 6); if no database was specified, the variable is expanded to <none>

ConceptBase also adds those command line parameters that deviate from their defaults to the set of
pre-defined variables. The most common ones are (see also section 5.11):

{loadDir} : directory from which the CBserver loads Telos source files at start-up; command-line param-
eter —load

{saveDir} : directory into which the CBserver saves Telos sources of modules at shut-down or client
logout; command-line parameter —save

{viewDir} : directory into which the CBserver materializes results of certain queries command-line pa-
rameter —views

Moreover, if the current transaction was a call of a query like MyQuery [vl/paraml, ...] then
{paraml} will be evaluated to v1. This makes all parameter substitutions of a query call available to
answer formatting.

3.2.3 Iterations over expressions

In case of expressions with multiple values, the user may want to generate a complex text that uses one
value after the other as a parameter. This is in particular useful to transform multiple attribute values like
this.catl. The ‘Foreach’ construct has the format:

{Foreach((exprl,expr2,...), (x1,x2,...), expr)}

The expression exprl is evaluated yielding each a list of solutions s11,s12, ... The same is
applied to expr?2 yielding a list s21, s22, ... Then, the variables x1, x2, ... are matched against
the first entries of all lists, i.e. x1=s11,x2=s21, ... This binding is then applied to the expression
expr which should contain occurences of {x1}, {x2}, ... This replacement is continued with the second
entries in all lists yielding bindings x1=s12, x2=s22, ... This is continued until all elements of all
lists are iterated. If some lists are smaller than others, the missing entries are replaced by NULL.

During each iteration, the new bindings induce substitution rules for the binding

Iteration 1:
{x1} —> sll

{x2} — s21

Iteration 2:
{x1} — sl12

{x2} — s22

64

Note that the third argument expr may contain other subexpressions, even a nested ‘Foreach’. An
example for iterations is given in SCB_HOME /examples/AnswerFormat/iterations.sml.

The Foreach construct contains three arguments separated by commas. These two commas are used by
ConceptBase to parse the arguments of the Foreach-construct and similar answer formatting expressions.
They are not printed to the answer stream.

3.2.4 Special characters

If one wants a comma inside an expresssion that shall be visible in the answer, then one has to escape it
“\,”. The same holds for the other special characters like ‘(’,)’ etc. Here is a short list of supported special
characters. Some require a double backslash.

\\n : new line (ASCII character 10)
\\t : tab character

\\b : backspace character

\O : empty string (no character)
\(: left parenthesis

\) . right parenthesis

\, : comma

In principal, any non-alphanumerical character like *(’,’)’,’{’,’}’, ’[’,]’ can be referred to by the back-
slash operator. Note that the vanilla versions of these characters are used to denote expressions in answer
formats. Hence, we need to ’escape’ them by the backslash if they shall appear in the answer.

3.2.5 Function patterns

The substitution mechanism for answer formats recognizes patterns such as

{F (exprl,expr2,...)}

as function calls. An example is the ASKquery construct from from section 3.2.6. The mechanism
is however very general and can be used to realize almost arbitrary substititions. The parentheses and
the commas separating the arguments of F are parsed by ConceptBase and not placed on the output. The
following simple function patterns are pre-defined:

* {QT (expr) } puts the expr into double quotes if not already quoted.
* {UQ (expr) } removes double quotes from expr if present.

e {ALPHANUM (expr) } outputs an alphanumeric transcription of expr. This is useful when an
object names contains special characters but the output format requires an alphanumeric label. If
expr already evaluates to an alphanumeric label, then it is inserted unchanged.

e {From(expr) } inserts the source object of expr. The source object is computed by the predicate
From(x, o) of section 2.2. This pattern is useful for printing attributes. ConceptBase will first
apply pattern substitution to expr and then to the whole term {From (expr) }.

* {To (expr) } inserts the destination object of expr. The destination object is computed by the
predicate To (x, o) of section 2.2.

* {Label (expr) } inserts the label of the object referenced by expr. The label is computed by the
predicate Label (x, 1) of section 2.2.

* {LabelAC (expr) } inserts the combination of the attribute category plus the label of the object
referenced by expr if that object is itself an attribute. Otherwise, only the label of the referenced
object is inserted like for Label (expr). "AC” stands for "attribute category” An example output
of LabelAC looks like name /billsname.

e {0id (expr) } inserts the identifier of the object referenced by expr.

65

Note that the argument expr can be another pattern such as {this}. Specifically, the expression
{0id ({this}) } isequivalentto {this.oid}. However, the Oid pattern is also applicable to patterns
not including {this}.

Examples are available from the CB-Forum, see http://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/2502545.

The above set of patterns can be extended by user-defined functions via LPI plugins. In princi-
ple, any routine that can be called from the ConceptBase server, can also be called in an answer for-
mat. The programming interface is not documented here since this requires extensive knowledge of the
ConceptBase server source code. For the experienced user, we provide an example in the subdirectory
examples/AnswerFormat of the ConceptBase installation directory, see files externalcall.sml
and externalcall.swi.lpi (externalcall.bim.lpi for BIM-Prolog variant). Note that one
has to create a persistent database, load the model externalcall. sml into it, then terminate the Con-
ceptBase server, and then copy the file externalcall.swi.lpiorexternalcall.bim.lpi into
the database directory (see also appendix F). Thereafter, restart ConceptBase and call the query EmpDept.

3.2.6 Calling queries in answer formats

A query call within an answer format is an example of a so-called external procedure. The pattern as well
as head and tail of an answer format may contain the call to a query (possibly the same for which the
answer format was defined for). This allows to generate arbitrarily complex answers.

{ASKquery (Q[substl, subst2,...], formatname) }

The argument Q is the name of a query. The arguments substl, subst2 are parameter substi-
tutions (see section 2.3). The argument formatname specifies the answer format for the query call
Q[substl, subst2,...]. The answer format may also have parameters (see below). If you use
default as answer format name, then the ConceptBase server will pick the default format. This is
LABEL (list of object names) for function calls. For other queries, it is the first answer format that list the
query Q in its forQuery attribute. If no such answer format exists, the format FRAME (Telos frames) is
chosen.

The effect of ASKquery in an answer format is that the above query call is evaluated and the ASKquery
expression is replaced by the complete answer to the query. In terms of the substitution, the following rule

is applied:
{ASKquery (Q[substl, subst2,...],default)} —X
where X is the result of the query call O [substl, subst2, .. .] after derivation of the arguments

substl1, subst2 etc. This sequencing is important since an ASKquery call can contain terms that are subject
to substitution, e.g.
{ASKquery (MyQuery[{this.catl}/paraml, {this.{x1}}/{x2}],default) }.
ConceptBase will always start to evaluate left to right and the innermost terms before evaluating the terms
that contain inner terms. Hence, the derivation sequence is

{ASKquery (MyQuery[{this.catl}/paraml, {this.{x1}}/{x2}],default)}

(

—> {ASKquery (MyQuery[alpha/paraml, {this.{x1}}/{x2}],default) } (r2)

—> {ASKquery (MyQuery[alpha/paraml, {this.name}/{x2}],default)} (r)

— {ASKquery (MyQuery [alpha/paraml, "smith"/{x2}],default) } (r3)

—> {ASKquery (MyQuery[alpha/paraml, "smith"/param2],default) } (r4)

—> The answer is ... (t5)
where we assume the following example substitution rules

rl: {x1} —— name

r2: {this.catl} — alpha

r3: {this.name} — "smith"

r4: {x2} — param2

r5: {ASKquery (MyQuery[...],default)} —> The answer is

This guarantees that the query call is ‘ground’, i.e. does not contains terms which are subject to substi-
tution.

The ASKquery construct allows to introduce recursive calls during the derivation of a query since
there can (and should) be an answer format for Q which may contain expressions ASKquery itself. In

66

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2502545
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2502545

principle, this allows infinite looping. However, the answer format evaluator prevents such loops by halting
the expansion when a recursive call with same parameters has occured. The answer then contains an
character at the position where the loop was detected. Additionally, an error message is written on the
console window of the ConceptBase server (tracemode must be at least low).

A simple example for use of ASKquery is given in recursive—answers. sml. The example uses
a view instead of a query class in order to include also answers into the solution which not have a filler for
the requested attribute, i.e. hasChild is inherited_attribute, not retrieved_attribute.

It is common practice to combine the ASKquery construct with ‘Foreach’ in order to display an
iteration of objects in the same way. The user should define an answer format for the iterated query Q as
well.

Do not mix the use of ASKquery with the view definitions in ConceptBase! The nesting depth of
a view is determined by the view definition. The nesting depth of an answer generated by expansion of
ASKquery is only limited by the complexity of the database. For example, one can set up an ancestor
database and display all descendants of a person and recursivley their descendants in a single answer string
for that person. The nested ASKquery inside an answer format usually results in the unfolding also using
an answer format (possibly the same as used for the original query). This feature allows the user to specify
very complex structured answers that might even contain the complete database. In particular, complex
XML representations can be constructed in this way.

3.2.7 Expressions in head and tail

The features ‘head’ and ‘tail’ are similar to pattern. The difference is that any expression using ‘this’ (the
running variable for answer objects) is disallowed. This only leaves function patterns such as ASKquery
expressions and pre-defined patterns such as {user}. Of course, the head and tail strings can contain
multiple occurences of ASKquery or other function patterns.

3.2.8 Conditional expressions

Conditional expressions allow to expand a substring based on the evaluation of a condition. The syntax is:
{IFTHENELSE (predicate, thenstring,elsestring) }
The ‘predicate’ can be one of

* {GREATER (exprl, expr2)}
¢ {LOWER (exprl,expr?2)}

¢ {EQUAL (exprl,expr?2)}

e {AND (exprl, expr2) }

* {OR (exprl,expr2)}

{ISFIRSTFRAME () }
* {ISLASTFRAME () }

Example: {GREATER ({this.salary},10000) }. Note that the arguments may also contain ex-
pressions. The predicate { ISFIRSTFRAME () } is true, when ConceptBase starts with processing answer
frames. It is false, when the first frame has been processed. The predicate { IS1IASTFRAME () } is true
when ConceptBase starts with processing the last answer frame for a given query. Otherwise, it is false. An
example for conditional expressions is provided in the CB-Forum, see file ”csv.sml” in http://merkur.
informatik.rwth-aachen.de/pub/bscw.cgi/861803. In most cases, the IFTHENELSE construct
can be avoided by a more elegant query class formulation.

67

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/861803
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/861803

3.2.9 Views and path expressions

If the answer format is defined for a complex view, then path expressions like this.cat2.cat21... for the
parts of the complex answer can be defined. An example for use of answer formats for views is given in
views.sml.

The reader should note that complex path expressions can only refer to components that were de-
fined as retrieved, computed, or inherited attributes in the view definition. For example, one cannot refer
to this.dept.budget in the example view EmpDept in views.sml since it is not a retrieved attribute
of the dept component of the view definition EmpDept. The second expression of the answer format
EmpDeptFormat uses the builtin procedure UQ. It removes the quotes ‘"’ from a string. Analogously, a
procedure QT can be used to put quotes around a term.

3.2.10 Encoding answers via answer formats

The result of applying an answer format to an answer is always a text. You can use the ’encoding’ attribute
of answer formats to transform the text according to the desired encoding. This is specified by a simple
attribute like for example

FormatX in AnswerFormat with
attribute encoding: "string"

end

ConceptBase implements the following encoding types:

* string: enclose the answer in double quotes.
* telosname: enclose the answer in double quotes if not a legal Telos label, otherwise leave unchanged.

« alphanumeric: replace all non-alphanumeric characters by the sequence _Cxy._, where xy is the
ASCII code of the character.

If an answerformat has no encoding attribute, then the answer is left unchanged. Encodings can be
useful to guarantee that an answer is syntactically correct, e.g. a syntactically correct XML text. Note
that answer formats support embedded queries and some elements of an answer may be computed by
the resultOf function, which also applies answerformats to their result. If a specified encoding is not
implemented by the ConceptBase server, then no encoding is applied.

3.3 Parameterized answer formats

The general way to use an answer format for a query is to define the attribute forQuery. Another
possibility is to specify the answer format for a query is to use the answer representation field of the ASK
method in the IPC interface.

The following code is an example for specifying a user-defined answer in the ASK method. This
example is written in Java and uses the standard Java API of ConceptBase (see the Programmer’s Manual
for details).

import i5.cb.api.x*;
public class CBAnswerFormat
public static void main(String[] argv) throws Exception {
CBclient cb=new CBclient ("localhost",4001,null,null);

CBanswer ans=cb.ask ("find_specializations[Class/class, TRUE/ded]",
"OBJNAMES", "AFParameter [bla/somevar]", "Now") ;

68

System.out.println (ans.getResult ());
cb.cancelMe () ;

In the example, a connection is made to a ConceptBase server on localhost listening on port 4001. The
ask-method of the CBclient class sends a query to the server. The first argument is the query, the second
argument is the format of the query (in this example, it is just one object name), the third argument is the
answer representation, and the last argument is the rollback time.

The third argument, is the the answer representation. There are four predefined answer representations.
FRAME returns the answers as Telos frames, including retrieved and computed attributes. LABEL returns
only the names of the answer objects as a comma-separated list. Thirdly, the format JSONIC returns
the answer in JSON-like frames. Finally, default lets the CBserver choose between LABEL (for func-
tion calls), the explicit answer format assigned for a query (attribute forQuery), and FRAME (otherwise).
Besides these pre-defined answer representations, one can specify user-defined answer formats. This is also
the preferred way. In our case, it is a parameterized answer format: AFParameter [somevalue/somevar].
This means that the result of the query will be formatted according to the answer format AFParameter
and the variable somevar will be replaced with somevalue. The variable can be used like any other
expression, i.e. it must be enclosed in { }.

The following definition of AFParameter is an example, how the parameter can be used in the
pattern. If the parameter is not specified, the string { somevar} will not be replaced.

Individual AFParameter in AnswerFormat with

head hd : "<result>"
tail tl : "</result>"
pattern
p:"
<object>

<type>{somevar}</type>
<name>{this}</name>
</object>"
end

Note, that you can use any answer format (with or without parameters) as answer representation in the
ASK method.

3.4 File type of answer formats

The optional £ileType attribute of answer formats is used by the server-side materialization of query
results (section 5.11). ConceptBase will use the specified file type when storing the query results in the file
system. The default value is ’txt”. The attribute is single-valued though single-valuedness is not enforced.

3.5 Bulk query calls

It is sometimes useful to call the same query class with multiple arguments in a single call rather than in a
sequence of calls. Each individual call from a ConceptBase client to the server comes with a certain latency
time. Thus, if one would have to call the same query for dozens of arguments in a sequence, most of the
answer time would actually be the latency time.

To address this problem, the CBserver offers a query call pattern for bulk queries:

bulk[qg,x1,x2,x3,...]

The query g stands for a query class with a single parameter. The bulk query is converted by the
CBserver into the following sequence of query calls:

69

qlxl],qalx2],q[x3],...

The answers to the query call are collected into a single answer set and then transformed with the
answer format of the query call. Hence, the answer format is applied to the whole answer and not to the
part answers.

Example:

ask bulk[Q,abc,def] OBJNAMES MyFormatA Now

Sorting of answers is disabled for bulk queries in order to return the answers in the sequence indicated
by the arguments of the bulk query call. Here, the answer to the argument abc shall precede the answer to
argument de f. Arguments that do not reference an existing object are removed from the argument list by
the CBserver before answering the query. Bulk queries are only supported for generic query classes with
a single parameter. The query class may not be a builtin query class. The main purpose of bulk queries is
to speed up the interaction between the ConceptBase clients, such as CBGraph, and the CBserver. You can
however use them with the CBShell.

70

Chapter 4

Active Rules

Active rules specify certain actions that have to be executed if an event occurs and a condition is fulfilled
at this time. Because active rules consists of an Event, a Condition and an Action, they are abbreviated as
ECArule.

Events (ON-part) of ECArules are insertions and deletions of objects (Tell/Untell) and queries (Ask).
The events are detected during the processing of the input frames for a Tell or Untell or Ask operation.
For example, if you tell 2 frames at a time, and the first frame matches an event for an ECArule, then the
ECArule is executed before the second frame is processed. You can also control the sequencing of the
firing of ECA rules by the so-called ECAmode and by priority orderings in the set of defined ECArules.

The condition of the ECArule (IF-part) is a logical expression over the database. It will bind free
variables occurring in the condition (if any) and these bindings together with the bindings of the event are
passed to the action part of the ECArule.

The action (DO-part) of an ECArule is evaluated for each evaluation of the IF-part that has is true in
the database. The elements in a DO-part can be Tell, Untell, Retell, Ask and Call actions. Call actions
can call any Prolog predicate, for example a Prolog predicate defined as a CBserver plug-in (see appendix
F). Retell actions are combining an Untell and a Tell, in particular for assigning a new attribute value, e.g.
Retell ((e salary newsalary)). Optionally, one can specify an ELSE-part which consists of
actions that are executed when the IF-part is not satisfiable for any binding of the free variables. The Ask
action is only useful for ECArules that have an ELSE-part. In this case, the Ask will retrieve information
from the database that cannot be retrieved within the IF-part. The special action ’reject’ will abort the
complete transaction that directly or indirectly triggered the ECArule.

The effect of ECArules is subject to the regular integrity checking of ConceptBase. If an integrity
violation is detected, then the whole transaction including all updates by ECArules is rolled back. The
integrity test is started after all enabled ECArules have fired.

4.1 Definition of ECArules

In ConceptBase, active rules are defined similar to query classes. The user has to create an instance of the
builtin class ECArule. The following frame shows the Telos definition of the class ECArule.

Class ECArule with
attribute
ecarule : ECAassertion;
priority_after: ECArule;
priority_before : ECArule;
mode : ECAmode;
active : Boolean;
depth : Integer;
rejectMsg : String
constraint

71

end

A correct ECArule must specify at least the attribute ecarule, the other attributes are optional. The
language for ECAassertions is a extension of the assertion language, it is specified as text between $
signs in the same way as rules and constraints.

4.1.1 ECAassertion

An ECAassertion has the following structure (the syntax is described in section A.3).

$ x1,x2/Cl yl/C2
ON [TRANSACTIONAL] event [FOR x]
[IF | IFNEW] condition
DO actionl, action2
[ELSE action3]

The TRANSACTIONAL modifier cannot be used in combination with the FOR clause. The ELSE-
part is optional. The first line contains the declaration of all variables used in the ECAassertion. The
specified classes of the variables (here: C1 and C2) are only used for compilation of the rule, during the
evaluation of the rule it is nor tested if the variables are instances of the specified classes. If necessary,
include predicates like In (z, Class) in the IF-part of the ECArule. The variables can occur in the ON-,
IF-, DO-, and ELSE-part of the ECArule. When the IF-part begins with TFNEW, then the whole condition
shall be evaluated against the newest database state. See also 'new’ tag for conditions.

There is also a variant of ECArules without an IF-part. It is equivalent to the longer form on the right
side. The shortcut can also be used in combination with the TRANSACTIONAL modifier or the FOR
clause.

$ x1,x2/Cl yl/Cc2 ... $ x1,x2/Cl yl/C2
ON event ON event IF TRUE
DO actionl, action2 ... DO actionl, action2
$ $

4.1.2 Events

Possible events are the insertion (Tell) or deletion (Untell) of attributes (A), instantiation links (In), or
specialization links (Isa). For example, if the rule should be executed if an object is inserted as instance of
Class, then the event statement is: Tell In (x,Class). Furthermore, an event may be a query, e.g.
if you specify the event Ask find_instances[Class/class] the ECA rule is executed before the
evaluation of the query find_instances with the parameter Class. Potential updates to the database
caused by the ECA rules will be persistent, i.e. in such cases an Ask van well update the database. It is
possible to use variables as a placeholders for parameters in the Ask event clause.

The event detection algorithm takes only extensional events into account. Events that can be deduced
by a rule or a query are not detected. However, the algorithm is aware of the predefined Telos axioms, e.g.
if an object is declared as an instance of a class, the object is also an instance of the super classes of this
class.

4.1.3 Conditions

The condition (IF-part) of an ECArule consists of predicates combined by the logical operators *and’, *or’,
and ’not’. Quantified sub-expressions (forall, exists) are not allowed. You can however use query
classes to encode such sub-expressions'. The arguments of the predicates are either bound by the ON-part
of the ECA rule or they are free variables. When an event occurs that fires an ECArule, then the condition is

! An example for a quantified sub-expressions is not exists y/D (x m y).

72

evaluated against the database yielding bindings for the free variables. Each such binding will be passed to
the action part of the ECArule. Note that ECArules without any free variable are also possible. By default,
predicates are evaluated against the old state of the object base (i.e., before the transaction started). If a
predicate has to be evaluated on the new database state, i.e. the intermediate state representing the updates
processed so far during the transaction, then it has to be quoted by the backward apostrophe, for example
‘(x in Class) instead of (x in Class). The syntax new ((x in Class)) is supported as
well and equivalent to the use of the backward apostrophe. Note that only conditions of ECA rules can see
intermediate database states. If the whole condition shall be evaluated against the new database state, the
use the clause IFNEW instead IF.

4.1.4 Actions

Actions are specified in a comma-separated list. The syntax is similar to that one of events, except that you
can also ask queries (Ask) and call Prolog predicates (Call). The standards actions are as follows:

Tell predicate : The predicate fact is told to the system. The predicate must be either an attribution,
instantiation, or specialization predicate. All arguments of the predicate must be bound at execution
time of the action.

Untell predicate : The predicate fact is untold from the system.

Retell predicate : Old facts are first untold and then the new predicate fact is told. See below for restric-
tions.

Ask predicate : The predicate is evaluated, possibly binding free variables. Note that this action can fail
if the predicate is not true in the database.

Call proc : The Prolog predicate matching procedure is called. This can bind free variables. You can
define your own Prolog code as CBserver plugin. You may also use CALL as keyword (deprecated).

Raise query : The query call query is raised as event. The query is not evaluated. This action can be used
to trigger other ECArules that have a matching Ask event. All parameters should be bound. The
query may not be a builtin query class or function.

noop : This action stands for ’no operation”, i.e. nothing is done. It can be useful for certain constructions
with empty DO parts.

reject : The current transaction is aborted and the database state is rolled back.

Instead of the capitalized action names Te11 you can also use the small caps variant te11. The same
rule is applicable for Untell, Retell, Ask, Raise, and Call. Analogously, the event statements in
the ON-part of an ECArule can also use the small caps variants.

All variables in Tell, Untell and Retell? actions must be bound. The insertion of an attribute A (x, m1, V)
is only done, if there is no attribute of category m1 with value y for object x. Then, a new attribute with
a system-generated label is created. If an attribute A (x, m1, y) should be deleted, then all attributes of
category m1 with value y for object x are deleted’. If the argument of Retell is a fact AL (x, m1,n,y),
then there will be at most one stored asstribute with category m1 and label n that has to be deleted before
the new fact is told. It is well possible that an attribute is updated (untell+tell) several times by action parts
of ECArules during a single ConceptBase transaction. Only the state of the attribute after all ECArule
firings will be visible after a successful commit.

There are a few special procedures, which may be called within the DO- or ELSE-part of an ECArule:

2Retell is currently restricted to attribution predicates A (x,ml,y) and AL(x,ml,n,y), respectively their infix ver-
sions (x ml y) and (x ml/n y). It will replace the old value of attribute m1 of x by y. ConceptBase realizes the
Retell (A(x,ml,y)) by acombination of Untell (A (x,ml, z)) removing the first stored attribution fact A (x, ml, z) and
a subsequent Tell (A (x,ml,y)). If there are several facts such as A (x, ml, z1) and A (x,ml, z2), then only the first one is
removed by the Untell.

3Note, that an object can have more than one attribute value in one attribute category, but the attributes must have different labels.

73

Createlndividual(Prefix,ID): A new individual object with the given prefix and a system generated suffix
is created. The object identifier of the created object is returned in the second argument, which must
be therefore a free variable. The prefix must be an existing object name (e.g. the class name)
otherwise the ECArule compiler will report an error.

CreateNew(ClassName,ID): A new instance of class ClassName is created. The new instance carries
the label ClassName as prefix with a system-generated suffix appended to it. The identifier of the
created object is returned in the argument ID.

newLabel(Prefix,L.): A new label that is not yet used as object name is created. The prefix must be an
existing object name. The 2nd argument should be a variable. The type of the variable can be Label
or a more specific class name.

CreateAttribute(AttrCat,x,y,ID): This predicate creates a new attribute for object x with value y in the
given attribute category (e.g. Employee!salary). The attribute will get a system-generated label. In
contrast to the action Tell (A (x, ml, y)) the attribute is also created, if another attribute with the
same attribute category already exists.

Other predicates to be invoked via Call can be defined in a LPI-file (see Counter example below).

Events and actions may also be specified in a prefix syntax, e.g. Tell (x in Class) instead of
the longer form Tell ((x in Class)). Furthermore, there are two simple builtin actions: noop? is
not doing anything (except that is succeeds), and re ject aborts the current transaction.

If the execution of an ECArule leads to an update to the database, i.e. via Tell or Untell, then the
updated database is subject to integrity checking. If a violation is detected, then the whole transaction is
rolled back including the updates done by ECArules.

4.1.5 Priorities

The attributes priority_after and priority_before ensure, that this ECArule is executed after
or before some other ECArules, if several rules can be fired at the same time. There can be multiple values
for each of these attributes. As you may have noted one of the two attributes is redundant since (rl
priority._after r2) isequivalentto r2 priority before rl). Still, ConceptBase provides
both. Furthermore, ConceptBase does not automatically check the consistency of the priority declarations
(if 71 is before r5 then ro cannot be before r1). ConceptBase also does not provide for the transitivity of
the priority. You can however define this yourself via appropriate deductive rules.

4.1.6 Coupling mode of an ECA rule

The coupling mode of an ECArule determines the point of time when the condition and the action of the
ECArule are evaluated and executed. Possible values are:

Immediate: The condition is evaluated immediately after the event has been detected. If it evaluates to
a non-empty answer, the DO-action is executed immediately, too. If the answer is empty, then the
ELSE-actions are executed (provided that the ECArule has an ELSE part).

ImmediateDeferred: The condition is evaluated immediately after the event has been detected. If it eval-
uates to a non-empty answer, the actions of the DO-part are executed towards the end of the current
transaction.

Deferred: The condition is evaluated towards the end of the current transaction. If it evaluates to a non-
empty answer, the actions of the DO-part of the ECArule are executed immediately after the evalu-
ation of the condition. Otherwise, the ELSE-actions are executed (provided that the ECArule has an
ELSE part)

4Earlier ConceptBase releases used the keyword commi t instead of noop. The semantics was the same. We continue to support
the use of commit in legacy ECArules.

74

The answer to the evaluation of the condition of an ECArule is the set of all combinations of variable
fillers that make the condition true.

The modes Immediate and ImmediateDeferred differ considerably from the mode Deferred:
the condition of the ECArule is evaluated while not all frames of the current transaction are told (resp.
untold). So, a quoted predicate like * (x in Class) will be evaluated against a database state in which
only those frames of the current transaction are visible (resp. invisible) that were told (resp. untold) before
the ECArule was triggered!

The default is Immediate. ConceptBase shall enforce a first-in-first-out sequencing of ECArules with
modes ITmmediateDeferred and Deferred. This sequence will enforce the complete execution of a
triggered ECArule before the next rule triggering is handled. The strict sequencing avoids intertwining of
action executions of multiple ECArule threads. So, if the answer to a condition of an ECArule has multiple
entries, then the actions belonging to the respective answers are executed in a sequence in which no action
of another ECArule is called.

4.1.7 Execution Semantics

The coupling mode of an ECArule influences its execution semantics. There are three basic steps. First, a
Tell/Untell/Ask transaction is translated in a sequence of atomic events. In case of a Tell/Untell, each frame
inside the Tell induces a delimiter in the event list that is used later for the event processing. A typical event
list might look like

’61‘62‘63‘0‘64‘65 0‘

Here, the events e; ...es were generated for the first frame of a Tell/Untell, the events ey, e5 were
generated for the second frame. The diamond separates the events generated for subsequent frames of
the same Tell/Untell operation. The event list is right-open since the execution of actions from ECArules
can lead to further events. Each event has one of the forms 7ell(lit), Untell(lit), or Ask(q), where lit is an
attribution, instantiation, or specialization predicate, and g is a query call.

ConceptBase will scan the event list and process events as soon as it detects a delimiter (denoted by
the diamond above). For example, when ConceptBase “’sees” the delimiter between e3 and ey, it will start
to process ey to es, one after the other. Processed events are removed from the event list. The first step
is to determine the matching ECArules for a given event e;. This yields a working set of rules for each
processed event e;:

ws(e;) = Set of all ECArules whose ON part matches e;

The matching of the ON part of the ECArule and the event typically leads to a binding of variables
in the rule’s IF and DO parts. This binding is stored in the rule’s representation within the work set. The
rules in the working set are sorted to reflect the priority settings of ECArules. If two rules have no priority
defined between them, then the definition order is used to sort them (older rules before newer rules). Each
rule r in the working set will then be processed as follows, one after the other.

The rule processing depends on the coupling mode of the ECArule in the working set. If the mode is
Immediate, then the IF part is evaluated (yielding all possible combinations of variables that make the
IF part true). If the answer set is empty, then ConceptBase will call the ELSE actions of the ECArule.
Otherwise, ConceptBase will call the DO part for each variable combination determined in the previous
step.

If the mode is ImmediateDeferred, then ConceptBase will evaluate the IF part of the current rule
like before. Instead of calling the DO (or ELSE part), it will however put a trigger do(r, actions) on a
trigger queue gq. The parameter r identifies the rule. The parameter actions contains all instantiations of
the DO-part of r by the variable substitutions computed by the evaluation of the IF part of r. If there are no
such substitutions, then actions is set to the ELSE part of r (if existent). Otherwise, no actions would
be appended to the wating queue.

If the mode is Deferred, then ConceptBase will not immediately evaluate the IF part but will just
append a trigger de f (e;, r) to the trigger queue q.

When all events in the event list are converted to triggers, i.e. when all frames in a Tell/Untell transac-
tions are transformed and stored, or when the Ask call has been processed, then ConceptBase will start to
process the trigger queue q. It is processed in a first-in-first-out (FIFO) manner. Each do and def trigger

75

is processed according to its type. If the entry has the form do (r, actions), then ConceptBase will
execute the actions in the second parameter, possibly leading to new events and triggers.

S L P e

1| 2 i1 i j

P

last fired next free

Figure 4.1: State of the trigger queue

Figure 4.1 shows a snapshot of a trigger queue. The triggers ¢; have the form do(r, actions) or
def(e;,r). There are two pointers “last fired” (initially 0) and “next free” (initially 1) to manage the
queue. New triggers are added at the right end (incrementing the next free pointer). The processing of the
queue starts from left to right. The last processed item is pointed to by the "last fired” pointer. The queue
is empty (resp. completely processed) iff “last fired” plus 1 equals to ’next free”.

If the entry has the form def (e, r), then ConceptBase will first determine all combinations of vari-
ables in the IF part of 7. Then it will call the actions of the DO (or ELSE part) for the computed answers.
Note that the event e typically binds some variables in the rule 7.

Actions of an ECArule can update the database. They will then lead to new entries in the event list
that are processed just like described above. The events are generated per action (Tell/Untell/Retell) and
then followed by a delimiter, i.e. ConceptBase will start processing the events after each Tell/Untell/Retell
action.

4.1.8 Switching Queues

You can control the execution order of ECA triggers via coupling modes, precedence (priority), and via a
feature called queue switch. The queue switch utilizes seperate trigger queues for ECA triggers:

Main queue q0: The main queue is the default queue. It is processed under a first-in-first-out regime.
When all triggers of the main queue are processed, ConceptBase will stop with the ECA execution.

Sub-queue q1: The sub-queue ql is initially empty and is filled by triggers from actions following a queue
switch. As soon as gl is empty, the system will resume processing of g0. Hence, the end of the
sub-transaction is detected by running out of triggers in the sub-queue.

User-defined queues: The FOR-clause allow to generate dedicated trigger queues on the fly (see below).

There are two ways to specify a queue switch. The first is by including the keyword TRANSACTIONAL
in the ON-part of an ECArule, e.g.

ON TRANSACTIONAL Tell (x in A)

As soon as an event e is matched against the event clause of a “transactional” ECArule, the trigger
queue is switched to gl. Subsequent triggers will then be put on gl instead of gO. Note that several
ECArules can match a given event. The switch occurs when the first transactional rule is encountered.

The second method creates user-defined trigger queues via the FOR-clause:

ON Tell (x in A) FOR x

In the above example, each event that matches the event clause will also fill the variable x in the FOR-
clause. This will instruct ConceptBase to switch to the (new) trigger queue labelled x. If you use "FOR
ql”, then the method yields the same effect as with the TRANSACTIONAL clause. As soon the the trigger
queue labelled x is empty, ConceptBase will switch back to the newest non-empty trigger queue, or back
to g0.

76

The events on g1 are processed before the remaining events of g0. The queue switch leads essentially
to a prioritizition of events on g1 over g0.

Examples highlighting the differences between the execution modes and the transaction model are pre-
sented in the CB-Forum athttp://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2924361.
You can use the tracemode high (see chapter 6) to debug ECArules. The ConceptBase server will then
write trace messages about the execution of ECArules on the console terminal.

4.1.9 Activate and Deactivate ECA rules

The attribute act ive allows the user to deactivate the rule without untelling it. Possible values are TRUE
and FALSE. The default value is TRUE, i.e. by default are ECArules active.

4.1.10 Depth

The attribute depth specifies the maximum nesting depth of ECArules. ECArules may be fired by events
which are produced by actions of the same or other ECArules. Because this often results in an endless
loop, the execution of the ECArule is aborted if the current nesting depth is higher than the specified value.
The default of this attribute is O (= no limitation).

4.1.11 User-definable Error Messages

If the ECArule rejects the transaction in some cases, it is useful to specify an error message. The value of
the attribute re jectMsgq is returned to the user.

4.1.12 Constraints

The constraints of the class ECArule ensure, that the attributes mode, active and depth have only
single values and that the attribute ecarule has exactly one value.

4.2 Examples

The Telos source files of the following examples can also be found in your ConceptBase installation
directory at $CB_HOME/examples/ECArules. Further examples are in the CB-Forum at http:
//merkur.informatik.rwth—aachen.de/pub/bscw.cgi/1747992.

4.2.1 Materialization of views by active rules

Materialization of views means that deduced information is stored in the object base. We provide here an
example, how to materialize and maintain simple views.

Class Employee with

attribute
salary : Integer
end
View EmployeeWithHighSalary isA Employee with
constraint

c : $ exists i/Integer (this salary i) and (i > 100000) $
end
Class EmployeeWithHighSalary_ Materialized end

The view EmployeeWithHighSalary contains all employees who earn more than 100.000. The
class EmployeeWithHighSalary_Materialized will contain the same employees. This imple-
mented by the following ECArules:

71

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2924361
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1747992
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1747992

ECArule EmployeeWithHighSalary_ Materialized_Ins with
ecarule
er : $ x/Employee
ON Tell (x in Employee)
IF ‘“(x in EmployeeWithHighSalary)
DO Tell (x in EmployeeWithHighSalary_Materialized) $
end
ECArule EmployeeWithHighSalary_Materialized_Del with
ecarule
er : $ x/Employee
ON Untell (x in Employee)
IF (x in EmployeeWithHighSalary)
DO Untell (x in EmployeeWithHighSalary_Materialized) $
end
ECArule EmployeeWithHighSalary_Materialized_Ins_salary with
ecarule
er : $ x/Employee y/Integer
ON Tell (x salary V)
IF ‘(x in EmployeeWithHighSalary)
DO Tell (x in EmployeeWithHighSalary_Materialized) $
end
ECArule EmployeeWithHighSalary_Materialized_Del_salary with
ecarule
er : $ x/Employee y/Integer
ON Untell (x salary vy)
IF (x in EmployeeWithHighSalary)
DO Untell (x in EmployeeWithHighSalary_Materialized) $
end

The first rule checks, if the employee belongs to the view, when the employee was inserted. Note, that
we don’t use the constraint of the view in the ECArules, we just reuse the view definition here. The second
rule does the same for deletion of employees. The first rule checks the IF-part on the new database state
since the employee’s salary is usually told together with the employee. In contrast, the IF-part of the second
rule is checked against the old database state, i.e. where the employee was still defined.

The third rule checks, if the employee is an instance of the view class, when the attribute salary was
inserted. Again, the fourth rule does the same for deletion of the attribute.

If the number of employees is large it is more efficient to ask for the instances of materialized than to
evaluate the view. However, if updates occur quite often, materialization is not good, because materialized
view must be maintained for every update transaction.

4.2.2 Counter

This example shows how to call prolog predicates with an ECArule. It implements a counter for a class
Employee. The counter is stored as an instance of the object EmployeeCounter. Whenever an
employee is inserted or deleted from the object base, the counter is incremented or decremented.

Class Employee end
EmployeeCounter end

ECArule EmployeeCounterRule with
ecarule
er : $ x/Employee i,il/Integer
ON Tell (In(x,Employee))
IF (i in EmployeeCounter)
DO Untell (In (i, EmployeeCounter)),
Call (increment (i, 1i1)),
Tell(In(il,EmployeeCounter))

78

ELSE Tell(In(l,EmployeeCounter))
$

end

ECArule EmployeeCounterRule_del with
ecarule
er : $ x/Employee i,il/Integer
ON Untell (In(x,Employee))
IF (i in EmployeeCounter)
DO Untell (In(i,EmployeeCounter)),
Call (decrement (i,11)),
Tell (In(il,EmployeeCounter))

end

The files $CB_HOME /examples/ECArules/counter. ».1pi> contain the code for the Prolog
predicates increment and decrement. You must copy LPI files to the database directory before you
start the ConceptBase server (see also appendix F). Note, that all free variables of the PROLOG predicate
must be bound in its call. Furthermore, the variables must be bound to object dentifiers, if you want to use
them in a Tell,Untell or Ask action.

The effect of the increment and decrement procedures can also be achieved using the arithmetic
expressions like 4-1. The simple solution with arithmetic expressions is available from http: //merkur.
informatik.rwth-aachen.de/pub/bscw.cgi/d2773786/EmployeeCount.sml.txt. The purpose
of the example above is only to show that user-defined PROLOG predicates can be called in the DO-part
of an ECArule. You can define more interesting PROLOG predicates like sending an email to a user with
content derived from the object base. This requires however some knowledge of PROLOG and of the
internal features of the ConceptBase server.

You should also note that the count of a class ¢ can always (and more correctly) be computed by the
function COUNT (c) . That does even count inherited and deduced instances.

4.2.3 Timestamps

An often asked requirement in metamodeling applications is the recording of creation and modification
dates. ConceptBase stores the creation time of an object in its object base, primary for the use of Rollback
queries. With the predicate Known(x,t) the time of the creation of x can be made visible in rules or queries.
The following frames shows how to use it:

Class Employee with
attribute
salary : Integer;
createdOn : TransactionTime;
lastModified : String
rule
createdOnRule : $ forall t/TransactionTime
Known (this,t) ==> (this createdOn t) $
end

EmpWithoutLastModified in QueryClass isA Employee with
constraint
noLM: $ not exists t/String (this lastModified t) $
end

3Since ConceptBase 6.2, LPI plug-ins can be defined in two different formats. A file with the suffix .bim.Ipi is intended to be used
by a CBserver based on MasterProlog (formerly BIM-Prolog). If the CBserver is based on SWI-Prolog, the server reads files with the
suffix .swi.lpi. Both Prolog Environments used a slightly different syntax which requires different implementations. ConceptBase 7.0
and later only supports SWI-Prolog, hence providing the swi variant is sufficient.

79

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2773786/EmployeeCount.sml.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2773786/EmployeeCount.sml.txt

The limitation of this approach is, that it just records the creation date of an object and not the time
when it was modified. i.e. the value of an attribute was changed.

To overcome this restriction, one can use ECArules to update the attribute lastModified of the
above example, whenever an attribute of the category salary is inserted.

ECArule LastModified_init with
mode m: ImmediateDeferred
ecarule
er : $ t/TransactionTime y/Employee
es/Employee!salary
ON Tell (es in Employee!salary)
IFNEW
From(es,y) and (y in EmpWithoutLastModified) and Known (es,t)
DO Tell (y lastModified t)
$

end

ECArule LastModified_change with
mode m: ImmediateDeferred
ecarule
er : $ tl,t2/TransactionTime y/Employee i/Integer
es/Employee!salary lab/Label
ON Tell (es in Employee!salary)
IFNEW
From(es,y) and (y lastModified tl) and Known (es,t2)
DO Untell (y lastModified t1),
Tell (y lastModified t2)

end

Both ECArules are evaluated against the new database state. The first ECArule is for the case where
the object v has not yet a lastModified attribute. Then, it has to be initialized. The second rule
takes care for the updating case. Note that the transaction time is represented as string of the form
"tt (year,month, day,hour,minute, sec,millisec)".

A deprecated solution is available from http: //merkur.informatik.rwth—aachen.de/pub/bscw.
cgi/d2936786/ECA-lastmodified.sml.txt. It uses the Ask action in the ‘DO’ and ’ELSE’ parts
to query perform different actions depending on whether an object already has a filler for the attribute
lastModified.

4.2.4 Simulation of Petri Nets

ECArules are a powerful tool to express semantics of concepts that are not expressible by deductive rules.
For example, the semantics of petri nets, in particular the firing of an enabled transition, can be expressed
by a single ECArule.

ECArule UpdateConnectedPlaces with
mode m: Deferred
rejectMsg rm: "The last firing of a transition failed.
Check whether the transition was enabled!"
ecarule
er : $ fire/FireTransition t/Transition p/Place m/Integer
ON Tell (fire transition t)
IF (t in Enabled) and
(p in ConnectedPlace([t]) and
(m = M(p)+IM(p,t))
DO Retell (p marks m)
ELSE reject $
end

80

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2936786/ECA-lastmodified.sml.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2936786/ECA-lastmodified.sml.txt

The example shows that the condition can also be a complex logical expression. Note that the event
(ON-part) binds the two variables fire and t. The condition (IF-part) additionally binds the free vari-
ables p and m. Each binding of the free variables is passed to the DO-part leading to some update of the
tokenFill attribute. In case that the IF-part cannot be evaluated to true, the ELSE-part is executed. That
will lead to an abortion of the current transaction rolling back all updates and issuing the error message
listed under re jectMsg. A complete specification of modeling petri nets is in the CB-Forum (http://
merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1419080). Further examples of ECA rules
can be found at http://merkur.informatik.rwth—-aachen.de/pub/bscw.cgi/1747992.

It should be noted that one can also ask queries in the DO-part (and ELSE-part) of an ECArule. Other
than for the IF-part, such queries are only evaluated once.

4.3 Optimization of ECA rules

ECArules can be configured to follows various execution semantics. A particular issue is the evaluation of
the ECA condition (IF-part). Originally, the predicates in the IF-part were not re-ordered by ConceptBase
to gain a better performance. Instead, they were executed exactly in the sequence in which they were
defined. This is still the case when the CBserver parameter —eo is set to of f.

Consider the following example as a variant of UpdateConnectedPlaces discussed in the previ-
ous subsection:

ECArule UpdateConnectedPlacesV1l with
mode m: Deferred
ecarule
er : $ fire/FireTransition t/Transition p/Place m/Integer
ON Tell (fire transition t)
IF (p in Place) and
(m = M(p)+IM(p,t)) and
(t in Enabled) and
(p in ConnectedPlace(t])
DO Retell (p marks m) $
end

UpdateConnectedPlacesVl1 is equivalent to UpdateConnectedP laces but it results in sig-
nificantly longer execution times. The reason is that the condition of UpdateConnectedPlacesV1
starts with a predicate with an unbound variable p. In contrast, the condition of UpdateConnected—
Places starts with a predicate whose variable t is bound by the ON-part of the ECArule.

In cases where the IF-part does not contain a mixture of quoted (new database state) and unquoted (old
database state), one can outsource the condition to a query class. The advantage is that the constraint of the
query class is automatically optimized by ConceptBase.

The extended example is in the CB-Forum at http://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/3242537.

When the CBserver parameter —eo is set to on (=default), then ConceptBase will apply various heuris-
tics to re-order the predicates in the condition. This can result in several orders of magnitude better per-
formance. Currently, the optimization only applies to conditions that are conjunctions of predicates and
whose predicates are all referring to the same database state.

4.4 Limitations of the current implementation

The current implementation of active rules in ConceptBase has several limitations.

» The dependency graph of ECA rules may contain cycles, i.e. rule R1 executes an action, which fires
the rule R2 and R2 has an action which fires R1. The current algorithm for detecting cycles tests the
dependency graph during compile time. The cycle checker prints a warning message on the console
if it has detected a possible cycle, but the compilation of the rule is not aborted, because it is still

81

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1419080
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1419080
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1747992
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3242537
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3242537

possible that the cycle does not occur during the execution of the rule. The user must take care, that
endless loops are avoided.

* The ON-part of an ECArule consists of a single atomic event. ConceptBase does not support complex
events such as “event 1 occurs after event 2”.

* Instantiations and specializations of system classes (Proposition, Attribute, InstanceOf, ...) are not
detected in the event manager. Adding those events would affect the performance.

* Like QueryClasses, ECArules can not be modified after they have been told (e.g. change the event,
condition or actions). The only updateable attribute of ECArule is active. If you set this attribute
to FALSE, you can deactivate the rule for a certain time. Deleting or setting the attribute to TRUE
re-activates the ECArule. If you don’t want to use an ECArule anymore, you can untell it as a whole.

* The ConceptBase ECArule evaluator is not very efficient, roughly 1000 rule triggerings per second.
Response times may be long in case that an ECArule leads to many updates to the object base.

* ECAurules that update the database will temporarily disable the cache-based predicate evaluator. By
this, certain recursive deductive rules called in the IF-part of ECArules may not terminate if you
activate the CBserver parameter unsafe (see section 6). The 'unsafe’ mode disables checks on the
presence of recursion. This leads to faster execution time since the ’safe’ mode would refresh the
predicate cache after each update to the database.

The expressive power of ECArules exceed the one of deductive rules, which are limited to Datalog.
So, one could be tempted to prefer ECArules over deductive rules. The contrary should however be your
choice:

* Deductive rules (that are not using arithmetic or functions) will always terminate, even under recur-
sion. Active rules can well run into infinite loops if not programmed carefully.

* Deductive rule evaluate several orders of magnitude faster than ECArules.
* Deductive rules never change the database (=set of the stored objects).

* ECArules are practically always triggered by updates or lead to a database update. Thus, they will
lead to emptying the cache of derived facts maintained by the Datalog engine. Calling a deductive
rule shall not empty the cache but just lead to extending it.

There are some scenarios, where you do need the power of ECArules. For example, you may want
to trigger the call of an external program, when a certain condition becomes true in the database. Or you
need to change the database state of certain objects when a certain update occurs. For example, triggering
a transition in a petri net shall change the state of the "places’ connected to the triggered transition. Such
semantics is beyond Datalog and requires more expressive power, such as provided by ECArules.

82

Chapter 5

The Module System

Modules divide a ConceptBase database into a hierarchy of namespaces that determine which objects are
visible inside the scope of a given module. Hence, each module forms a database that is part of the whole
database. The scope of visibility also applies to deductive rules, integrity constraints, queries, active rules,
and functions. They are also objects of the database and thus subject to the visibility rules. Any object in
the database belongs to exactly one module, but it can also be visible to other modules, in particular to the
sub-modules. Hence, whenever an object is created, updated or deleted (TELL, UNTELL), then this has
to be done in the context of the module that defines the object. You can only query (ASK) an object, if the
object is visible in your current module context. Analogously, an object x can only reference other objects
that are visible in the module context where x is defined.

Modules that are not visible to each other also do not interfer with each other. Hence, two users can
use the same ConceptBase database and any change (TELL, UNTELL) done in the one module context
does not influence the way how the other module reacts to requests. Modules are organized in a hierarchy.
Changes to a supermodule shall impact all its sub-modules. This applies in particular to the integrity of
the sub-modules. For example, if an object in a sub-module refers to an object in a super-module, then an
update to the object in the super-module could render the sub-module inconsistent. This would lead to a
rejection of the update. Analogously, the result of queries in a sub-module also depends on the objects in
the super-modules. A module in ConceptBase is quite similar to a DATABASE in SQL in terms of isolating
work spaces. On the other hand, the sub-module construct allows for controlled sharing of objects.

One useful application of modules in ConceptBase are modelling situations where different objects are
labeled with identical names. In earlier versions of ConceptBase this was prohibited by the Naming Axiom
which demands that different objects have different names. Now objects with identical names can be stored
in different modules without interferences. Another application is to store alternative conceptual models
of the same domain in different modules. The alternative versions can also share a common core, e.g. by
storing it in a super-module of the version modules.

Another application of modules is to separate a metamodel (defining some constructs) from the models
represented in terms of the metamodel. The metamodel shall be defined in a super-module and the models
would be stored in sub-modules of this super-module. By this organization, the models do not interfer
with each other unless they are explicitely linked via export/import clauses. In multi-perspective modeling,
models need to be rather tightly linked to each other. Then, one should better store all such models in a
single module.

The set of visible objects in a module context is not limited to the set of objects defined for the module.
The ConceptBase module concept permits to reuse existing objects from different modules via import and
export interfaces. Furthermore, modules can be nested. A nested module object (also called sub-module)
is defined in the context of another module, called its super modude. A nested module object is only visible
within the context of its super module. Objects that are visible in the super module are visible (and can be
reused) to all its sub-modules.

ConceptBase users can be assigned to individual home modules, i.e. the module they start working
with when registering with the ConceptBase server. So-called auto home modules force every user in
her own module to further reduce potential unwanted interferences. A flexible access control mechanism

83

allows to define access rights of users simply by query classes defined either globally or locally to a module.

5.1 Definition of modules

The class Module defines an attribute contains and thus is the construct to create new modules. Each
module is created by creating an instance of the class Module.

Module in Class with
attribute
contains: Proposition
end

Thus, a module is a container of objects. Modules create a name space: object names must be unique
within one module, but different modules can contain different objects with identical names.

Tell, Untell and Ask transactions work relative to the current module context. The normal way of
specifying the context in which a transaction takes place is using the Set Module function of CBIva. See
subsection 5.2 to learn how to change the module context of a transaction. The command line interface
CBShell has similar operations to switch the module context.

The basic set of predefined objects of ConceptBase (such as Class, Proposition, QueryClass,
etc.) is stored in the predefined module System, being the root module. The default module of clients
logging into a CBserver is oHome, a direct submodule of System. You can set the module context to your
other modules in order to manipulate them.

The contains attribute of the Module object is a derived attribute and is a link to all objects defined
inside the context of a certain module. This attribute is not stored explicitly but can be used anywhere in
the O-Telos assertion language.

Now we show how to create modules. We introduce a small running example in order to demonstrate
all module-related facilities of ConceptBase.

Let’s assume you’ve started ConceptBase with a fresh database. After telling the following two frames,
the server contains two new modules, which are nested inside the pre-defined oHome module:

Master in Module end
Work in Module end

The super-module oHome includes the two objects Master and Work but not the objects contained
in them (compare also Figure 5.2). We call oHome the super-module of the sub-modules Master and
Work. One you switch to a sub-module, say Master, then all sub-sequent operations apply to this module
context. Telling new objects makes them members of this module context, in other words Ma st er contains
them.

Note: For technical reasons, the ConceptBase server may run into problems when module names start
with digits like 123Mod. Hence, always start a module name with a character from the Latin alphabet, i.e.
A..Zora..z.

5.2 Switching between module contexts

The standard way for changing the module context is to choose the select module menu entry from the
Options menu in the user interface. A dialog with a listbox containing all known modules in the current
context are shown. Double-clicking a module entry in the listbox sets the current module context to the
selected module and lists all modules that are visible in this module (i.e., its submodules and supermodules.

In our example, you should get a window displaying the modules Master, System, Work, and
oHome in alphabetic order (see Figure 5.1). Now double-click the entry Work. As a result the module
context of the CBserver is set to the module Work. As the Work module has got no nested modules, there
are no additional modules displayed in the listbox (i.e., all modules that are visible in the cHome module

84

T o
Current Module is: oHome

Master

System

Work

oHome

Change | Cancel ‘

Figure 5.1: The module context selection window

are also visible in the Work module. Alternatively, you can specify the module context using the load
model operation and placing a

{$set module=MODNAME}

inline command placed before the first Telos frame of a source model file. MODNAME stands for the
name of the module in which you wish to define the content of the source model file. Module paths like
System/oHome /Work are allowed as well. Please note that only one inline-command is allowed within
one source model file. Specifying module contexts using inline commands is a facility for automatically
loading Telos frames of large applications which are spread over different modules — without requiring the
user to employ the select module function from CBlva.

In CBShell, you can use the command cd (alias: setModule) to switch the module context. Let’s
set the module context first to oHome and then TELL the following frames for a very simple ER notation
(using CBShell syntax, see section 7):

cd oHome

tell "EntityType end
RelationshipType with
attribute
role: EntityType
end"

Then set the module context first to Master and then TELL the Employee frame:

cd Master

tell "Employee in EntityType,Class with
attribute
name : String
constraint
nec: $ forall e/Employee exists n/String (e name n) $
end"

The object Employee is now only visible in the module Master. When you set the module context
to Work (or System) and try to load the Employee object, you should get an error message from the
server stating that the object Employee is not visible in that module context. The object Employee
correctly references Ent it yType, since it is visible via the super-module oHome.

5.3 Using nested modules

A nested module object is a module defined in the context of a super module and therefore is contained in
the super module. The objects contained in the nested module are not contained in the super module.

85

After the definition of the Master and Work modules as nested modules to the oHome module, let’s
define a nested module to the Work module. We assume that the current module context is set to the Work
module. Now tell the following module object:

cd Work
tell "Test in Module end"

As a result we have defined the nesting hierarchy depicted in Figure 5.2.

EntityType
[J

Master Work

Figure 5.2: Nested module hierarchy

A nested module can see the content of all modules on the path to the root module Sy stem. Therefore,
when you set the module context to Test, you can reference all objects contained in the modules Test,
Work, oHome, and System. When you set the module context to Work, you can reference all objects
contained in Work, oHome, and System.

Any ConceptBase database has the pre-defined modules System and oHome. The System module
contains the pre-defined objects of ConceptBase, i.e. the O-Telos classes Proposition, Individual,
Attribute, InstanceOf, and IsA, but also a large number of other pre-defined objects that are re-
quired for a functioning system, e.g. Integer, Class, QueryClass, and many more. The oHome
module is initially empty. It is the default home module for users and clients that add/update/delete and
query objects. A user could delete objects in the Sy st em module, which could then disable core functions
of ConceptBase. One can however also prevent such updates by limiting the access to the Sy st em module.

5.4 Exporting and importing objects

In order to use objects which are not visible in a module, ConceptBase offers the export/import facility.
The class Module defines two further attributes, namely to specify objects exported from a module and to
modules imported by a module.

Module with
attribute

86

contains : Proposition;
exports : Proposition;
imports : Module

end

In order to allow other modules to import objects from a module, we need to define an export attribute
from the module object to those objects. We call the set of objects exported by a module the export interface
of a module. In order to include the export interface of another module to a module, we need to define an
import s-attribute from the module object to the module to be imported.

In our running example we would like to define a specialization of the Class Employee within the
Work module. It is desirable to reuse Employee from the Master module instead of redefining it in the
Work module.

In order to import the class Employee to the Work module, we have to define all objects belonging
to the Employee class as exported objects. First change the module context to Master. Now TELL the
following frame within module Master:

Master with

exports
el : Employee;
e2 : Employee!name
end

Now you have defined the objects Employee and Employee !name as exported objects of the
Master module. Any module in your database, which defines an import s-attribute to the Master
module, can now reference these objects. Now change the module context to Work and TELL the follow-
ing frame within module Work (see also Figure 5.2):

Work with
imports
il : Master
end

The objects mentioned above are visible in the context of the Work module. Check this by loading the
Employee object with the Edit/Load Object function of CBIva. The import declaration for Work is done
within the module context Work. The attribute Work ! imports is thus part of the Work module while
the Work object is contained in the oHome module. The object Master is visible in the Work module as
well. The visibility rules restrict the possible import declarations. You can now define the specialization
Manager of Employee in the context of the Work module:

Manager isA Employee end

When untelling exports declarations from a module, ConceptBase checks for integrity violation in
all concerned modules. Try untelling the exports attributes from the Master module and you should
get an error message saying that referential integrity is violated in the Work module. The reason for this
violation is simple: since the class Employee is no longer exported from Master, it is no longer visible
inside the Work module and therefore the referential integrity (a builtin O-Telos axiom) is violated for the
Manager specialization of Employee.

If you define integrity constraints in the exporting module Master, then these constraints are not
checked for objects in the importing module Work. For example, the constraint nec of Employee is
only visible in Master and its sub-modules, not in Work and its sub-modules. Hence, you can still
declare an object like bi11 in module Test that does not need to fulfill the constraint for Employee:

cd Test
tell "bill in Employee end"

87

5.5 Modules and metamodeling

The module hierarchy in Figure 5.2 assigns objects belonging to different abstraction levels (meta classes,
classes, objects, ...) to different modules. This assignment is not prescribed, but it is recommended. For
example, the module oHome stores meta classes such as EntityType. This metaclass is then used in
the sub-module Work to define a class like Manager. Finally, the module Test instantiates the class
Manager by bill. There is a natural reason for such a structure. The persons defining meta classes
are engineering modeling languages. The persons defining classes are conceptual modelers or application
programmers, and the persons defining objects at the lowest abstraction level are application users. These
activities depend on each other but one should separate the workspaces to shield an update to the modeling
language from an update to a conceptual model. Another reason is that a modeling language can be used
for many conceptual models. Each conceptual model needs the definitions of the modeling language but
they typically should be separated from each other. Hence, each conceptual model can be stored in its own
module, being a sub-module of the module defining the modeling language.

The following CBShell script shows how a module hierarchy is created. The command “’cd” is use to
switch to a module, the command “mkdir” creates a new submodule in the current module. The module
oHome contains the submodule ERnotation for the definition of the ER modeling language. The two
submodule UModel and LibModel. The submodule UData of UModel stores a sample database for
the university model.

cd oHome

mkdir ERnotation

cd ERnotation

tellModel ERD-Language.sml.txt
mkdir UModel

mkdir LibModel

cd ERnotation/UModel

tellModel UniversityModel.sml.txt
mkdir UData

cd ERnotation/UModel/UData
tellModel UniversityData.sml.txt

5.6 Setting user home modules

When ConceptBase is used in a multi-user setting, it makes sense to automatically assign clients of Con-
ceptBase users to a dedicated module context, their so-called home module. To use this feature, the database
of the ConceptBase server has to contain instances of the pre-defined class CB_User. This class is defined
as follows:

CB_User with
attribute

homeModule : Module
end

Assume that we have two users mary and john who need to be assigned to different modules when
they log into the CBserver by their favorite user interface. The system adminstrator should then include the
following definitions to the database of the CBserver:

Projectl in Module end
Project2 in Module end

mary in CB_User with

homeModule ml : Projectl
end

88

john in CB_User with
homeModule ml : Project2
end

As a consequence, the start module of the two users will be set accordingly when they log into the
CBserver. The home module feature is especially useful in a teaching environment. The teacher can put
some Telos models into the shared oHome module. Students’ home modules would be assigned to sub-
modules, e.g. based on group membership. Each student group can then work on an assignment by working
on their sub-module without interfering with other student groups.

There is a subclass AutoHomeModule of Module, which supports applications of ConceptBase
where by default any user should work in her own module context. Rather than having to define separate
modules for each user explicitely, you can just define a certain module to be an instance of Aut oHomeModule.

LectureModule in AutoHomeModule with
exception el: mary
end

mary in CB_User with
homeModule ml : LectureModule
end

john in CB_User with
homeModule ml: LectureModule
end

You can also define a rule to assign all or a subset of users to this module:

CB_User in Class with
rule
homeRule : $ forall u/CB_User (u homeModule LectureModule) $
end

Here, user john (a student) will be automatically be assigned to a new module M_john that is created
as sub module of LectureModule. User mary, presumably a teacher, is defined to be an exception
to this rule and she will get the home module LectureModule. By this, one can reduce the chances
of unwanted interferences between users of the module LectureModule. Still, all users can read the
definitions in the module LectureModule and its submodules unless access restrictions are defined (see
section 5.7).

The simplest way to separate the workspaces of any user is to tell

oHome in AutoHomeModule end

In this case, no user needs to be defined explicitely' as instance of CB_User and still will get assigned
her own sub module to work in. The auto-home module becomes active as soon as the module is declared
as instance of AutoHomeModule. If you want to enable oHome as auto-home module from the very
beginning when a database is created, then you can activate it by a parameter of the CBserver, e.g.

cbserver —-g public —-new MYNEWDB

This will instruct the CBserver to tell "oHome in AutoHomeModule end" when it sets up the
new database. See also section 6.6.

The home module definitions need to be made within module oHome because they will be evaluated
upon client registration (server method ENROLL_ME) in this module context. Please note that the module
context is only dependent on the user name, not on the client and not on the network location of the user. It
could well be that a user mary is defined on multiple computers on the network and that different natural
persons are identified by mary. ConceptBase currently cannot detect such cases.

! A side effect of the server method ENROLL_ME is that the user of the registering client will automatically be defined as an instance
of class CB_User. The definition is be made in the context of module oHome.

89

5.7 Limiting access to modules

When multiple users work on the same server, their workspaces not only need to be separated in a controlled
way by means of the module feature. Users are also interested in controlling who has which rights on their
workspace (=module). ConceptBase includes basic support for rights definition and enforcement via a
user-definable query class CB_Permitted. The signature of this query class has to conform the following
format:

CB_Permitted in GenericQueryClass isA CB_User with
parameter
user: CB_User;
res: Resource;
op: CB_Operation

end

A user is allowed to perform the operation op on the resource res iff the constraint of the query is
satisfied. Then, user is returned as answer of the query. If not, the answer is nil (equals empty set).
Some fundamental definitions are pre-defined objects of ConceptBase:

Resource with end

Module isA Resource end

CB_Operation end

CB_ReadOperation isA CB_Operation end
CB_WriteOperation isA CB_Operation end
TELL in CB_WriteOperation end

ASK in CB_ReadOperation end

Hence, at least two operations TELL and ASK are pre-defined symbolizing write and read accesses to
a resource. Modules are the prime examples of resources to be access-protected. Currently, only access to
them is monitored by the CBserver.

When a user wants to switch to a new module, then he must at least have the permission to execute the
operation ASK on it, i.e. read permission. Otherwise, the module switch is rejected. This check is the main
protection scheme offered to module owners. Define the query class CB_Permitted in the module that
needs protection.

Assume that there is a user jonny who wants to protect his module Mjonny. To do so, he would first
define the module and set the module context to Mjonny.

Mjonny in Module end
Then, he would set the module context to Mjonny define his rights management policy, for example:

CB_Group with
attribute
groupMember: CB_User;
permitted_read: Resource;
permitted_write: Resource;
owner_resource: Resource
end

CB_User isA CB_Group end
CB_Group in Class with

rule
rrl: $ forall p/Resource u/CB_User

90

(u owner_resource p) ==> (u permitted_write p) $;
rr2: $ forall p/Resource u/CB_User
(u permitted_write p) ==> (u permitted_read p) $;
rr3: $ forall u/CB_User (u groupMember u) $;
rrd4d: $ forall u/CB_User p/Resource
(exists g/CB_Group (g groupMember u) and
(g owner_resource p)) ==> (u owner_resource p) $;
rr5: $ forall u/CB_User p/Resource
(exists g/CB_Group (g groupMember u) and
(g permitted_write p)) ==> (u permitted_write p) $;
rr6: $ forall u/CB_User p/Resource
(exists g/CB_Group (g groupMember u) and
(g permitted_read p)) ==> (u permitted_read p) $
end

CB_Permitted in GenericQueryClass isA CB_User with
parameter
user: CB_User;
res: Resource;
op: CB_Operation
constraint
cperm: $ (
(not exists u/CB_User
(u owner_resource “res) and
not (u == Tuser))
or
((Top in CB_ReadOperation) and
("user permitted_read “res))
or
((Top in CB_WriteOperation) and
("user permitted_write “res))
)
and UNIFIES (“user, "this) $
end

In the above example, access rights are granted to groups of ConceptBase users. The owner of a
resource will always have full access viarules rrl and rr2.
Then, the user would claim ownership to the module via

jonny in CB_User with
owner_resource rl: Mjonny
end

Then, only jonny can switch to the module Mjonny. If a second user like mary was to be granted
read permission, jonny would define within module Mjonny:

mary in CB_User with
permitted_read rl: Mjonny
end

In the above example, rights can also be granted to groups of users and then inherited to its members
via rules rr4 to rr6. It should be noted that the definitions of owner_resource, permitted_read
and permitted-write are just for illustrating what is possible. ConceptBase only requires the query

91

class CB_Permitted in the module where the access rights need to be enforced. If such a query class (or
a local version as explained below) is not defined, then any access is permitted for any user.

When a user attempts to switch to new module context, ConceptBase checks whether the user has at
least read permission, i.e. permission for executing the operation ASK, on the module. If permission is not
granted, the user cannot switch the module context and an error message is presented.

The definition of the query CB_Permitted is visible in the module where it is defined and in all sub-
modules of this module. One can also define a local version of the query by appending the module name
to its name, e.g. CB_PermittedMjonny. This version is only tested for access to the module Mjonny.
The local overrides the general version CB_Permitted and its function is not inherited to sub-modules.
The subsequent definition prevents updates to the Test module, if it is visible in the Test module and
access control is enabled by the CBserver:

GenericQueryClass CB_PermittedTest isA CB_User with
parameter
user: CB_User;
res: Resource;
op: CB_Operation
constraint
cperm: $ (“op in CB_ReadOperation) and UNIFIES (“user, "this) $
end

There are plenty of ways to combine general and local versions of CB_Permitted yielding different
access policies. When using access control, at least the module System should be protected. Otherwise,
users could change essential definitions affecting all other users. Examples for access control policies are
in the HOW-TO section of the ConceptBase Forum (http://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/2281940).

It is very well possible to make access to a ConceptBase database completely impossible by errors in
the definition of CB_Permitted. For example, one could deny access to any operation by the following
simple rule:

CB_Permitted in GenericQueryClass isA CB_User with
parameter
user: CB_User;
res: Resource;
op: CB_Operation
constraint
cperm: $ FALSE $
end

In such cases, one has to start the CBserver with disabled access control and repair the definition of the
query CB_Permitted. Access control is by default set to level 1, which just constrains the scope of an
UNTELL to the local module. You need to set the CBserver option —s to 2 to fully enable access control
(see option -s in section 6).

5.7.1 Access to System module

The access definition via the query CB_Permitted or its localized variant is available in the module
oHome and its submodules. It is not available for checking permission to access the System module.
The reason is that user details are stored in oHome and signature of CB_Permitted requires that the user
details are known. The protection of the Sy stem module is instead configured via the security level of the
CBserver (option -s):

* Level=0: No access control. Read and write operations are allowed to the Sy stem module.

* Level=1: Read and writes are allowed but only if the current module is set to System.

92

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2281940
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2281940

* Level=2: Read is permitted but write operations to System are disallowed.

Caution: The access control feature of ConceptBase avoids some unwanted interferences in a setting
where multiple users work on the same server. The system in not save against malicious attacks! Neither
does it prevent all unwanted interferences.

5.8 Listing the module content

The contains attribute allows to check which objects belong to a module. It can be used by a simple
query that lists the module content of all modules that are currently visible:

ShowModule in QueryClass isA Module with
computed_attribute

cont : Proposition
constraint
ccont : $ ("this contains “cont) $

end

A more sophisticated method is to use the builtin query 1istModule. A call of 1istModule
without parameters will list the current module as Telos frames. You can also provide the module to be
listed as a parameter, e.g.

listModule [System]

will list the content of the module Sy stem. ConceptBase will check read permission before a module
content is listed. You can also use a module path as parameter, e.g.

listModule[System—oHome-Work]

A module path is formed much like a directory path in a file system. The root module is System and
modules names are separated by the character ” -’ . You can also use ’/’ as module separator:

listModule [System/oHome/Work]

The implementation of the 1istModule query preserves the order in which objects have been created.
Note that the System module is defining the essential objects that ConceptBase requires to run correctly.
You can list the Sy stem module but you should not change it.

If the content of a module was created by separate transactions, then 1istModule shall indicate
them by a separator line ”{---}". This separator is disabled when you specify -mg whole as CBserver
parameter (see section 6.1). The separator is technically a comment. However, CBGraph and CBlva shall
use such separator line to split a sequence of frames into separate TELL transactions. This is the default
behaviour (or when you start the CBserver with parameter —-mg split). The third option is to start the
CBserver with parameter -mg minsplit. This minimizes the number of separator line. They are only
included if the previous transaction did create or modify a deductive rule. The third option meant to spead
up module loading from sources.

If a module path does not exist or the current user has no read permission on modules in the path, then
the answer ”{* no *}” is returned.

5.8.1 Restrictions of 1istModule

The query 1istModule extracts all objects of a module into a single Telos source. Since a module is
typically created by a sequence of TELL/UNTELL transactions, this Telos source can in rare cases fail to
be told by a single transaction. An example is the specification of the ERD model in http://merkur.
informatik.rwth-aachen.de/pub/bscw.cgi/188651. The university model (and then university
data) depend on rules defined in the model ERD-Semantics, specifically the semantics of the ISA type

93

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651

(instances of subclasses are also instances of superclasses). If you tell the university model and the ERD
semantics in the same transaction, then the rules for the ISA type are not yet usable for checking the
consistency of the university model. A way out is to store the university model as sub-module of the
module that contains the ERD semantics, and university data as sub-module of the university module.

A way out of this dilemma is to use the module feature of ConceptBase in a thoughtful way. In this
case, define a module like ERnotation to which the ERD notation is told. Within this module, define
a submodule like UModel, to which the example ER model is told. Finally, define a submodule UData
to hold the sample data. By nesting the submodules in this way, the sample data objects can ”see” the
definitions of the example ER model. And the example ER model can ”see” the objects of the ER notation.

5.9 Purging a module

The builtin query purgeModule attempts to delete all propositions of the current module or the module
that is specified as a parameter. The operation fails if the module contains a non-empty submodule. Further,
the operation may non be applied to the Sy stem module.

The operation requires that the user has appropriate permissions on the module to be purged.

The query purgeModule is declared as a hidden object. Hence, it shall not show up in the "Display
queries’ dialogue of CBIva. The current implementation is experimental. An alternative is to list the
contents of the current module and then applying the UNTELL operation to the whole content.

5.10 Saving and loading module sources

The ConceptBase server (see section 6) has two command line options —save and —1oad to synchronize
with the content of database modules as Telos sources files in the file system of the CBserver. The purpose
of this feature is to allow an easy way to save/reload the complete content of a database using a readable
source format. These sources can be modified with a regular text editor.

The source files generated by the save function include a set module directive that instructs the
CBserver to load the file to the original module path when the load function is invoked (or when the file is
loaded manually via the 1oad model function of CBlva (see section 8). There are two ways to represent
saved/loaded module sources in the file system:

flat directory structure: If the module separator is set to ’-’ (see option -ms in section 6.1), the files names
consist of a module path starting with the root module name Sy stem followed by the file type sm1.
For example, the file System—oHome—-AB. sml will hold the contents of the module AB that is a
submodule to oHome that is a submodule of System.

deep directory structure: If the module separator is set to ’/*, then the module sources are placed in sub-
directories named like the modules. For example, the file System/oHome /AB/AB. sml will hold
the contents of the module AB that is a submodule to oHome that is a submodule of System.

The save function is activated when the CBserver option —save savedir is specified. The source files
are saved in the directory specified by the savedir parameter. This parameter must be the path to an existing
directory. If activated, the save function is invoked upon the following events:

1. The CBserver is shutdown. In this case, the complete module tree starting from root module Sy stem
is saved.

2. A client disconnects from the CBserver. Here, the module tree starting at the home module of the
user associated to the client tool is saved.

3. A user changes the module context. In this case, the old module is saved.

In all cases, the save function is executed with the rights of the user who started the CBserver. The save
function requires at least read permission for the module to be saved. The above rules are also applicable
to the server-side materialization of query results, see section 5.11.

94

The load function gets activated when the option —1oad loaddir is specified. The directory loaddir
should contain files with file/directory names being formed as explained for the save function. It loads the
files in alphabetic order to control the sequence in which the files are loaded. If you manually add Telos
source files to a directory that is about to be loaded, then make sure that its file name is alphabetically
sorted after the module file name, e.g. AB_Olextension.sml is loaded after AB. sml. The import is
executed once at CBserver startup with the rights of the user who started the CBserver. If a file contains
an error, the loading of this module source fails. Error messages shall be displayed in the trace log of the
CBserver. Note that the CBserver can be started with a non-empty database. The import of source files will
be added to the already existing content of the database.

Examples:

cbserver —-d DBl -save /home/meee/DB1SRC

This command starts up a CBserver that will eventually save the module sources in the specified direc-
tory. Note that the saving takes place either at CBserver shutdown or when a client tool disconnects (partial
save).

cbserver -u nonpersistent —-save /home/meee/SRC

This variant will start a CBserver with a non-persistent database but the contents will nevertheless
stored as Telos sources file in /home /meee/SRC.

cbserver -u nonpersistent -load SRC1l -save SRC2

This command starts a the CBserver (i.e. only system objects are defined) and then loads module
sources from the directory SRC1. Then, client tools may modify the contents of the database. Finally, the
module contents are saved in directory SRC2.

cbserver —-d DBl -load /home/meee/DB1SRC —-save /home/meee/DB1SRC

The load and save directories may also be the same. Note that the save function will eventually over-
write the files that have been loaded at CBserver startup.

cbserver —-u nonpersistent —-load DB1SRC

This command will start a non-persistent CBserver and loads the module sources of directory DB1SRC.

Module sources do not contain the historic states of objects that are maintained with rollback times in
the CBserver database. Hence, a persistent database is containing more information than the saved module
tree and is also faster to start up compared to loading module sources. Still, the load/save function offers
a simple way to keep a textual representation synchronized with the evolving database state, or to back-
up/re-load a database state. The CBserver parameter —db combines the function of —-d, ~1oad, —-save,
and —views. Hence, all files will be accessed/updated in the database directory.

5.11 Server-side materialization of query results

Similar to the saving of module sources, the CBserver parameter —views enables the materialization of
certain query results in the file system of the CBserver. To do so, one has to specify the queries to be
materialized. Only queries with a single parameter or with no parameter can be materialized. The queries
need to be listed with the module that contains the objects that match the query. Example:

MyModule with

saveView
vl: Q1;
v2: Q2

end

95

You can also use deductive rules deriving the values for the saveView attribute.

The queries Q1 and Q2 need to be visible in the module MyModule. The queries need to have an
answer format (section 3) defined for them (attribute forQuery). Assume that the query Q1 has the
single parameter param:C1l. ConceptBase will then call the query Q1 [x/param] for each instance x
of class C1.

The result is stored in a file with name x in the directory specified with the —views parameter. If
the view is extracted from a module different to oHome, then the filename includes the module name as a
prefix. The file type of the file is taken from the optional £ileType attribute of the answer format of Q1.
The default file type is ”.txt”. The result of queries with no parameter is stored in files carrying the name
of the query. If the module separator is set to ’/’, then the files are stored in sub-directories that reflect the
module path, from which the view was extracted, see also section 5.10.

The materialization of query results is executed at the same events when the saving of module sources
takes place (section 5.10). To enable the materialization, you need to specify the target directory with the
-views option:

cbserver -d MYDB -views /home/meee/MyViews

You can also use the CBShell utility (section 7) to extract the query results and materialize them on
the client side. This method is more flexible but you need to program the CBShell scripts for to extract all
required views. For example, the CBShell script

connect alpha 4001

ask Ql[x/param] OBJNAMES default Now
showAnswer

exit

connects to the CBserver running on a host named alpha with port number 4001 and will extract
just the answer to Q1 [x/param]. If there are more answers to be extracted, one has to employ separate
scripts for each of them and execute them one after the other to save the results in separate files. The
server-side method using the —views option will determine all possible fillers x for the parameter param
and automatically save the results of Q1 [x/param] in a separate file with filename x.

You can use the —db option for activating the saving/loading of module sources and the materialization
of query results within the database directory:

cbserver -db MYDB

This creates a single directory with both the binary database files, the module sources, and the material-
ized query results. Further examples are available from the CB-Forum at http://merkur.informatik.
rwth—-aachen.de/pub/bscw.cgi/3097259.

5.11.1 Post-export command

ConceptBase can only export textual query results. Some output formats such as program source code can
be further processed by calling appropriate tools. This can be initiated manually, or one can configure the
directory specified in the —views option with a command file postExport.sh. This command file
shall then be executed by the CBserver whenever a saving operation on the views directory has taken place.

You have to regard that the command is executed in the context of the CBserver. Hence, it is executed
in the directory in which the CBserver was started. You should therefore change to the views directory
inside the post-export command file like shown in this example of postExport . sh:

#!/bin/sh
cd ‘dirname $0°
cp *.xml /home/meee/public

96

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3097259
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3097259

The second line changes to the views directory. The third line does the specific processing of the
materialized query results. Here, we just copy the file. More interesting are calls to transformation routines.

You should remove the write permission for the post-export command to prevent that it can be over-
written? by the materialization function. Under Unix/Linux, this can be achieved via the command

chmod u-w postExport.sh

The above command only has to be executed once within the views directory. If you use the module
separator ’/’ (i.e. the deep structure explained in section 5.10), then the view files are stored in the directory
of the module they belong to. This also may effect the way how you program the postExport script file. In
Unix/Linux, you can use the ’find’ command to fetch all files that are subject for post-processing:

#!/bin/sh
cd ‘dirname $0°
xmlfiles=‘find . -name "x.xml"‘
for file in $xmlfiles; do

cp $file /home/meee/public
done

This script also works fine in the case of a flat view directory structure.

2Qverwriting the post-export command file may be a desired feature. You can then generate it from within the CBserver like any
other file in the views directory. This is however a major security hole and we strongly discourage to use this feature.

97

Chapter 6

The ConceptBase.cc Server

The ConceptBase.cc server (CBserver) offers its services via a TCP/IP port to client programs. The main
services are to TELL or UNTELL O-Telos objects and to ASK queries to the database. The operations are
called by clients (for example, the user interfaces described in section 8). An arbitrary number of clients
can connect to a CBserver.

The CBserver is started' by a command line

cbserver <params>

assuming that the installation directory of ConceptBase.cc is added to the search path of executable
programs. If it is not on the search path, then simply change the current directory to the installation
directory of ConceptBase.cc or use its absolute path of the cbserver script.

6.1 CBserver parameters

The following parameters are available for the *cbserver’ command:

-d dbdir Set database dbdir to be loaded. If the database does not exist, it is created and initialized with
the O-Telos pre-defined objects. The database is maintained as a directory. Setting the database is
mandatory except when the update mode is set to nonpersistent (see below). You cannot start
two concurrent servers which use the same database directory. To avoid this case, a file OB. lock
is created in the database directory when the first server is started. If the server crashes during its
execution, the file OB . 1ock will still exist in the directory. Before you restart the server, you might
have to remove this file manually.

-db dbdir Like —d but also sets the load/save/views directories to dbdir, i.e. the CBserver will automat-
ically maintain the module sources in dbdir and also materialize the selected queries in the same
directory. See section 5.11 for details.

-new dbdir Like —d but deletes any existing database at location dbdir before it creates and initializes
it.

-u updatemode controls update persistency. The allowed values are persistent and nonpersi-
stent. If no database is provided by parameter ”-d”, then the default update mode is set to non-
persistent. Otherwise, the default is persistent. In nonpersistent mode, all updates are lost after the
ConceptBase server is stopped. In persistent mode, updates are stored in the files of the database and
will be available for future sessions.

"You can also start the CBserver from within the ConceptBase.cc user interface CBIva. Details are in the installation guide
distributed with ConceptBase.cc and in section 8.3.

98

-U untellmode controls the way how UNTELL is executed by the server. The allowed values are verba—
tim and cleanup (default). In verbatim mode, the UNTELL operation will only untell the facts
directly described by the O-Telos frame being submitted as argument. In cleanup mode, UNTELL
will also try to remove the instantiation to the O-Telos system classes Individual, Attribute,
InstanceOf and IsA. By doing so, UNTELL behaves inverse to the TELL operation. More
details are explained in subsection 6.9.

-port portnr sets the TCP/IP socket portnumber for client connections to the CBserver. The value portnr
must be between 2000 and 65535. If there is already a process using the portnumber, the CBserver
will abort. The default value for the portnumber is 4001.

-p portnr is the same as "-port portnr”’. Deprecated since it conflicts with a predefined command line
parameter of SWI-Prolog.

-version display version info and exit.
-help display list of CBserver options and exit.
-license display license and exit.

-t tracemode sets the tracemode of the CBserver. It is one of silent, no, minimal, low, high,
veryhigh. The tracemode determines the amount of text displayed by the server during its ex-
ecution. The tracemode does not influence the function but is used for debugging. The default
tracemode is set to no (only display CBserver interface). The tracemode low will configure the
CBserver to trace the CBserver interface calls plus answers, and the tracemode no virtually disables
tracing. The tracemode silent is even surpressing the message ’CBserver ready’ when starting up
the CBserver. The tracemode high and veryhigh are useful for debugging the system. In these
two modes, an unlikely fatal signal like division by zero will not directly abort the CBserver process
but start a debug dialog. Enter h” for options to diagnose the problem in collaboration with the
ConceptBase developers.

-c cachemode turns on the query cache to allow recursive query evaluation. The value cachemode is
one of of f, transient, and keep (default). In transient mode the cache is emptied before each
transaction. In keep mode, the cache is emptied when the maximum number of entries in the cache
is exceeded or an update has invalidated the cache. Further details are explained in section 6.7.

-cs size specifies maximum number of derived facts retained in a cache between two transactions. This
option may be used in conjunction with the cachemode keep. The default value is 60000 facts.

-0 optmode controls the optimizer for rules, constraints and queries. The value optmode is one of 0 (no
optimization), 1 (structural optimization by exploiting builtin O-Telos axioms), 2 (optimizing join
order), 3 (combines 1 and 2), or 4 (combines 1 and 2 with trigger pruning). Default and recom-
mended is 4.

-r secs automatically restarts the CBserver after a crash, or when it was started with option -sm slave and
the last client exits. The value secs specifies how many seconds to wait before restart. You may
want to use this option in a multi-user setting, where the CBserver runs on a different machine that
the user clients. The -r option must be handled with great care since it can easily lead to an infinite
loop of restarts, e.g. when a database file is corrupted. In such cases you might have to reboot the
whole computer!

-s securitylevel configures the access control mechanism of ConceptBase. The value 0 means that no
access control is employed. Any user can ask, tell, untell, retell any object in any module. You can
also untell objects defined in a super-module. Level 1 (default) provides a very basic protection:
one can only untell objects if they are defined in the current module. This prevents in particular
undesired deletions of objects defined in the System module. Level 2 fully enables access control.
First, untelling of objects must happen in the module where the object has been defined. Second, any
transaction submitted by a user to the CBserver is checked against the permission rules as defined

99

in section 5.7. Level 3 enables at most read access to a module. In addition, the permission rules
must allow read access. This level makes sense if you want to freeze a database state. Enable
access control when you use ConceptBase in a multi-user setting and you want to avoid errorneous
interferences between different users.

-e maxerrors sets the maximum number of errors to be displayed to a ConceptBase.cc client within one
transaction. The value -1 means that no restriction is applied. Set to 0 to surpress any errors message
and to a positive number to limit the displayed errors messages to that number. A low positive
number can speed up the communication between ConceptBase client and server if a lot of error
messages are generated. The default is 20.

-cc ccmode (predicate typing) controls to which extent the CBserver applies strict typing of attribution
predicates (x m y) occurring in the membership constraints of query classes. If the mode is set to
strict (=default), attribution predicates without a unique concerned class® shall not be accepted.
If the mode is set to extended, the search for concerned classes shall include subclasses (see
section 2.2.7). If the mode is set to of £, ConceptBase.cc also accepts queries with unstrictly-typed
attribution predicates. The strict mode is preferable since it avoids certain semantic errors. Deduction
rules and integrity constraints may never violate the predicate typing condition, even if the mode is
setto of £. An example for a query using non-strict predicate typing is available from the CB-Forum,
see http://merkur.informatik.rwth—aachen.de/pub/bscw.cgi/1270138.

-mu mumode (multi-user mode) specifies whether the CBerver should run in multi-user mode (value
enabled) or in single-user model (value disabled). By default, the multi-user mode is en-
abled, allowing multiple users with different user names to connect to the CBserver. In single-user
mode, only clients started by the same user (identified by her name) can connect to the CBserver. The
single-user mode is recommended if you want to block other users from logging into your CBserver.
Since the test is done only on the user name, a malicious attacker could use your user name for an
account on another computer and then successfully log into your CBserver. Use Internet firewalls to
protect against such attacks. If you specify an administrator user (option -a), then this use can always
connect to the CBserver.

-v vimode controls whether view maintenance rules are generated (vmode=on) or not (vmode=o0f f). View
maintenance rules are used to keep a ConceptBase.cc view up-to-date upon changes to the object
base. Default value for vmode is of £.

-mc maxcost this parameter defines the maximum cost level for a predicate in a binding path that is used
to compile a meta formula (see section 2.2.9). The evaulation of a binding path yields fillers for the
meta variables. Set maxcost to 10 if such a predicate should have about one free variable. Set it to
100 if if may have two free variables. Default is 100. The higher the number, the more candidate
paths are generated, increasing the likelihood that a binding path is found. On the downside, a high
value increases the compile time of meta formulas.

-pl pathlen sets a maximum length for binding path candidates. In principle, the number of candidates
can explode with the path length. Like the previous parameter, the path length influences the ability
of ConceptBase.cc to compile meta formulas. The default value is 5. If you set the value to 0, then
no meta formula can be compiled.

-im imax sets the maximum number of iterations used to re-order attribution predicates with one free
variable. Evaluating such predicates first can lead to faster elimination of free variables and thus lead
to better query and ECA performance. The default value is 3.

-eca emode controls the ECA sub-system. Possible values are unsafe (ECArules are evaluated without
safeguarding recursive deductive rules), o £ £ (ECArules are not evaluated, even if some are defined),
and safe (ECA rules are evaluated with safeguarding recursive rules; this is the default). Use the

2The concerned class is a consequence of the predicate typing condition of section 2.2. You can roughly compare it to typing of
variables in programming languages.

100

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1270138

mode unsafe if none of your ECArules calls recursive predicates on the newest database state.
This may lead to a limited speed-up.

-eo eomode controls the optimization of conditions of ECArules. Possible values are on (default) and
of f. The optimization is done by a re-ordering of predicates in the condition. Hence, you only want
to turn of optimization to gain full control over the order of evalution in ECA conditions.

-load dir specifies the directory from which the CBserver will load module sources at start-up time. The
module sources must have file names starting with System and file type sm1. Typically, they are
generated via the —save flag in the preceding session of the CBserver. The default is none, i.e. no
module sources are loaded at CBserver start-up.

-save dir specifies the directory into which to save certain textual excerpts of the database, in particular
module listings. The parameter has the default value none, which disables the saving function.
Currently, the CBserver only saves module listings. Each module is stored in one file with file type
sml. The directory dir must exist. The module listing is performed when the CBserver is shut
down (complete module tree is listed), or when a client tool logs out (home directory tree of the
client tool is listed). The module listings uses the set module directive to enable the import of
the file to the right module location. See also section 5.10 for details.

-views dir specifies the directory into which the results of certain queries are materialized. See section
5.11 for details.

-ms sep specifies the module separator to be used for saving module listings and views. If the separator
is set to -’ (default), then all module sources and views are stored at the top level directory. If the
module separator is set to ’/’, then the files are stored in a deep sub-directory structure that mirrors
the module structure.

-mg mgmode specifies whether module listings are generated with separators ”{——-}" for each trans-
action occurring in the module (option split) or without such separators (option whole). The
default is split. The split option better supports cases where metaformulas are defined and used
in the same module. The third option is minsplit. It minimizes the number of separators to those
that are essentially needed. Subsequent loading of such module sources is then faster.

-rl rlmode controls the way how the CBserver creates labels for generated formulas. The default value is
on, instructing the CBserver to find a readable label for the generated formula. It typically consists
of the labels of the participating metaclass attributes occuring in the metaformula. If set to of £, the
CBserver will just take a system-generated label that contains a unique identifier. This is slightly
less readable (if you want to inspect the generated formulas) but safe against certain possibilities of
assigning the same label twice.

-ia tmax sets the maximum number of hours during which a client should interact with the CBserver to be
regarded as active. Negative values are interpreted as ’infinity’. This parameter is only used when a
CBserver uses the -sm slave and -r options, or the -g public option. The default value for tmax is 2.0
hours.

-sm servermode sets the server mode. Possible values are master (default) and slave. In slave mode,
the last client that leaves the CBserver will also shutdown the CBserver, provided that the CBserver
and the client were started by the same user. This option is useful when a CBserver is only needed
while still clients are registered. A master CBserver must always be stopped explicitly.

-st stratmode enables or disables the rule stratification test. Possible values are on (default) and of £. If
enables, then the query evaluator shall dynamically test whether stratification violations occur. They
shall then be reported as an error. Disable the test, if you are sure that the answers are correct even
though a stratification violation occurs.

101

-g cmd provides a special command to the CBserver. There are currently three such commands. The
command nolpi instructs the CBserver to ignore any plug-in file (see section F). The command
public configures the CBserver as a public CBserver (see 6.6). The command exit instructs
the CBserver to exit immediately after start-up. This can be useful to combination with the option
-views, —db and —save to materialize some excerpts from a stored database.

-a user designates user as 'administrator’ of this CBserver. For the time being this just gives the right to
shutdown the CBserver. By default, the user who started the CBserver is its administrator. This user
shall also keep the right to shutdown the server, even when another user is the designated adminis-
trator. If you specify the user name with host, e.g. billy@myhost, then only the user billy on
host myhost is recognized as additional administrator.

If a CBserver is started without any parameter, then the update mode shall be set to nonpersistent,
the trace mode to no, multi-user mode is disabled, and the server mode to slave. The other parameters
are set to their defaults. Such a CBserver is useful as companion of tools that need it only while they are
running.

cbserver

A ConceptBase client running on the same computer will then connect to this CBserver, when it uses
’localhost’ as host and 4001 as port number. Since the CBserver runs un slave mode, it will shut down
when its client disconnects.

6.1.1 Updating the CBserver software

You can always update your local installation of ConceptBase downloading and executing the interactive
CBinstaller.jar Java installer from https://conceptbase.sourceforge.net. Be sure to terminate the
ConceptBase server and the ConceptBase user interface programs before updating the software.

An alternative to the interactive update via CBinstaller.jar is the shell script

updateCB-bin

located in the ConceptBase installation directory. We recommend to update the ConceptBase software
at least once per year.

6.2 ConceptBase under Windows 10

The CBserver is only compiled for Linux architectures. This means that user of other platforms must rely
on a Linux system to utilize ConceptBase. The traditional way is to start the CBserver on such a Linux
system and then connect to it, possibly using a so-called public CBserver (see section 6.6). Since April
2017, this detour is no longer required for users of Windows 10 (64bit, Creators Update). This version of
Windows is capable to let Linux programs run under the *bash’ utility, which is basically a whole Linux
system under Windows that realizes calls to the Linux API by hooks to the Windows API. Hence, it is not
a virtual machine, it lets you run the Linux (64bit) variant of the CBserver natively on Windows 10.

To enable the Linux capability on Windows 10, follow the instructions at http://conceptbase.
sourceforge.net/CB-WinLinux.html. Note that you must have installed Java (64bit) on your Win-
dows machine, not Java (32bit) to take full advantage of this feature. You can check whether your Java is
64bit by calling the following command in a Windows command window.

java —-d64 -version

Users of older Windows versions and of other operating systems can continue to use the public CB-
server (see section 6.6) to take advantage of ConceptBase.

102

https://conceptbase.sourceforge.net
http://conceptbase.sourceforge.net/CB-WinLinux.html
http://conceptbase.sourceforge.net/CB-WinLinux.html

6.3 Database format

A ConceptBase database is a directory that contains at least the following files:

* OB.symbol: a binary file that associates object names (like "MyClass’) with object identifiers.
* OB.telos: binary file storing all propositions
* OB.rule: text file containing the generated Prolog code for rules, constraints, and queries

* OB.ruleinfo: text file containing argument information about queries and some formation for the
cost-based formula optimizer

* OB.ecarule: text file containing the generated Prolog code for active rules

The database files may only be updated via the ConceptBase server. Their initial state is bootstrapped
from textual Telos frames that define the pre-defined objects of O-Telos. Since the pre-defined objects can
change from version to version, we cannot guarantee binary compatibility of ConceptBase databases. You
can easily export the textual definitions from a databases via the -save option. Those definitions can then
be imported to the new ConceptBase version. The database directory may contain further text files with
filetype ’lpi’. These are Prolog plugins loaded at startup time, see also section F.

6.4 Modifying the system database

A new database is created from the database lib/SystemDB in your ConceptBase installation directory.
The System database contains exactly the objects of the root module System. They include for example
the definitions of the objects Proposition, Individual, Attribute, InstanceOf, and IsA.
Further the objects Class, QueryClass, Function, ECArule, Module and many more are defined
that are needed to formulate queries and to use the capabilities of the system.

Whenever a new database is created, the files from this System database are copied into the new
database directory. This allows experienced ConceptBase users to adapt the System database to their
needs. Just start a ConceptBase server with

cbserver -d $CB_HOME/lib/SystemDB —-s 0

Replace $CB_HOME by the path to your ConceptBase installation directory. Then start a CBIva user
interface, connect to the CBserver and switch to the module System. Assume you want to predefine the
class Container and declare a Model as subclass of Container:

Container with
attribute
contains: Proposition
end
Model isA Container end

You can also add rules and constraints about containers, e.g. that containers may not contain them-
selves. A more significant extension would be to add active rules to the system database. For example,
the active rules in CB-Forum at http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/
3260276 changes the semantics of the UNTELL operation. Such definitions are subsequently included
in any new database that you create. Be careful with deleting system objects. The code of the CBserver
relies on the existence of certain system objects.

103

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3260276
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3260276

6.5 Tracing and restarting

The trace of the CBserver can be saved by redirecting its output, e.g.
cbserver -r 10 -port 4444 -t high -d MYDB >> mylogfile.log

The CBserver can also be started directly from the ConceptBase.cc User Interface (see section 8) and
most parameters can be specified interactively. The command line version is recommended when one
CBserver serves multiple users or when user interface and server shall run on different machines. The
parameter —r 10 instructs the CBserver to restart after 10 seconds if a crash has occurred.

A special error message during the startup of the CBserver is the following:

#4## FATAL ERROR:
Application is locked by hostname, PID 1234
CBserver aborted

This messsage is printed if there is still a file with the name OB.lock in the database directory (option -d).
The OB.lock file should avoid that two servers are using the same database directory. The file may be left
over of a previous CBserver if the server was not stopped correctly (e.g. aborted by Ctrl-C or it crashed).
If you get this error message, make sure that there is no other server running that uses this directory and
then delete the file OB.lock. Then, the CBserver should start correctly.

6.6 Public CBservers

A public CBserver is a ConceptBase server that is accessible from the whole network. As such this is a
property that any CBserver has, except when the multi-user capability is disabled, or when your firewall
prevents external access.

If you work with an existing database, you may want to specify some access rights rules like suggested
in section 5.7. We neglect them in this simple example. Now, start the public CBserver with suitable
parameters under Linux/Unix:

cbserver -r 2 —-a jonny -g public -ia 0.5 -u nonpersistent -d MDB &> log.txt &

The option —g public enables the slave mode implicitely and tells oHome as an instance of Aut o-
HomeModule. The combination of the slave mode and the option —r instructs CBserver to stop and restart
when the last client exits. The update mode is nonpersistent. As a consequence, the restarted CBserver will
use the unchanged state of MDB. This is useful, if you want to provide the service of CBserver to a larger
group of (anonymous) users. They can log in with a client, operate on the database in nonpersistent mode
and eventually leave the CBserver. When the last active client’ leaves the CBserver, then CBserver will
freshly start up after 2 seconds. Due to the option —u nonpersistent user-defined objects are only
stored at the public CBserver while there are still active clients enrolled to the public CBserver.

The parameter —a sets the administrator user of the public CBserver. This user is allowed to shutdown
the CBserver from a client. The auto home feature will assign different users to individual workspaces.
Unless you introduce access rights (and enable them via the CBserver option —s 2) the users can also
manipulate the modules of other users. However, the CBserver is restarted whenever the last client logs
off. Hence, the definitions of different users are not permanently stored on the CBserver. The parameter
—ia used here instructs the CBserver to regard a client as active of it had its last interaction within 0.5
hours. Clients that were inactive for a longer time will not prevent the CBserver from restarting when
another (active) client logs off the CBserver.

Consider the following alternative command to start a public CBserver:

cbserver -t no -r 2 -a jonny -g public -ia -1 -d ALLDB &> /dev/null &

3 An active client is a client whose last interaction with the CBserver was less than a certain number of hours ago, specified with
the CBserver parameter —ia.

104

Here, the updates are stored persistently in the database ALLDB. Changes to modules are not lost when
the last active client leaves the CBserver. There is no log file created as well. The option ’-ia -1” used here
instructs the CBserver to regard any client as active, regardless of how long ago its last interaction occurred.

Configure the CBIva interface to use the public CBserver via the variable PublicCBserver. It
can be set by the menu item “Options/Edit Options” of CBlva, see section 8.4. A value different from
none enables the use of the public CBserver by CBGraph. You can optionally append a port number like
“cbserver.acme.com/4002”. The default value for the port number is 4001. Installations of ConceptBase
on platforms, for which no binaries of the CBserver exist, may use a default public CBserver. This is the
case OS-X and older versions of Windows*.

The best way to interact with a public CBserver is to use graph files, see section 8.2.3. Assume that
a public CBserver is running on host cbserver.acme.com. and that cbserver.acme.com was
configured as the public CBserver to be used. Then, calling

cbgraph graphl.gel

will connect to the public CBserver instead of "localhost’. The port number for the connection is taken
from the graph file. Do not forget to save the graph file before exiting CBGraph if the public CBserver was
started in non-persistent mode. If you subsequently open the graph file, it will attempt to connect to the
same host. You can force it to attempt the connection to localhost instead by

cbgraph -host localhost graphl.gel

If you are using ConceptBase under Linux, then the CBserver is running by default on your local
computer ("localhost”). The same is true for Windows 10 with an enabled Linux subsystem. Users on
Mac computers or older Windows versions are by default using a public CBserver at the university where
ConceptBase is developed. This public server is meant for testing the system. DO NOT USE it for
managing confidential information! If you plan to use ConceptBase in a serious way, we recommend
that you set up a protected Linux server on your own network that runs the CBserver. Users can set up the
variable “PublicCBserver” in CBIva to the address of the protected Linux server to automatically connect
to that server, see section 8.4. You can also connect to that server manually via the ”Connect” function of
the ConceptBase clients CBIva, CBGraph, and CBShell.

6.7 The tabling subsystem

Since version V5.2.4 ConceptBase.cc features a new query evaluation method, which uses a so-called
tabling cache to store intermediate results of predicates that are called during the top-down (SLDNF) query
evaluation. Assume, for example, that an employee *bill’ has two projects p1’ and *p2’. Then, the result
of a predicate *(bill hasProject x)* with variable x would be the set {(bill hasProject p1),(bill hasProject
p2)} consisting of facts. We call this fact set also the extension of the predicate.

After a completed predicate evaluation, the tabling cache of the predicate holds its extension. Tabling
speeds up query evaluation and prevents infinite loops when ConceptBase.cc evaluates recursive queries
and deductive rules. Essentially, the tabled evaluation allows to compute dynamically stratified semantics
of the Datalog database underlying ConceptBase.cc. Plenty of examples for recursive rules and queries are
provided in the online ConceptBase Forum.

The CBserver provides three tabling cache modes to control the behavior during query evaluation:

-c off In this mode, the cache is completely disabled. Use this mode when your models do not include
recursive rules. The mode is only provided for backward compatibility and has no advantages.

-c keep The cache is only emptied when necessary, in particular when the cache has been invalidated by
an update to the database, or when the maximum number of facts in the cache is exceeded. The

4Windows 10 (64bit) Creators Update has the ability to activate a Linux sub-system which can then be used to start CBserver
transparently. If you had previously used a public CBserver under Windows 10 and now want to utilize a local CBserver, then reset
the variable PublicCBserver to none.

105

maximum number is currently set to the default 20000. Exceeding the maximum is not an error. It
only indicates that the cache is marked for being emptied. If necessary, the cache emptying takes
place before a transaction. The keep mode is on average consuming more main memory than the
transient mode but speeds up response time enormously in case of re-use of query results. The "keep’
mode is the default mode for tabling. You can change the maximum cache size by the CBserver
command line option -cs”.

-c transient The tabling cache is emptied before each transaction (ask, tell, untell, retell). A subsequent
query is always evaluated starting with an empty cache. This mode is somewhat ’safer’ than the
"keep’ mode since it starts each query with an empty cache state. While the answer to a query is in
principal independent from the cache mode, the cache mode has a certain influence on the persistence
of objects created within a transaction. Specifically, results of arithmetic expressions computed
during one transaction shall be removed after the transaction when the cache mode is ’transient’. In
cache mode ’keep’, these objects continue to exist and are visible to future transactions.

ConceptBase will only call tabled evaluation for deductive predicates. Other predicates are evaluated by
the regular SLDNF engine of the underlying Prolog engine. By default, the tabling cache mode is activated
in mode keep. Some statistics on cache usage are written to the terminal window of the ConceptBase
server when the tracemode has been set to veryhigh.

Acknowledgements: The techniques for the tabled query evaluator of ConceptBase.cc are inspired by
the ’tabled evaluation’ [SSW94, CW96]. We do however not delay the evaluation of negated predicates
but rather re-order them at compile time to guarantee that all variables are bound at call time. Tabled
evaluation is also implemented in XSB [http://xsb.sourceforge.net/] and DES [http://www.
fdi.ucm.es/profesor/fernan/des/].

6.8 Database persistency

The default update mode is "persistent’. In persistent mode, all changes to the database are written to the
file system at the directory specified in the parameter ’-d’. Persistent mode is suitable when a CBserver
runs for a longer period of time and is directly updated by application programs. If ConceptBase.cc is
used for testing and modeling purposes, the update mode *nonpersistent’ is an interesting alternative. We
discuss two scenarios for the nonpersistent mode and one for the persistent mode.

Scenario 1: Single-user modeling. When a user needs to model a certain application domain with
classes and meta classes, he usually works with external Telos files (aka source models, file extension
*.sml’). These files can include comments like usual with program source code. The recommended mode
here is ’-u nonpersistent’ without specifying a database. The user can load the source models into such a
non-persistent server and make corrections to the source files in case of errors or design changes. Here,
ConceptBase is mostly used to check and analyze the models. Recommended options:

cbserver —-u nonpersistent -mu disabled

Scenario 2: Lab assignments. Assume that a teacher wants students to exercise a certain modelling
task using ConceptBase.cc. Then, he would prepare some Telos files with necessary definitions (e.g. some
meta classes) and load them into a persistent ConceptBase server. After that, he can restart the Concept-
Base server in non-persistent mode on the same database created before. Student can then work on their
extensions while the state of the database can easily be set back to the original state defined by the teacher.
The module system of ConceptBase.cc can be used to support multiple students to work on the same server
without interfering with each other, see section 5. Recommended options:

cbserver -d MYDB -s 2 -mu enabled -u nonpersistent

The second scenario might also be useful in modeling. If there are some parts that are regarded as
stable, the modeller can decide to make them persistent and only add/modify those Telos models that are
still subject to change. In particular for large Telos models, this strategy saves time. Note that the updates

106

http://xsb.sourceforge.net/
http://www.fdi.ucm.es/profesor/fernan/des/
http://www.fdi.ucm.es/profesor/fernan/des/

by the users are lost when the non-persistent CBserver is stopped. This might be useful, if you want to
re-use the same initial database MYDB several times, e.g. for different user groups.

Scenario 3: Project work. Here the students work for several days on a given task. Changes shall not
be lost. The use of the —db option will not only store the database in binary form but also store the source
code of all modules as text files in directory MYDB. Recommended options:

cbserver -db MYDB -s 2 -mu enabled

If ConceptBase.cc is used in a multi-user setting, then one can combine the update mode with the
module feature (see section 5). In this scenario, multiple users access the same CBserver. A common super
module (e.g. the module oHome) carries the common objects of the users. Each user can be assigned to
her own hown module (a sub module of the common super module) and create and update objects in this
workspace without interfering with other users. If several groups of users shall share their definitions, then
they would be assigned to the same home module. The home module may have sub modules for testing and
releasing definitions. By employing access rights to modules, one can also design which user has which
read/write permissions. The builtin query 1istModule allows to save the contents of a module to a Telos
source file (see section 5.8).

6.9 The UNTELL operation

ConceptBase.cc realizes the concept of a historical database. The TELL operation submits O-Telos frames
to the CBserver. The CBserver extracts the ‘novelty’ of the submitted frames and translates it into a set of
P-facts to be stored in the object store. Any P-fact has a so-called belief time associated to it (see section
2.1). The belief time is an interval (¢1,t5) whose left boundary ¢; is the time point when the P-fact was
inserted to the object store, i.e. the time when the transaction was executed that led to the insertion of the
P-fact. The right boundary ¢, specifies the time point after which the CBserver assumes the P-fact to be
not true anymore. It is initialized with "Now’ when the P-fact is created. This symbolic value is interpreted
as the current time. You may also interpret such a time interval to be right open.

The UNTELL operation terminates the belief time of P-facts specified in an O-Telos frame. The value
"Now’ is replaced by the time> when the UNTELL operation is executed.

From the user’s perspective, a TELL operation is about creating some objects and the UNTELL op-
eration is about deleting them®. Many users expect the UNTELL operation to be symmetric to the TELL
operation, i.e. untelling a frame that has been told before should remove the frame completely. This is
however not the case for the following reasons:

* An O-Telos frame being argument of a TELL or UNTELL operation is not necessarily all the infor-
mation about an object but just some.

 Other objects might refer to an object told previously. An UNTELL operation would then be rejected
to preserve referential integrity.

* ConceptBase.cc adds instantiation to the builtin classes Individual, Attribute, Instance-
Of, and IsA depending on the type of the object.

The last reason is most significant in preventing symmetry. As an example consider the O-Telos frame
(referred to as frame 1).

SConceptBase takes the system time using timezone Coordinated Universal Time (UTC) of the computer on which it is running
and rounds it to milliseconds. The time is captured when the transaction is initiated, i.e. all P-facts told or untold in the transaction
will use that transaction time.

6°Deleted’ objects can however be recovered by setting the so-called roll-back time before an ASK transaction is issued. Only
ASK transaction are allowed on historical database state. It makes little sense to update a historical state. That would be ’falsifying’
the history of stored P-facts.

107

bill in Employee with
name
bname: "william"
end

ConceptBase.cc will recognize that bil1l is an individual and that bill !bname is an attribute. This
information is attached internally to the P-facts, more precisely, it is derivable from the structure of the
corresponding P-facts. Assume that you started a CBserver with untell model verbatim (see below).
When you ASK the CBserver for the frame of bil1l after the TELL operation on frame 1, you will get
frame 2:

Individual bill in Employee with
attribute, name
bname: "William"

end

Hence, the instantiation to the builtin classes Individual and Attribute is added to the frame.
If we submit the original frame 1 to an UNTELL operation, ConceptBase.cc assumes by default that only
two facts should be untold:

1. The instantiation of bill to Employee.

2. The instantiation of the attribute bi 11 !bname to its attribute category Employee ! name.

As a consequence, the object bi11 and its attribute continue to exist after the UNTELL on frame 1. It
would look like (frame 3):

Individual bill with
attribute
bname: "Wwilliam"
end

Only by untelling this frame 3 as a second operation or by untelling the completed frame 2, the object
bill andits attribute bi11l!bname shall be made historical.

This assymmetry of TELL and UNTELL is regarded by some ConceptBase.cc users as unnatural be-
havior. They expect that an UNTELL is also supposed to affect the objects themselves, not just their
instantiation to classes. To support those users, we provide a so-called untell mode (see parameter -U in
the list of CBserver command line parameters). The untell mode verbat im will cause ConceptBase.cc to
behave as explained above. The mode cleanup (default) will take care to remove the objects themselves
provided that they have no other instantiations to classes except instantiation to the four builtin classes
Individual,Attribute, InstanceOf, and IsA. Furthermore, no other object may be linked to the
object subject to be untold.

6.9.1 Cascading UNTELL

You can use ECArules to realize a cascading UNTELL, i.e. if an object is deleted then all its links to other
objects are deleted as well, leading to potential follow-up deletions. The required ECArules are provided
inhttp://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3260276. You only need to add
the ECArules to your database to enact the cascading UNTELL. You should be careful with using the
cascading UNTELL. For example, untelling a system class will also untell all instantiations to it. Use the
CBserver option —s 1 to prevent such undesired deletions.

The model CascUntell.sml contains only ECArules to complete UNTELL operations. This makes it
less cumbersome to remove objects or attributes of objects. The model CascUntell-Plus.sml adds ECArules
that check also the presence of TELL operations to attributes (including links to other objects). If you add
these rules to your database, then you can overwrite attributes just by telling the new frame. For example,
assume that “mary” was initially defined as

108

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3260276

mary in Person with

name marysname : "Mary"
age marysage : 32
end

Some time later, you want to revise the object as follows:

mary in Person with

name marysname : "Mary"
age marysage : 33
end

The ECArules in CascUntell-Plus.sml will detect that an attribute “mary!marysage” has already an
old value ”32”. Consequently, the old attribute and its categories such as ’age” are removed and the new
attribute is inserted. Without the ECArules, you would have to UNTELL the old attribute manually and
then tell the new attribute. Note that the service of the ECArules is only active if the ECArules are stored
in the database.

6.10 Memory consumption and performance

ConceptBase.cc stores objects in a dedicated object store maintained in main memory. A P-fact P (o, x,n,y)
consumes about 800 bytes of main memory. That means that one can store roughly 1 million P-facts in
1 GB of main memory. A typical Telos frame is stored with roughly 10 P-facts. Hence, 1 GB of main
memory allows you to store around 100.000 Telos frames. On 32 bit CPUs, this results in a maximum
of roughly 400.000 frames that can fit into 4 GB of addressable main memory. This restriction virtually
vanishes with 64 bit CPUs.

A single TELL/UNTELL operation submitted to the CBserver should not contain more than about 2000
frames (at about 5 attributes per frame). Otherwise, the compiler can run out of stack memory.

The raw performance of the object store, i.e. the time needed to reconstruct a frame for a given object
identifier, is virtually independent from the number of P-facts that it stores. However, if you have defined
many rules or integrity constraints, the performance may well degrade significantly with the number of
stored P-facts. The same holds for queries. We tested the response times for standard queries such as
computing the transitive closure in relation to varying database sizes. Results indicate that ConceptBase
apparently approximates in many cases the theoretic optimum.

The performance of the active rule evaluator (section 4) is currently rather limited. We measured
around 100 rule firings per second. This can be a performance bottleneck when many active rules are being
processed.

6.11 The Java API to the CBserver

The application programming interface (API) to the ConceptBase server (CBserver) is realized by the Java
class LocalCBclient. Most (Java) application programmers presumably only need the simple String-
based part of LocalCBclient to interact with a CBserver. LocalCBclient uses socket-based data
streams to realize the communication. We define here the methods of this String-based API. If the argument
starts with an ’s”, then the data type is St ring. If it starts with an ”i”, then the data type is int.

LocalCBclient cbClient = new LocalCBclient ();
* This constructor provides the API object cbClient to be used for the subsequent method calls.

sAnswer = cbClient.cbserver();

109

* This method attempts to start a single-user CBserver in ”slave mode” on localhost with port number
4001. The method only works on platforms for which the CBserver was compiled. This is currently
limited to Linux and Windows 10 (see also section 6.2). In other cases, you need to start a CBserver
on a host system that supports the CBserver and then use the ’connect’ method. If the CBserver was
successfully started, the method returns ”yes”, otherwise ’no”. If the cbClient is already connected
to a CBserver, then the method also returns “yes”. The CBserver shall automatically shut-down when
the last client disconnects from it.

sAnswer = cbClient.connect (sHost, iPort, sTool, sUser);

* This method connects your Java program to the CBserver specified by sHost (the domain name
of the computer on which your CBserver runs on) and iPort (the port number is an integer; usu-
ally 4001). The string sTool shall be a self-selected name of your tool, e.g. "ModelerXY" and
sUser is a string containing a user name (typically your user name). If you use null as user-
name, then the cbClient will use the login name of the computer user that started the Java pro-
gram. The return value is "yes" if successful and "no™" else. Use the boolean-valued function
cbClient.isConnected () tocheck whether cbClient is currently connected to a CBserver.
If the socket connection breaks down, then the cbClient will set the connection status to uncon-
nected.

sAnswer = cbClient.connect ();

* Connects to the public CBserver (see section 6.6) if configured for your installation. Otherwise,
attempts to start a single-user ’slave” local CBserver on port 4001 if not started. Connects to the
local CBserver with the default tool name “LocalCBClient” and null as username. It behaves
similar to the ”connect” command of CBShell.

sAnswer = cbClient.disconnect ();

* This method disconnects connects your Java program from the CBserver. The return value is "yes"
if successful and "no™" else. If the CBserver was started in ”’slave mode” and the cbClient is the last
remaining client of the CBserver, it will shut down.

sAnswer = cbClient.pwd();

* This method outputs your current working module path, e.g. "System-oHome".
sAnswer = cbClient.mkdir (sModule) ;

* This method creates a new submodude (e.g. "MyMod") in the current module.
sAnswer = cbClient.cd(sModule);

* This method changes the current module to sModule, e.g. "MyMod".
sAnswer = cbClient.tells (sFrames);

* This method tells (=defines) the objects given by the string sFrames to the current module of the CB-
server. The return value is "yes" if successful and a string containing user-readable error messages
else.

sAnswer = cbClient.untells (sFrames);

 This method untells (=removes) the objects given by the string sFrames from the current module
of the CBserver. The return value is "yes" if successful and a string containing user-readable error
messages else.

sAnswer = cbClient.asks (sQuery,sFormat);

110

* This method asks the query call sQuery (given by a String) to the CBserver The return value is a
string containing the answer to the query. The return value is "no" in case of errors, e.g. when the
query is not defined. The query call can have arguments, e.g. "get_object [Class/objname]".
The CBserver shall use the answer format sFormat for the result. Thus, if you want to define your
own answer format, then use the facilities described in section 3. The query shall be answered in
the context of the current module and the current time ("Now"). The answer "nil" stands for an
empty answer.

sAnswer = cbClient.asks (sQuery);

e Same as cbClient.asks (sQuery, "default"),i.e. the CBserver determines the applicable
answer format (in most cases: "FRAME").

sAnswer = cbClient.clientid();
* Return the identifier by which this client is registered to a CBserver.
sAnswer = cbClient.clearall();

* Attempt to delete all objects from the current module. Returns “yes” if successfull, otherwise "no”.
Calls the ’purgeModule’ query described in section 5.9. Use this method with great care since it
wipes out the whole module content.

Below is the listing of the Java program TinyClient . java that uses the String-valued API:

import iS5.cb.api.x*;
public class TinyClient {
private static LocalCBclient cbClient = null;
public static void main(String argv[]) {
String sAnswer;
cbClient=new LocalCBclient ();

sAnswer = cbClient.connect ("cbserver.acme.org",4001,"TinyClient",null);
sAnswer = cbClient.tells ("Employee in Class end");

sAnswer = cbClient.asks ("get_object [Employee/objname]");
System.out.println (sAnswer) ;

sAnswer = cbClient.disconnect ();

You need to compile the Java program with the cb . jar library. This is available from the ConceptBase
installation directory (referred here as CB_HOME). To compile the Java program call

javac —classpath $CB_HOME/lib/classes/cb.Jjar TinyClient. java

Before running the client, make sure that the CBserver runs on the specified Linux computer (here
“cbserver.acme.org”) under the specified port number (here 4001), and that this port number is accessible
from your client computer. You may want to configure that CBserver as a public CBserver (see section 6.6)
to have a save way to connect your Java program to it.

The Java program can then be started under Linux as follows:

java —classpath $CB_HOME/lib/classes/cb.jar:. TinyClient
Under Windows, you should use:
java —classpath c:\conceptbasel\lib\classes\cb.jar;. TinyClient

The Java source code for TinyClient. java, TinyClient2. java (uses the cbserver method),
TinyClient3. java (uses the connect method), and a more elaborate example SimpleClient. java
is included in the directory examples/Clients/JavaClient of your ConceptBase installation di-
rectory.

111

Chapter 7

The CBShell Utility

The ConceptBase.cc Shell (CBShell) is a command line client for ConceptBase.cc. It allows to interact with
a CBserver via a text-based command shell. Moreover, it can process commands from a script file without
further user interaction. The utility can be employed to automate certain activities such as batch-loading a
large number of Telos models into a CBserver, or to extract certain answers from a CBserver.

7.1 Syntax

There are two ways to use the CBShell. The first one processes the commands from a script file (batch
mode). The second one prompts the user for commands (interactive mode).

cbshell [options] scriptFile [params]
cbshell [options]

7.2 Options

-1 This options instructs CBShell to write errors and some statistic information to the files errorlog and
stat.log.

-f scriptFile Execute the commands specified in scriptFile rather that requesting commands from the com-
mand line interface. If the -f option is used and a scriptFile is specified, the commands of the file
will be executed without user interaction, and CBShell will exit at the end. The prefix -f can also be
omitted, i.e. “cbshell scriptFile” is equivalent to “cbshell -f scriptFile”.

-t This option can only be used in combination with the -f option. It shall instruct CBShell to confirm each
command in the script file before it is executed.

-i This option modifies the ’cbserver’ command by invoking a CBserver compiled directly from its sources.
For developers only.

-a This options instructs CBShell not to directly show the answer to each command in interactive mode;
instead you have to manually call showAnswer

-v This options enables the verbose mode. In this mode, the command and the answer are always displayed
on standard output

-p Disables the display of the command prompt in interactive mode. This may be useful when CBShell
is used in a Unix pipe where the preceding program generates the commands and feeds them into
CBShell.

112

-q Instructs CBShell to convert single quotes in positional parameters into escaped double quotes. This
option is useful when a parameter contains special characters and still shall be regarded as a valid
object label by ConceptBase. Useful when calling CBShell scripts within regular scripts (e.g. bash)
that pass parameters with special characters to the CBShell scripts. See also section 7.7.

params At most nine user-defined positional parameters can be supplied. The are bound to the CBShell
variables $1 to $9. The CBShell variable $0 is bound to the name of the scriptfile.

7.3 Commands

cbserver [serveroptions] : starts a CBserver with the specified options and connects to it

connect host port : connects to an already running CBserver; if a public CBserver is configured then it is
the default host; otherwise localhost is default host; 4001 is default port number; if the connections
fails and the local operating system can start a CBserver, then a local CBserver is started with default
settings

disconnect : disconnects from a CBserver

stop : stops the CBserver which is currently connected

tell frames : tells frames to the CBserver; enclose the frames in double quotes

untell frames : untells frames from the CBserver; enclose the frames in double quotes

retell untellFrames tellFrames : untells and tells frames to a CBserver in one transaction; enclose both
arguments in double quotes'

tellModel file! file2 ... : tells files to the CBserver; the files can have file types ”.sml” and ”.txt”; if the first
file from the list exists on the the computer of the CBShell client, then the files will be loaded from
the local file system, otherwise the CBserver is requested to load the files from its own file system

ask Query [QueryFormat [AnswerRep [RollbackTime]]] : asks a query; possible query formats are OBJNAME S
and FRAMES; the answer representation can be LAREL, FRAME, FRAGMENT, FRAGMENTswi,
JSONIC, default, or a user-defined answer format; the rollback time shall normally be set to
Now. See also subsection 7.3.1 for more information. If the query format is OBIJNAMES, then Query
is a string in double quotes containing a query call (or a comma-separated list if query calls). It the
query format is FRAMES, then Query is a string of Telos frames including a query definition. The
answer representations are discussed in section 3.

hypoAsk frames Query [QueryFormat [AnswerRep [RollbackTime]]] : tells frames temporarily and asks
a query

Ipicall Ipicall : executes the LPI call; only for debugging purposes
prolog prologstatement : executes the Prolog statement; only for debugging purposes
why : gets error messages for the last transaction and prints them on stdout

result completion result : compares the given result with the last result which has been received; this
command hence can be used to check whether the CBserver produces the expected completion (ok,
error) and result; use this command in combination with the option -1

cd mod : changes the module context of this shell; if the parameter mod is omitted, the module context will
set the module to the user’s home module, by default oHome; the command “cd ..” shall switch to the
super module of the currenbt module, the command “cd .” shall leave the current module unchanged

I'There is a small syntactic restriction for the retell command. You need to avoid a line consisting just of a double quote to terminate
the untellFrames. Instead, start the tellFrames in the same line that terminates the untellFrames.

113

pwd : display the current absolute module path, e.g. ”System-oHome-MyModule”

Im mod : list all frames defined in a module; shortcut for ask listModule [mod/module]; uses
currentmodule if called without parameter

Is class : display the instances of class; uses Individual as default if called without parameter

mkdir module : creates a new module with the given name within the current module; implemented by
a tell operation "mod in Module end”; so we mimick the navigation within modules by com-
mands known from Unix to manage directories

showAnswer : print the last result on standard output; this can be useful if you employ the CBserver as a
generator in a shell pipe (see Graphviz case below)

showAnswer > filename : same as showAnswer but output is redirected to filename

who : show the list of users that have at any time been enrolled to this database; implemented by a query
that displays the instances of the class CB_User

sub : show the list of visible submodules to which the user can branch via the ’cd’ command
show name : show the frame with the given name; shortcut for ask get_object [name/objname]

echo string : prints the string to standard output; use double quotes if the string has multiple words; a
sequence "\ \n’ within the string is replaced by a newline character;

echo -n string : like the one-argument variant but no newline is printed after the string
nl : prints a newline character on standard output

exit : exits the shell (also stops a server which has been started in this shell)

EELE]

Command arguments with white space characters have to be enclosed in double quotes (*”’). Command
arguments may span multiple lines. Lines starting with *# are comment lines®. If an argument contains
a string of the form $PropName, it will be replaced with the value of the corresponding Java property
(which may be defined using the -D option of the Java Virtual Machine), if the property is defined. There
are a couple of legacy commands that we support for backward compatibility:

startServer [serveroptions] : synonym for ’cbserver’
enrollMe host port : synonym for ’connect’
showUsers : synonym for who’
showModules : synonym for ’sub’
listModule mod : synonym for "lm’
listClass class : synonym for ’1s’
getErrorMessages : synonym for why’
getModulePath : synonym for "pwd’
setModule mod : synonym for *cd’
stopServer : synonym to ’stop’

cancelMe : synonym for ’disconnect’

newline : synonym for 'nl’

2The last line of a CBShell script file should not be a comment line. Otherwise, CBShell fails to recognize the end of file correctly.

114

quit : synonym for ’exit’

The CBShell utility can be used in Unix pipes to extract textual output The CBserver and pass it to
subsequent programs as input. To do so, you should start the CBserver with tracemode no and using
the showAnswer command of CBShell to specify the elements to be written to standard output. The
CBShell script below realizes the extraction of Graphviz [http://graphviz.org] specifications from
ConceptBase.cc:

File: myscript

connect

tellModel ERD-graphviz2

tellModel UniversityModel

ask ShowERD [UniversityModel/erd] OBJNAMES default Now
showAnswer

exit

The complete example is available from the CB-Forum at http://merkur.informatik.rwth—aachen.
de/pub/bscw.cgi/2519759. Another resource for CBShell scripts is the list of test scripts at http:
//merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2596438.

7.3.1 Rollback time for ASK

The "ask’ and "hypoAsk’ commands allow to specify a so-called rollback time for the query. Normally the
rollback time is set to "Now’, i.e. the current database state. You can also specify a precise millisecond spec-
ify the database state on which you want to evaluate the query, e.g. "millisecond(2020,2,7,12,27,10,230)’,
that is 2010-02-07T12:27:10.230UTC. Since this is a bit cumbersome, you can also specify the name of
any object as 'rollbacktime’ argument. Then, the CBserver shall take the starttime of that object as the
rollback time, for example

ask get_object [AccountBill/objname] OBJNAMES FRAME transferl

where ’transferl’ is just another object name.

7.3.2 Argument delimiters

If an argument to a CBShell command spans multiple lines or contains several words separated by blanks,
then you have to enclose it in double quotes, being the default argument delimiter. Double quotes are also
used for St ring objects in Telos frames. These have to be escaped like in the following example:

tell "
Peter with

comment about: \"This is a Telos string\"
end

n

If many such frames need to be told, the escaping of Telos strings is cumbersome. You can use the
single quote as argument delimiter in such cases, making the escaping the double quotes for the Telos
string obsolete:

tell 7’
Peter with
comment about: "This is a Telos string”

end
4

115

http://graphviz.org
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2519759
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2519759
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2596438
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2596438

7.4 Interactive use of CBShell

The CBShell can be used to run a script file or in can be used in interactive mode. In the interactive mode,
the CBShell shall directly display the response to a command, typically the answer of the ConceptBase
server. Some of the shortcuts like why’ and ’cd’ are specifically defined to make the interactive mode
more effective.

Another feature of the interactive mode is that queries that are represented as a single word can also be
asked without the keyword *ask’ in front of it. CBShell will then ask the query using ’default’ as answer
format, i.e. the ConceptBase server will decide in which answer format to use. Below is a sample session
of CBShell in interactive mode.

cbshell

This is CBShell, the command line interface to ConceptBase.cc
[offline]>connect

[localhost:4001]>mkdir M1

yes

[localhost:4001]>cd M1

M1

[localhost:4001]>tell "Employee in Class"

no

[localhost:4001]>why

Syntax error 1 in line 1, parser message:

syntax error, unexpected ENDOFINPUT, expecting END or ENDMIT
Syntax error Unable to parse Employee in Class.
[localhost:4001]>tell "Employee in Class end"

yes
[localhost:4001]>tell "bill in Employee end"
yes

[localhost:4001]1>1s Employee

bill

[localhost:4001]>show bill
bill in Employee

end

localhost:4001]>1+2

localhost:4001]>stop
offline]>exit

—_—— W —

The term 1+2 is an example of a query that is not preceded by the ’ask’ command. Note that such
queries may no contain blanks since it would split it into several words. Use quotes in such cases. The
prompt [offline] indicates that the CBShell is not yet connected to a CBserver. Once connected, it
displays the hostname and port number of the connected CBserver as prompt. The CBserver is started with
disabled tracing. The trace messages of the CBserver would otherwise be displayed in the output as well.

7.5 Positional parameters

A CBShell script can use variables $0 ... $9 inside the script to refer to the positional parameters supplied
via the call of cbshell. Assume the following content of the script file:

File: pascript

cbserver —-u nonpersistent -t low —-port $1

tell "$2 in Class end"

ask find_instances[$2/class] OBJNAMES LABEL Now
ask find_instances[$3/class] OBJNAMES LABEL Now

116

and the command line call
cbshell pascript 4321 MyClass Integer

The CBShell interpreter will then replace $1 with 4321, $2 with MyClass, and $3 with Integer. If you
supply less parameters than required by the script, it will issue an error message and quit. If the script had
started a CBserver, then this CBserver is stopped before quitting. Likewise, if the script had enrolled to an
existing CBserver process, it will unenroll before quitting.

The variable $0 is bound to the name of the script file. CBShell uses the Java tokenizer to separate
the positional parameters. The tokenizer uses white spaces (blanks, tabs) to separate tokens. Use double
quotes if one argument consists of several words, e.g.

cbshell otherscript "MyClass isA Integer end"

An example of a script with positional parameters is provided in the CB-Forum at http://merkur.
informatik.rwth-aachen.de/pub/bscw.cgi/d3364559/ticket307.cbs.txt. You can also call
CBShell scripts within scripts/batch files of the host operating system, see section 7.7.

7.6 Executable CBShell scripts

A CBShell script can be made executable under Unix/Linux and can then be used pretty much like any
other shell script. Assume that you have a CBShell script myscript that you want to execute directly
from the command line.

As a first step, create a link to the cbshell at a common directory for installed programs:

sudo 1ln —-s S$CB_HOME/cbshell /usr/bin/cbshell

where $CB_HOME is replaced by the installation directory of ConceptBase. As a second step include
the following comment as the first line of myscript:

#!/usr/bin/cbshell
Then, make the script executable:
chmod u+x myscript
You can then directly call the script by simply typing its name:
myscript
The direct call is equivalent to the call

cbshell ./myscript

7.7 CBShell scripts within regular shell scripts

CBShell offers the basic commands to interact with a ConceptBase server. However, it lacks control
structures such as loops and conditions. It also cannot invoke arbitrary programs. Regular shell scripts such
as the Bourne shell of Unix/Linux do provide these capabilities, and thus it is a natural idea to integrate
CBShell scripts within regular scripts to accomplish more sophisticated automation tasks.

As a first step, you should make the CBShell script executable and declare in its first line

#!/usr/bin/cbshell —-gq

This allows to pass parameters that include special characters to the CBShell script. Assume that the
CBShell script ascript was declared that way. Then, it can be called in a Bourne shell like:

117

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3364559/ticket307.cbs.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3364559/ticket307.cbs.txt

ascript ’Jet 400’ MyClass

The option —qg prepares the CBShell to treat parameters with single quotes in a special way. Assume
further that ascript has the following content:

#!/usr/bin/cbshell -q
File: ascript

tell "$1 in $2 end"

CBShell will internally expand the quoted parameter * Jet 400’ to \"Jet 400\" and then execute
tell "\"Jet 400\" in MyClass end"
The resulting frame in ConceptBase shall be

"Jet 400" in MyClass end

Essentially, single quotes of CBShell parameters are converted to double quotes within ConceptBase.
An simple example is givenin http: //merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3372687.
A more elaborate example is available in the CB-Forum at http: //merkur.informatik.rwth-aachen.
de/pub/bscw.cgi/3384265. The main example is in the fileSizeDemo.

7.8 CBShell in a pipe

Assume you have a program generator that analyzes some input data (e.g from files) and produces
output in the form of CBShell commands (tell, ask, etc.). Then, this output can be directly passed to
CBShell in a Unix pipe:

generator | cbshell -p

The generator program must take care of generating all required commands, in particular making sure
that CBShell is connected to a CBserver. Consider as example generator the script file printfiles—
4cbshell fromthe CB-Forumathttp://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/
3384578:

#!/bin/sh
echo "connect localhost 4001"
for file in +*

do
if [-f ${file}]
then
fsize=$(stat -c %s ${file})
frame="’${file}’ in File with size s: ${fsize} end"
echo tell \"\\\"S${file}\\\" in File with size s: S${fsize} end\"
fi
done

It first generates a command to enroll to a CBserver on localhost at port 4001. Then, it forms a frame
for each filename in the current directory to tell the file’s size to the CBserver. You can run the script in a
terminal to see the output generated by it.

Now, assume that you have started a CBserver on localhost with port number 4001. You should tell at
least the following frame to the Cbserver to define the class File to which the above script refers to:

118

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3372687
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3384265
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3384265
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3384578
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3384578

File in Class with
attribute
size: Integer
end

Then execute in a terminal window:
printfiles4cbshell | cbshell -p

It will tell the file size information to the CBserver. At the end, the end of file detection of the CBShell
will trigger the CBShell to exit from the CBserver.

It is also possible to continue the pipe to a post-processing program. In this case, the commands sent
to CBShell should include ask commands in combination with showAnswer. The following pipe shows
the main idea:

generator | cbshell -p | postprocessor

An elaborate example of this usage is in the CB-Forum athttp: //merkur.informatik.rwth-aachen.
de/pub/bscw.cgi/3421289. The example shows how to extract module import statements from pro-
gram source files, store them in ConceptBase and let ConceptBase produce a graph specification, layed out
by GraphViz.

119

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3421289
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3421289

Chapter 8

The ConceptBase.cc Usage
Environment

The ConceptBase.cc User Interface consists of two main applications:

CBlva is the ConceptBase.cc Interface in Java that supports the editing of Telos frames, displays instances
of Telos objects, etc.

CBGraph is a graphical editor for Telos models (or modules). Telos models can be represented by differ-
ented graphical types. Insertion and deletion of Telos objects is also supported.

The interface is based entirely on Java, so it should be usable on all platforms with a compatible
Java runtime environment. The Java interface includes a graphical browser and editor. Both CBIva and
CBGraph can be used as stand-alone Java application.

8.1 The workbench CBlIva

CBlva is a textual interface to a CBserver, which emphasizes the use of the frame syntax of Telos. You can
start the CBIva workbench by the command

cbiva

The command will start a script file with the same name. We assume that the installation directory of
ConceptBase.cc' is added to the search path of executable programs. After a few seconds, the CBIva main
window should pop up. CBIva will attempt to connect to a CBserver on localhost or to a public CBserver
(if configured, see 6.6). Figure 8.1 shows the main window connected to a CBserver and gives a short
description of the buttons in the tool bar.

The main window consists of a menu bar, a tool bar with a button panel, the area for subwindows and
a status bar. The first sub window (Telos editor) contains the history window, which records all operations
for later reuse. In the following, each component of the user interface is explained.

8.1.1 The tool bar

The tool bar is the button panel below the menu bar. All buttons have tool tips, i.e. small messages that
show the meaning of these buttons. The tool tips appear, if you move your mouse pointer over the button
and do not move your mouse for about one second. The buttons are shortcuts for some operations that are
frequently used and are also available in the menu. The operations apply to the Telos Editor which has
currently the focus.

'In rare circumstances, you may have to edit the script files cbiva, cbgraph and cbshell, so that the correct Java Virtual Machine is
used and the environment variable CB_HOME points to the installation directory. See Installation Guide in the CB-Forum for details.

120

Clear Cut Copy Paste Tell Untell Retell Ask List Module Exit

Browse Optio’ns Hiéton/ windows/ Help

Quick
Connect
w5 = | - -
(0% el) (S0 rwen 2
I Telos Editor
1 Class in Class with -
2 attribute
3 constraint : MSFOLconstraint;
4 rule: MSFOLrule;
S mrule : MRule
. 6 end
Main Telos 7
Editor
| | |
Hi§t0W Query: get_object [Class/objname]
Window Format: OBJNAMES, Answer Format: FRAME, Rollback Time: Mow

Result
Class in Class with

attribute
constraint : MSFOLconstraint;
rule : MSFOLrule; |
mrule : MRule

1]

Version: Mow -- 2015-09-23 15:02 (UTC) Module: cHome

Figure 8.1: Main Window of CBlva

¢ Quick Connect: if connected to a CBserver then disconnect; otherwise try to connect either to the
public CBserver (if configured) or to a running local CBserver; if the connection to a running local
CBserver fails, then attempt to start one in the background.

* Clear: Clear the text of the Telos Editor window
* Cut, Copy, Paste: operations on selected portions of the Telos Editor text

* Tell, Untell: The objects specified in the active Telos Editor will be added or removed from the
object base.

* Retell: A new window will popup and ask you to enter the frames that should be untold and told.
The contents of the current Telos Editor will be inserted as default into the two text areas?.

« Ask: Evaluate the query specified in the Telos Editor’. If you specify the name of an ordinary class
(i.e. not a query class), then ConceptBase.cc will interpret this as a query call to find all instances of
that class. You can also enter an arithmetic expression like

100«COUNT (QueryClass) /COUNT (Class)

List module: List the content of the current module as Telos frames

¢ Exit: Disconnect from the CBserver and exit CBlva.

2The use of the Retell window is a bit cumbersome since you need to specify separetely the objects to be untold and the objects to
be told. If you frequently change only certain attributes of objects, then you can use ECArules to instruct the CBserver to untell the
old attributes and tell the new attributes, see also section 6.9.1.

3The query can either be a query call referring to an existing query or a frame representing a new or existing query definition.

121

8.1.2 The menu bar

The toolbar has button for the most frequent operations of CBIva. The menu bar offers the complete set of
operations including options to open other windows such as CBGraph (see section 8.2).

File:

Edit:

Connect: Connect to a ConceptBase.cc server (CBserver) started in another shell/command window
(see section 6).

Disconnect: Disconnect from a CBserver.
Load & Save Telos Editor: Load or Save the contents of the current Telos Editor.

Load Model: Load a source model file (*.sml, *.sml.txt) to the server. As client and server are
not supposed to share the same file system, this method is now implemented as a normal Tell
method. The client reads the contents of the file into a string and sends the string to the server.

Start CBserver: Opens a dialog and asks for the parameters to start a CBserver. If the information

has been entered, the server will be started and its output will be captured in a separate window.

The workbench will be automatically connected to that server®.

Stop CBserver: Stops the CBserver, only allowed for the user who started the server or who has
been designated as administrator user (see option ”-a” in section 6.1).

Close: Same as Exit if CBlIva was not started from CBGraph. If it was started from CBGraph and
CBGraph is still running, then the Close option only hides the CBIva window.

Exit: Exit CBlva, if a CBGraph windows was opened via CBlva, it shall be closed as well. Likewise,
a CBserver started via CBIva will be closed.

Clear: Clears the text area of the currently activated Telos editor.

Cut,Copy,Paste: Cut, copy or paste text to/from clipboard.

Replace all: Replaces all occurences of a given string in the Telos editor by a new string.

Tell,Untell: (Un-)Tells the text in the currently activated Telos editor

Retell: A new window will popup and ask you to enter the frames that should be untold and told.
The contents of the current Telos Editor will be inserted as default into the two text areas.

Ask Frame: Temporarily tells the content of the Telos editor, extracts the query names from the
frames, asks them as query calls without parameters, and returns the result in the Telos editor
window

Ask Query Call: The query calls® (see section 2.3.1) listed in the Telos editor are asked and the
result is returned in the Telos editor window.

Load Object: Load the Telos frame of an object into the Telos editor.

Browse: New Telos Editor: Opens a new Telos editor (see section 8.1.4).

Display Instances: Opens the display instances dialog (see section 8.1.6).
Frame Browser: Opens the frame browser window (see section 8.1.7).

Display Queries: Shows the ’visible’ (user-defined) queries stored in the current database and pro-
vides a facility to call these queries (see section 8.1.8).

Display All Queries: Like above but includes the many built-in queries of ConceptBase.

Display Functions: Shows all functions stored in the current database (see section 8.1.9).

4This is not the standard way to start the CBserver. Normally, the CBserver is started in a separate shell/command window as
explained in section 6. The standard way offers more options and control over the CBserver. See also the installation guide for a
discussion on the various ways to start ConceptBase.

5Usually, one only asks a single query call like Q [v1/p1]. However, ConceptBase.cc also supports comma-separated lists of
query calls like Q1 [v1/pl],Q2[cl:p2]. Such lists of query calls are evaluated one after the other. The results is merged into
a single answer. For technical reasons, calls to builtin query classes like get_object [Class/objname] may only occur as a
singleton.

122

Query Editor: Opens the query editor (see section 8.1.10).

Graph Editor: Opens the CB Editor (graphical browser, see section 8.2). If the interface is con-
nected to a server, CBGraph will also establish a connection to this server and ask for the
graphical palette, the initial object to be shown, and the module context (see section 5). Other-
wise, CBGraph will start with no connection.

Options: Set Timeout: Set the number of milliseconds the user interface waits for a response of the
Server.
Select Module: Select the current module (see section 5).

Select Version: Select or create a new version. A version is a special object that represents the state
of an object base at a specific time. By default, all queries are evaluated on the current state of
the object base (version "Now”). By selecting another version, queries are evaluated wrt. to a
previous state of the object base.

Pre-Parse Telos Frames: If enabled, the user interface parses the contents of a Telos editor before
it is send to the server. Thus, syntax errors might be already detected at the client side.

Show Line Numbers: Enables the display of line numbers in the Telos Editor window. Use ’Save
Options’ to memorize this setting for the next session of CBlva.

Use Query Result Window: If enabled, the result of a query is shown in a separate window in a
table view.

Look and Feel: You can switch the look and feel to an other style. Default and preferred is "Metal’.

Edit Options: Complete and editable list of options for CBIva. The new options are stored in a file
’.CBjavalnterface’ of the user home directory.

Help: ConceptBase.cc Manual: Opens a window® with the online-version of this ConceptBase.cc man-

ual.

ConceptBase Tutorial I/II: Opens a window with the online-version of the respective tutorial.

CB-Forum: Opens a window to the public version of the ConceptBase Forum with lots of examples.

About: Shows a dialog with information about this program.

License: Displays the license of ConceptBase.cc in a new window.

CB-Team: Displays a page about the ConceptBase Team.

History: Load History: Load previously saved contents of the history window.
Save History: Save contents of the history window to a file.

Redo History: Redos certain operations which are currently in the history. The operations can be
selected from a list.

Set History Options: Select the type of operations that should be displayed in the history window.

The preferred way to start a CBserver from CBlva is to use the ’Start CBserver’ from the File menu. It
provides an output window for the trace messages of the CBserver, but this window is only visible if the
trace mode is set to 'minimal’ or higher. Disconnecting from the CBserver will not stop it. It has to be
stopped explictly or CBIva will stop it if it is shut down itself. The *’Quick Connect’ button of the toolbar
provides a simplified way to start a local CBserver. It does not ask for CBserver parameters. Instead, the
default values are used for all parameters except that the server mode is set to ’slave’ and multi-user mode
is disabled. This causes the CBserver to shutdown whenever the last connected client disconnects from it.

You can move the tool bar outside the main window or display it in vertical form, if you click on the
leftmost area of the tool bar and drag it to another place.

%Under Linux with Gnome, the default web browser is used to display the content. Otherwise, a Java window capable of displaying
HTML is opened. Due to unknown reasons, the mechanism works for Linux only if at least two browser tools are installed. You may
want to install Chromium as second browser besides Firefox to fulfill the constraint.

123

8.1.3 The status bar
The status bar contains some fields that display general information about the status of the application.
» Connection status, either connected or disconnected from serve, or a pending action
 Short message, usually about the result of the last action
 Current version, i.e. the rollback time (see section 2.1) specified for queries (default: Now)
¢ Current module, the database module to which TELL/ASK operations are applied
* Linked tool, either empty or "CBGraph” if CBIva is linked to a CBGraph window.

The field for the current version shall display the current time if the version is set to "Now’. If set to a
rollback time in the past, it displays both the version name and the time associated to the version. It will
then also hight the background of the text field to make the user aware that queries are evaluated against a
past state of the database.

The linked tool flag is by default empty. It shall show the toolname "CBGraph” if CBlva started a
CBGraph window, or CBGraph has started the CBIva window. In both cases, the two winodws can interact
with each other, e.g. by selecting an object name in the Telos Editor and adding it to the CBGraph window,
or by selecting a node or link in CBGraph and displaying it in the CBIva Telos Editor.

8.1.4 Telos editor

The Telos Editor is an editable text area, where you can edit Telos frames. The operations can be executed
from the menu bar or the buttons in the tool bar. Furthermore, the text area has a popup menu on the right
mouse button with the following items.

Display Instances: Displays the instances of the currently marked object

Load Object: Loads the Telos frame of the currently marked object into the Telos editor

Display in Graph Editor: Shows the currently marked object in CBGraph.

Change Module: Changes the module context to the module path defined by the currently marked text
Clear,Cut,Copy,Paste: same as in the menu bar

Small,Large: sets the text font size to either small (12 point) or large (18 point)

If the Telos editor window is empty, then you can drag and drop Telos text files (file type *.sml or
* sml.txt) into it. CBIva will open the file and paste the content into the Telos editor window. This function
requires that the option *Show Line Numbers’ is enabled (see section 8.1.2). You can also drag and drop
URLSs pointing to publicly accessible Telos text files.

Tell transactions

The text in the Telos editor window is typically a sequence of Telos frames. When you press the *Tell’
button, the text is sent to the CBserver and processed there by the "TELL’ method of the CBserver. This is
a single transaction which may fail or succeed.

You can use the string ”{——-}" in the text window to indicate that the frames should be told in multiple
transactions. Consider the example:

Shop in Class end
Guest in Class with
attribute
dept: Shop
end
{—-1
GuestEmployee in Class isA Guest,Employee end

124

Activating the *Tell’ button instructs CBIva to split the text into two parts and tell them in two separate
transactions to the CBserver. This feature is useful when some parts contain meta formulas (see section
2.2.9) that first need to be compiled before they are used in subsequent parts of the whole text. If you do
not use meta formulas, then you can omit this feature.

8.1.5 History window

The history window is part of the main Telos editor. It stores all operations and their results, so that they
can later be used again. The buttons scroll the history back or forward, copy the text into the Telos editor
or redo the operation in the history window (see figure 8.2). If the current operation is an “ASK”, then a
single click on the copy-button will copy the query to the Telos Editor, and a double click will copy the
result of the query. The size of the history window can be reduced by using the slider bar between the Telos
editor and the history window.

Number and type of operation

1: ABK | || / H ||
Go to previous Copy Text to Redo Go to next
operation Telos Editor operation operation

Figure 8.2: Buttons of the History Window

8.1.6 Display instances

This dialog displays the instances of a class. The class is entered in the text field. When you hit return or
press the “OK” button, the instances of this class will displayed in the listbox.

If you double click on an item in the listbox, the instances of this item will be displayed. The frame of a
selected item can be loaded into the Telos editor by clicking the “Telos Editor” button. A history of already
displayed classes is stored in the upper right selection list box. The “Cancel” button closes the dialog.

8.1.7 Frame browser

The Frame Browser (see figure 8.3) shows all information relevant to one object in one window. The
window contains several subwindows with list boxes that show super- and subclasses, the classes, the
instances, attributes and objects refering this object. In the center of the window, a small window with the
object itself is shown. To view the attributes of the object, you must first select the attribute category in the
subwindow “Attribute Classes”.

The Frame Browser can be used with and without a connection to a CBserver. If it is not connected, it
retrieves the information out of a local cache, which can be loaded from a file by using the “Load” button.
The file has to be plain text file with Telos frames. All objects in the cache can be saved into a text file as
Telos frames with the “Save” button. The contents of the cache can be viewed with the “Cache” button.
The result of a query can be added to the cache by using the “Add query result” button.

The button “Telos Editor” inserts the Telos frame of the current object into the Telos Editor.

8.1.8 Display queries

This dialog displays all visible queries’ stored in the current object base (see figure 8.4). From the list box,
you can select a query and “ask” it or load its definition into the Telos editor.

7Visible queries are those queries that are not instantiated to the class HiddenObject. Functions and certain system queries are
excluded from the display.

125

Frame Browser

Super Classes

Incomin... o & [£ --- Attribut... 2° @ Attributes g° @
nil attribute

Subclasses
Function
vQueryClass
Class
QueryClass

Cache || Telo... || Close || Load || Save || Add ... |

Figure 8.3: Frame Browser

CBiva - ConceptBase.cc User Interface in Java

File Edit Browse Options History Windows Help

k=) |50 o0 e B

Display Queries : o &
Select one ...
DoNotSave LM
changeAttributevalue
listModule . -
rename Specify Parameters for listModule
Endule| |v|substitute |v| Show Values
nswer Format|FRAME -
Ask | Cancel |
[|
Ask Telos Editor Cancel

nswer Format: LABEL
Rollback Time: Mow
Result:

F_find_referring_objects_obi, CBGraphEditorResult, CBGraphEditorResultW|
ithoutEdges, ¥ML_JavaGraphicalPalette XML |avaGraphicalType

<l

[Eonnected | Preprocessing Telos object names

Mersion; Now Module: oHome 11:56 (UTC) 0.08

Figure 8.4: Display queries dialog

If you “ask™ a generic query class with parameter, another dialog will ask you to specify the parameters.
For each parameter, you can specify whether the value entered should be used as “substitute” for the
parameter or as a “specialization” of the parameter class (see section 2.3). You can select a value for the
parameter from the drop-down list if you have clicked on the “Show Values” button. Note that this list
might be very long. Especially for the predefined queries it usually returns all objects in the database as
any object can be used as a parameter for these queries.

126

8.1.9 Display functions

This dialog is similar to the previous dialog but displays instances of Funct ion. Note that functions are
formally special queries. Consequently, the dialogs for functions and queries are pretty much the same.
The separation into two dialogs serves quicker handling.

8.1.10 Query editor

The Query Editor (see figure 8.5) allows the interactive definition of queries. The name of the query is
entered in the upper left text field, the super class in the upper right field. After you have entered this
information, the list box “Retrieved Attributes” will be filled with all available attributes.

Now, you can select the attributes you want to have in the result. For selection of more than one
attribute, you must press the CTRL key and select the attribute with a mouse click at the same time. All
attributes can be deselected by the popup menu.

Query Editor {Latest operation status: Operation successful) i

Query Name HighSalary Specialization of | Employee

~Retrieved Attribumtes ———————————————————— §§ -Computed Attributes

dept : Department csal : Integer

salary : Integer :

-chstrmm ... iAdd R s I

§ (this salary ~csaly and (~csal = 40000) §

- Telos Definition
cienlass HighSalary iss Employee with
computed_attribute
csal D Integer
constraint
¢ B this salary ~csal) and (~cgal = 0000% §
end

| Tell ‘ | Ask Query | ‘ Cancel

Figure 8.5: Query Editor

In the right listbox you can add computed attributes. The right mouse button brings up a popup menu,
which lets you add or delete an attribute.

In the text area below the two list boxes, you can add a constraint in the usual CBQL syntax. The
constraint must be enclosed in $ signs.

The text area below, shows the Telos definition of the query and is updated after every change you have
made. If your query is finished, you can press the “Ask query” to test the query, i.e. it is told temporarely
and the results are shown in separate window. If you are satisfied with the result you can press the Tell
button to store the query in the object base.

127

8.1.11 Tree browser

Note: The tree browser has been removed from CBlIva due to legacy dependencies on packages no
longer supported by Java.
The Tree browser (see figure 8.6) displays the super classes, classes and attributes of an object in a tree.

To start the tree browser, you must mark an object in the Telos editor and select the item “View Object as
Tree” from the popup menu or the Edit menu.

Class

“u Class
@ “yin
@ ™y Individual
G —in
@ "y ish
@ — Proposition
@ — Class
isA
D "y afttibute
@ ™y rule : MSFOLrule
@ —in
@ — izh
@ — attribute
@ = mrule : MRule
@ — congtraint : MSFOLconstraint

o &'

‘ Ok || TelosEditor H View Ohbject as Tree

Figure 8.6: Tree Browser

To expand an item, just double click on the icon. If you mark an object name in the tree, you can

load into the Telos editor with the “Telos Editor” button or open a new tree browser with the button “View
Object as Tree”.

128

8.2 The graph editor CBGraph

The CBGraph Editor is an advanced graphical modelling tool that supports the browsing and editing of
Telos models. It supports user-definable graphical types, i.e. objects may be visualized by dedicated graph-
ical layouts. In addition to predefined graphical types, the user can add his/her own graphical types by
modifying and adding certain objects in the knowledge base. Furthermore, the standard components can
be replaced by own classes implementing specific application-dependent behaviour.

In the following, we first give an overview of CBGraph application and then present the main compo-
nents and functions of CBGraph. Details about the use of graphical types can be found in Appendix C. An
example for the definition of graphical types of the Entity-Relationship model is given in Appendix D.2.

8.2.1 Overview

The CBGraph Editor is entirely written in Java. It can therefore be used on any platform with Java 1.4 or
compatible successors of Java 1.4. CBGraph is integrated with CBlva, i.e. Telos frames of objects shown
in CBGraph can be loaded directly into a Telos editor and vice versa. CBGraph allows to open several
’internal windows’ in its main window. Each internal window has a separate connection to a CBserver.
Thus, within a CBGraph you can establish multiple connections to the same CBserver or even to different
servers.

The communication with the CBserver is done using pre-defined ConceptBase.cc queries and a special
XML-based answer format. CBGraph requests information about the objects (names, attributes, etc.) but
also about their graphical type.

File Edit OQOptions View Current connection

L {— Create a_tt'r_ r# A et

DefaultjavaPalette: oHome - localhost:4001 o' @ NoPalette - offline

a

"N .

Individual QueryClass

| E

QueryClass in Class isA Cla|
attribute
retrieved_attribute © Pro|_
computed_attribute : Pr
conhstraint @ MSFOLqueny | -

1 Il » I b

ER_GraphBrowserPalette: oHome - localhost4001 :

RelationshipType

[4]

M=

QueryClass

1 1l »

 Connected with localhost

Figure 8.7: CBGraph with three internal windows

Figure 8.7 gives an overview of the CBGraph Editor. Three internal windows have been opened, the

129

two windows on the left have been connected with the same server running on “localhost”, port 4001. The
small window in the upper right corner is not connected to a server, but a few objects have been created.
The title of the internal windows displays the graphical palette and the current module (if connected to
a ConceptBase server) plus the connection status (either "offline’ or the hostname and portnumber of the
ConceptBase server). The content of an internal window is a graphical view on the database module of the
ConceptBase server it is connected to. It is possible that different internal windows connect to different
ConceptBase servers, though this is not a typical use of CBGraph. If you start CBGraph from CBlva, then
you can only start a single instance of it. However, you can start any number of CBGraph instances via the
’cbgraph’ command (see below).

The two left internal windows of figure 8.7 are connected to the same server and show the same model
but in different representations. This is caused by the fact, that for the upper window, the default graphical
palette has been chosen, and for the lower window, a customized graphical palette specifically designed for
the ER model has been selected (see appendix D.2 and C).

Furthermore, you can notice that the object “QueryClass” is represented by two different components.
In the upper view, the detailed component view has been activated by a double-click on the object. It shows
the Telos frame of the object. By a double-click on the title bar of this component, one can switch back to
the default view of this object. Thus, each object can be shown by a small component (the default view)
and a large component which gives more detailed information. Components are in this context specific
Java objects, namely instances of javax.swing.JComponent. Thus, different components can be provided
to represent an object (e.g., tables, buttons, text fields). You can implement your own component and
integrate into CBGraph by extending a specific Java class. Details about the customization of CBGraph
using graphical types and other components can be found in appendix C.

CBGraph can be used to edit Telos models (see section 8.2.9). It can also display implicit relation-
ships between objects, which have been derived by rules or Telos axioms. For each type of relationship
(instanstation, specializations, and attributes), one can choose to see only the explicit relationships or to
see all relationships.

8.2.2 Starting CBGraph via CBIva

CBGraph can be invoked from CBlva via the menu item Browse — Graph Editor. If CBlva is connected
with a CBserver, CBGraph will be connected to the same server and you will be prompted to enter the object
name you want to start with, the name of a graphical palette, and the database module. The graphical palette
is a Telos object which represents a set of graphical types which will be used to visualize Telos objects (see
Appendix C). On startup, CBGraph retrieves all information about the graphical types from the CBserver.
If CBIva has no connection with a server, CBGraph will be started without a connection and no internal
window will be opened within CBGraph.

The connection to a CBserver can also be established via the File / Connect menu. The dialog box has
two tabs. The first is for providing the host and port number number of the CBserver. The second is for
providing the start object (default Class”) to be displayed, the graphical palette (pick from a list), and the
database module (default "oHome™).

The most comfortable way to start CBGraph is to double-click the graph file. It is equivalent to starting
it via the command

cbgraph graph.gel

To do so, you need to configure your desktop according to the instructions at http://conceptbase.
sourceforge.net/CB-Mime.html.

8.2.3 The cbgraph command

You can also start CBGraph as a stand-alone utility. The command

cbgraph [options]

130

http://conceptbase.sourceforge.net/CB-Mime.html
http://conceptbase.sourceforge.net/CB-Mime.html

will start an unconnected graph editor. You can interactively connect it to a running CBserver and open
new windows to display graphs. More interesting is the use with a stored graph file, or several graph files,
resp.:

cbgraph [options] filename [filename ...]

The format of the graph file is called Graph Editor Layout (GEL). It stores not only the layout of nodes
and links but all other data necessary to edit the graph objects. In particular, it contains connection details
of the CBserver module from which the graph was created. You can open more than one GEL file. Each
will be loaded in its own frame.

The are a few options for the *cbgraph’ command synchronizing the data stored in the graph file with
the CBserver:

+r With this option CBGraph will be instructed to load the module sources on its current module path from
the CBserver and save it to the graph file when the ’save’ function is enacted. The ’System’ module
will not be saved since it is (typically) not changed. For example, if CBGraph displays objects of
module ”System-oHome-M1”, then the save function will store the module sources of ’oHome’ and
"M1’ to the graph file. We say "CBGraph reads the sources from the CBserver and saves them to
the graph file”. This option disables writing the module sources from the graph file to the CBserver
when CBGraph is started. An exception is applied when CBGraph needs to start a local CBserver on
the fly. Such a CBserver has an empty database (except system objects) and the module sources are
told to such a fresh CBserver as if the ”+rw” flag had been applied.

+w This option enables the reverse direction. It will instruct CBGraph to extract module sources from
the given graph file (or any graph file that is loaded via CBGraph) and tell them to the CBserver
that it is connected to. You have to start a CBserver as a separate process using the hostname and
port number that is stored in the graph file. This option disables by default including the module
sources to the graph file when saving the graph file. The CBserver can well have an empty database
because all required user-defined objects are stored as sources in the graph file. If the database is
not empty, the definitions from the sources are added to the current database. It may well be that the
operation causes an integrity violation or fails because the current user has no write permission on
a given module. In case of success we say "CBGraph loads the module sources from the graph file
and writes them to the CBserver”.

+rw Enable bidirectional synchronization (default).
-rw No synchronization.

+f Enable bidirectional synchronization and also write the module sources to text files in the directory
where your started CBGraph; useful for debugging.

If you supply these options when calling CBGraph, it will also store them in the graph file when you
store it. If you later call CBGraph with such a graph file, it will apply the stored options unless you specify
new options in the command line. Hence, the options stored in the graph file (file type ~.gel”) serve as new
defaults for synchronizing the graph file with the CBserver.

Consider the two calls of CBGraph below. The first call sets the synchronization option to ”+1r”, i.e.
stores the module sources from the CBserver in the graph file when it is saved. The second call has no such
option. Hence, it shall adopt the ”+1” that was stored earlier in the graph file example.gel.

cbgraph +r example.gel
cbgraph example.gel

This behavior is useful if you keep the models in a persistent CBserver and want to use the module
sources in the graph file only as a backup storage. It will then not tell the module sources from the graph
file to the CBserver. The TELL operation can be very costly and is redundant if the CBserver anyway has
all definitions already stored.

131

If you provide a filename (or several), then it must have been previously created by another graph editor,
e.g. a graph editor started via CBIva. The above command will then display the graph stored in the graph
file in an internal window and attempt to connect to the same CBserver that was active when the graph file
was created. Hence, the graph file is a materialized view on the CBserver database that is visualized with
’cbgraph’. You edit a graph file with ’cbgraph’ like you are editing a drawing with a drawing tool. The
only difference is that the graph is linked to the database.

If the CBserver module specified in the graph file is not accessible, the graph is still opened and you can
edit it. You can then however not commit changes to the database or add new objects from the database.
The CBGraph editor displays the connection status in the title of its internal window containing the graph.
The hostname of a CBserver in a graph file is by default localhost’. Consequently, the graph editor will try
to establish a connection to a CBserver running on localhost. If you want to connect to a remote CBserver,
then you should specify in CBlva the full domain name of the CBserver, e.g. 'myhost.acme.com’. This
long name will then be stored in the graph file that is created from a graph editor started via CBIva. Such
graph files can then be copied to other computers and can be loaded with CBGraph to auto-connect to the
remote CBserver specified in the graph file, provided that CBserver is running and accessible.

If no CBserver is accessible, CBGraph will attempt to start a local CBserver in the background provided
that the graph file specifies “localhost” as hostname and the graph file contains module sources. In other
cases, CBGraph switches to the offline mode. You can still change location and size of the graphical
elements and store it back to the graph file. But you cannot delete objects and you cannot add objects to
the database. The menus to show attributes, instances, and subclasses shall also not work.

An example on how to create and use graph files containing materialized database views is available in
the CB-Forum at http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/36139109.

There are further command line options to control the bahavior of CBGraph:

-demo Disables certain menu items such as File/Save to make CBGraph more stable in demonstration
scenarios.

-resync Loads the graph file, connects to the CBserver, then saves the graph file using the sources from the
CBserver, and exits CBGraph. This option can be used to refresh the sources of a graph file with the
module contents of a running CBserver. In particular, this is useful in combination with the option
+1.

-revalidate Instructs CBGraph to validate the nodes and links of the graph file upon start of CBGraph.
Note that invalid nodes and links may be marked and may have to be removed/corrected manu-
ally. The validation procedure is the same as the ”validate and update shown objects” option in the
”Current connection” menu of CBGraph, see section 8.2.6.

-savepng Will instruct CBGraph to save a screendump of the current graph as PNG file in the same direc-
tory as the graph file when closing CBGraph.

The options can be combined to achieve the desired bahavior, e.g.
cbgraph -resync -savepng -revalidate +r myfile.gel

The resync” option together with ”+r”” will make sure that the module sources to be stored in the graph
file are taken from the CBserver. It will also terminate CBGraph after execiting the synchronization in
order to allow bulk synchronizations of many graph files that are all views of the same database. Note that
you should start the CBserver before executing the above cbgraph command.

The “’savepng” option will store the PNG image of the current graph when exiting CBGraph. The
“revalidate” option will check whether the nodes and links in the graph file are still in the database and may
update their graphical type, if the database assigns a new graphical type to them.

8.2.4 Redirecting the CBserver location

You can use the command line argument ’-host’ to override the hostname and portnumber encoded in the
graph file. Assume a graph file "graphl.gel’ was created from a a CBserver connection at "localhost:4001°.

132

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3613919

Then, loading this graph file in a subsequent call will also connect to "localhost:4001°. If you want to use
another CBserver, e.g. running on myhost.acme.com:4002’, then call CBGraph from the command line as
follows:

cbgraph +rw -host myhost.acme.com:4002 graphl.gel

Note that the CBserver must be running at the remote location before you enter the above command.
When you subsequently save the graph file, it will have myhost.acme.com:4002’ encoded as its connec-
tion. The redirection also works in the reverse direction. So, assume that the graph file ’graph2.gel” was
created for a connection at *'myhost.acme.com:4002°. Then, the following command will redirect the con-
nection to localhost:

cbgraph +rw —-host localhost graph2.gel

The default port number is 4001. If no CBserver is running at ’localhost:4001°, then CBGraph shall
start it in the background. Note that local CBservers can currently only be started on Linux hosts.

8.2.5 Moving objects

All explicit information is a proposition in ConceptBase (see section 2.1), including attributes, specializa-
tions and instantiations. You can move objects in the graph editor by pointing the cursor to the object’s
label and then dragging it while keeping the left mouse button pressed. If a graph has many nodes and
edges, then it is recommended to first click once on the node or edge to be dragged and then to drag it. This
will switch off the anti-aliasing while dragging and thus be faster.

You may also want to select a group of objects and then move it as a whole. To do so either span
a selection box with the left mouse button around the object to be selected, or press the “shift” key and
select multiple objects individually. After a move, CBGraph shall redraw dependent edges that might be
misplaced.

Some edges like instantiation links have no label in CBGraph, depending on the graphical type associ-
ated to it (see appendix C). In such cases, a small square dot is displayed on the edge. Click on this square
dot to select the edge and to drag it. If the edge has a background color (see appendix C) different from the
edge color, then the square dot is drawn in the background color.

Moving nodes and edges can sometimes lead to quite messy edge curves where the edge middle point
is distant from the middle of the straight line between the source and destination of the edge. You can clean
up such graphs by pressing the “’shift” and “control” keys together and then click on a node whose edges
shall be straightened.

8.2.6 Menu bar

The menu bar provides access to the most important functions of CBGraph.

File menu

Connect to server: Connect to a new server. You can have multiple connections to one server or different
servers at the same time. Each connection will be represented in one internal window with the
graphical palette, database module, host name and port number in the title bar of the window. The
connection dialog consists of two tabbed panes. In the first one (Address), you can enter the host
address (name or IP number) and the port number. In the second pane (Initial Object), you can specify
the initial object to start the browsing process, the graphical palette, and the database module.

Start CBIva Workbench: Start a CB workbench (aka CBIva). If you started CBGraph directly or if you
have already closed the workbench window, you can (re-)start the workbench by this menu item. If
connected to a CBserver, the new CBlIva will list the content of the current module in its Telos editor
window.

133

Save: Save the current graph into a file. The current nodes, their location and the links will be saved into
a file which can be reloaded later. The graphical types will also be saved into the file. By default,
the file will get the extension “gel” (Graph Editor Layout). A checkbox lets to select whether you
want to save the module sources into the graph file. It overrides the *+/-rw’ options of the cbgraph
command.

Load: Load a graph that has been saved with the previous menu item. Existing nodes and links in the
current window will be erased. If the graph file was previously created to include module sources,
then the module sources are told to the CBserver before the graph is displayed®. A checkbox lets to
select whether you want to load the module sources from the graph file and tell them to the CBserver.

Print: Print the current graph. If the graph is larger than the page size, it will be automatically reduced to
fit into the page. Thus, all printouts will be on one page.

Save image of graph: Saves an image of the current graph as PNG or JPG file. The PNG file format
should be preferred as it delivers better results. For technical reasons, the image saving has to set the
background color of the node/edge labels. This can overlap with the node shapes when they are not
rectangles. If so, then use the screenshot function of your operating system to get better results.

Close: Closes CBGraph. A CBIva window will be still available if it has not been closed before.

Exit: Exit CBGraph and CBIva. This operation will close both windows of the ConceptBase.cc User
Interface (CBlva), if they were started in combination, and exit the program.

If the graph was loaded from a GEL file and it was edited in the session, CBGraph shall ask the user
whether to save the edited graph to the file when the user terminates CBGraph.

Edit menu

The operations in this menu have an effect on the selected objects. You can select an object by clicking
on it with the left mouse button. Multiple selection is possible dragging a rectangular area while holding
down the left mouse button or by holding the Shift-key and clicking on objects.

Erase Selected: This option will remove the currently selected nodes and edges from the view. This
operation has no effect on the database.

Selection: With this submenu, you can either select all objects, all nodes or all edges in the current frame.
Furthermore, you can clear your current selection.
Options menu

The options will be stored in a configuration file (see section 8.4) when you exit CBGraph.

Language: The text for menu items and buttons is available in two languages (German and English).
With this option you can switch between the languages. This option is currently without function.
All menu labels are set to English.

Background Color: Here you can change the background color of the graph to your favorite color.

Component View: With this option, you can configure the view of an object if the component view is
activated by a double click or by the popup menu. By default, a tree-like representation of the object
with its classes, instances, super classes, subclasses, outgoing and incoming attributes is used. If you
select “Frame”, then the Telos frame of the object will be shown in a text area, (see figure 8.8).

81f you load a graph file that was created with different graphical types than the ones defined in the CBserver module that CB-
Graph might be connected to, then the graph file is inconsistent with the current CBserver module. You may be able to repair the
inconsistency via the menu option Current connection / change graphical palette. Likewise, some objects displayed in the graph could
be undefined in the database. You can validate them by one of the validation tabs in the menu ”Current connection”.

134

Invalid Telos Objects: CBGraph can validate objects that are currently shown in the graph, i.e. it checks
whether the object is still valid in the database or it is has already been removed (see Current Con-
nection menu). If you select “Mark” here, then the objects will be marked with a red cross as invalid.
“Remove from display instantly” will remove the objects directly from the view.

Popup Menu: These options control the behaviour of the Popup Menu (see section 8.2.8). The delay is
the time (in milliseconds) an item of the popup menu has to be selected before the submenu is shown.
Note that the construction of a submenu might require a query to the CBserver. If the option “Popup
Menu blocks while waiting for server” is activated, then the editor will block the UI while it waits for
an answer of the CBserver. Otherwise, the query to the server will be executed in a separate thread,
and interaction with the UI will be possible. If you have the problem that some submenus are still
shown after you have used the popup menu, set the delay to 0 and activate the option “Popup Menu
blocks while waiting for server”.

Look & Feel: This option allows you to adapt the look and feel of CBGraph windows to your desktop
environment. By default, the "Metal’ look and feel is enabled. CBGraph is not yet compatible with
all Java look and feels. We thus recommend to stick to the default ’Metal’ look and feel.

Enable Click Actions: Click actions automatically trigger an active rule (see section 4) when nodes with
a certain graph type are pressed (see section C.3.3). You can enable and disable this feature. If you
want to move nodes inside a graph that has nodes with click actions, then you may want to disable
click actions until you have fnished the re-arrangement of nodes.

Enable Derived Links: By default, CBGraph can display derived links/relations to and from a given ob-
ject. If the database is large and the rules are complex, this feature becomes almost unusable due
to long delays. In such case, disable the display of derived links. The behavior of CBGraph is then
different wrt. the pop menu displayed when right-clicking on a node or link. It would show all pos-
sible attribute categories rather than only the used ones. For technical reasons, a change in this flag
becomes only effective after re-starting CBGraph.

CBGraph

File Edit Options View Current connection

€ WEAT om ol]
el M

5] DefaultjavaPalette: oHome - localhost:4001

Individual Class =

[super classes o |
[sub classes .
& O only explicit Individual QueryClass
D QueryClass --‘_,___-Quer\(lass in Class isA Class with
o T all attribute
= instance of retrieved_atiribute . Proposition;

X computed_attribute : Proposition;
[T instances constraint : MSFOLguery
[outgoing attributes - end

4] i | I

[4]

4] I | D

“ Connected with localhost

Figure 8.8: Component view of Telos objects: tree and frame

If an object is displayed in component view, one can switch back to the node view by double-clicking
its title section.

135

View menu

CBGraph has an experimental layout algorithm that may be useful to reorganize the layout of a complex
graph. The heuristic of the layout algorithm is rather simple and does not minimize link crossings.

Enable automatic layout: Call a layout algorithm everytime the graph is changed, e.g. by expanding the
attributes. Disabled by default. Enabling it is not recommended.

Undo last layout operation: Undo the last change of the graphical layout. This option is only available
when automatic layout is enabled.

Layout graph: Call the layout algorithm.
Zoom: Set the zoom factor of the graph, e.g. 120 (20 percent enlarged).

200,100,75,50,25: : Set the zoom factor accordingly.

Current connection menu

These operations have effect on the current connection, i.e. the connection of currently activated internal
window.

Query to server: This operation will open a dialog which prompts you to enter the name of a query (see
figure 8.9). The query can also be parameterized. If you click on the “Submit Query” button, the
query will be sent to the server and the result will be displayed in the listbox. You can select the
objects that should be added to the graph. Selection of multiple objects is possible.

Validate and update shown objects: This operation will check for every object, if it is still valid (i.e. if
it still exists in the database), update the graphical type of the object, and the internal cache of the
object is deleted (see below, section 8.2.10). Depending on the option “Invalid Telos Objects” (see
above), the objects will be either marked or removed from the current view.

Validate and update selected objects: Similar to the previous option but is only applied to objects in the
graphical view that have been selected.

Change graphical palette: The current graphical palette (=assignment of graphical types to nodes and
links) is replaced by another one.

Change module: Change the database module for the currently active internal window.

Querystring:Well_off_Manager -
ngus
Lloyd
Phil
| New query H Show Objects H Cancel ‘

Figure 8.9: Query dialog

8.2.7 Tool bar

The tool bar (see figure 8.10) consists of a set of buttons that are mainly short cuts for some menu items.
The right half of the tool bar provides buttons for the creation of Telos objects.

136

Open new frame Hide selected
(without connection) Obj cts Show ObJeCt Create objects

bn {- B ZENIF,

Load & Jave graph Open Show links Show added/
connection between objects removed objects

Figure 8.10: Tool Bar of CBGraph

Open a new frame (without connection): Opens a new internal window without a connection to a server.
Within this internal window, you can create new Telos objects, load existing layouts and save new
layouts. Information about the graphical types is loaded from an XML file included in the JAR file
($CB_HOME/lib/classes/cb. jar).

Load graph: see File Menu — Load
Save graph: see File Menu — Save

Hide selected objects: Hides the selected objects from the current view. This operation has no effect on
the current database, i.e. the objects will be not deleted from the database.

Open connection: Opens a new internal window with a new connection to a server. See File menu —
Connect to server.

Show object: This operation adds an object defined in the database to the graph. You will be prompted to
enter the object name of the object you want to add to the graph.

Show links between marked objects: This operation will search for relationships between the selected
objects. Do not select too many objects for this operation, n? queries have to be evaluated for n
objects.

Creation of objects: The following four buttons open the “Create Object” dialog to create new individual
objects, attributes, instantiations, and specializations. See section 8.2.9 for more details.

Show added/removed objects: Shows the objects that have been added or removed since the last commit
(or since the window has been opened). Here, you can also select objects to undo the change, i.e.
remove added objects or re-insert removed objects.

Commit: Sends the changes to the server. The list of objects to be added or removed is transformed into
a set of Telos frames and transferred to the server. This button is highlighted when some change
(added or removed object) can be committed.

8.2.8 Popup menu

The popup menu is activated by a click on the right mouse while the cursor is located over an object.

* Toggle component view:
switches the view of this object. In the detailed component view, you can either see the frame of this
object or tree-like representation of super- and subclasses, instances, classes, and attributes of this
object (see figure 8.8).

137

* Display in Telos Editor:
This operation will load the frame of the object into the Telos editor. If the Telos editor contains
already some text, then the frame is appended to the existing text.

* Super classes, sub classes, classes, instances:
for each menu item you can select whether you want to see only the explicitly defined super classes
(or sub classes, etc.) or all super classes including all implicit relationships. The query to the CB-
server to retrieve this information will be done when you select the menu item. So, the construction
of the corresponding submenu might take a few seconds.

* Incoming and outgoing attributes:
CBGraph will ask the CBserver for the attribute classes that apply to this object. For each attribute
class, it is possible to display only explicit attributes or all attributes as above. The attribute class
“Attribute” applies for every object and all attributes are in this class. Therefore, all explicit attributes
of an object will be visible in this category. However, there will be no attributes shown in the “All”
submenu, as it would take too much time to compute the extension of all implicit attributes.

¢ Add Instance, Class, SuperClass, SubClass, Attribute, Individual:
These menu items will open the “Create Object” dialog where you can specify new objects that
should be created in the database. Note, that these modifications are not performed directly on the
database. The editor will collect all modifications and send them to the CBserver when you click on
the “Commit” button. See section 8.2.9 for more details.

¢ Delete object from database:
This operation will delete the object from the database. As for the insertion of objects before, the
modification will be send to the server when you click on the “Commit” button. Note that this
operation has an effect on the database in contrast to the next operation.

¢ Hide object from view:
The object will be removed from the current view. This operation has no effect on the database, i.e.
the object will not be deleted from the database.

* Show in new Frame:
A new internal window (within CBGraph) will be shown and the selected object will be shown in
the new window.

 Straighten attached edges:
All edges starting from and ending in the selected node are made straight and the edge labels move
to the middle of the edge. This is the same function as described in section 8.2.5.

* Freeze / Unfreeze:
The position of the selected object is frozen (if not yet frozen). A “frozen” object cannot be moved
or double-clicked. To unfreeze, select this menu option again on the frozen object. The function is
useful when certain objects should not be moved, e.g. when they are serving as regions, in which
other objects are positioned.

8.2.9 Editing of Telos objects

CBGraph supports also the creation and deletion of Telos objects. A Telos object in the context of CBGraph
is a proposition as described in chapter 2. As described there, there are four types of Telos objects:

¢ Individuals,
* Instantiations (InstanceOf),
* Specializations (IsA), and

e Attributes.

138

Create Object: Individual (IR T
- |Source | |Iabe| | |Destinati0n || Select |
Name: ObjectName |
GraphType: |Defaultindividual... || At Class: | | selea |
| Ok | Cancel |) Show Attribute Instantiation
| Ok | | Cancel |
Create Object: Instantiation : Create Object: Specialization
ObjName | in Objiame | isA
Class | Class |
| Ok | Cancel | | ok | Ccancel |

Figure 8.11: Create Object dialogs for Individuals, Attributes, Instantiations, and Specializations

For each object type, we provide a dialog to create this object type as shown in figure 8.11. This dialog
is opened by clicking on one of the “Create” buttons in the tool bar, or by selecting an “Add ...” item from
the popup menu (e.g, “Add instance” or “Add subclass”). If there are some objects selected in the current
internal window, then the object names of these objects will be inserted into the text fields of the dialog
in the order they have been selected (i.e., the first text field will contain the name of the object which has
been selected first). Furthermore, if you move the cursor into a text field in the “Create Object” dialog and
select an object in the graph, then the name of this object will be inserted into the text field.

As changes might lead to a temporary inconsistent state of the database, we do not execute the changes
directly on the database. They are stored in an internal buffer in CBGraph and executed when you hit the
“Commit” button in the tool bar.

Creating Individuals: If you want to create a new individual object, you just have to specify the object
name. You have to enter a valid Telos object name, for example it must not contain spaces. In
addition, you can select a graphical type for the object. Note that the selection of the graphical type
has no effect in the database, e.g. by selecting the graphical type of a class (C1assGT) the object
will not declared as an instance of Class. If you have performed the commit operation, the object
will get the “correct” graphical type from the server.

Creating Instantiations: In the dialog for instantiations, you have to enter the name of the instance and
the name of the class in the two text fields. If the object entered does not yet exist, it will be created
and represented in the default graphical type.

Creating Specializations: This dialog is similar to the one before except that you specify here the name
of the subclass and the name of the superclass. Objects that do not exist yet, will be created and
represented in the default graphical type.

Creating Attributes: This is the most complex dialog as you have to specify the source, the label, the
value, and the category of the attribute. The source and the value (or destination) of the attribute are
normal object names. The label may be any valid Telos label. The attribute category has to be a
select expression specifying an attribute category (e.g., Employee!salary, see chapter 2). The
attribute category can be selected from a listbox by clicking on the “Select” button next to the text
field of the attribute category. All attribute categories that apply to the current source of the attribute
will be shown. Note that the list will be empty if the source object does not yet exist in the database.

If you have specified the attribute category, you can also select the attribute value from a listbox by
clicking on the “Select” button next to the text field for the attribute value. The listbox will show

139

all instances of the destination of the attribute category (e.g. all instances of Department for the
category Employee ! dept).

If you select the radio button “Show Attribute Instantiation” then CBGraph will also show the in-
stantiation link for the attribute. For example, if you create a new attribute for John with the la-
bel JohnsDept in the attribute category Employee ! dept, then the instantiation link between
John!JohnsDept and Employee ! dept will also be shown. As the graph gets quite confusing
with too many links, this radio button is not selected by default.

Deletion of objects is also possible. As this operation should not be mixed up with the removal of an
object from the current view, this operation is just available from the popup menu (item “Delete Object
from Database”).

As you might make mistakes while editing the model, there is the possibility of undoing changes.
The button “Show added/removed objects” list all objects that have been added or removed (since the last
succesful commit or since the connection has been established). A screenshot of the dialog is shown in
figure 8.12. The left list shows the objects that have been added, the right list shows the objects that have
been removed. By clicking on the button “Re-Insert/Delete” object, the selected objects will be re-inserted
in or deleted from the graph °.

| 7] Add/Remove Objects :
Currently added objects Currently erased obj.
Freddy BilllBillsDepartment
(Freddy- =Employee) Bill

(Bill- =Employee)

Re-Insert/Delete ... Close

Figure 8.12: List of objects which have been added or removed

If you are satisfied with the changes you have done, you can click on the “Commit” button. Then,
CBGraph will transform the objects to be added or removed into a list of Telos frames and send them to
the server using the TELL, UNTELL, or RETELL operation. If the operation was successful, all explicit
objects will be checked if they are still valid and if their graphical type has changed (as in the “Validate
and update” operation from the “Current Connection” menu). If there is an error, the error messages of the
server will be displayed in a message box. The internal buffer with the objects to add or remove will be not
changed in this case.

8.2.10 Caching of query results within CBGraph

To improve the performance of CBGraph, several caches are used. On the other hand, the use of a cache
causes several problems which will be addressed in this section. In particular, the caches of CBGraph are
not updated automatically if the corresponding data in the server is updated.

Graphical Palette and Graphical Types: When a connection to a server is established, CBGraph loads
the graphical palette and all its graphical types including their properties and other information. If an
object has to be shown, the server sends only the name of the graphical type, the information about
the properties are taken from the cache. Thus, if you change the graphical palette or a graphical type

9You can unselect an object by holding down the Control key and clicking on the object.

140

after CBGraph has established the connection, this change will not be visible in CBGraph. There is
currently no method implemented to update the cache manually.

Graphical Types of Objects: When an object is loaded from the server also the graphical type for this
object is retrieved. The graphical type of the object is updated when you invoke the “Validate and
Update” operation from the “Current Connection” menu.

Lists of super/sub classes, classes/instances, attributes: The lists in the popup menu or in the tree-like
view of an object are produced by evaluating queries. To reduce the communication between client
and server, each query will only be evaluated once (when the corresponding popup menu should
be shown or when the part of the tree should be shown). The result will be stored in a cache for
each object. This cache is emptied when you invoke the “Validate and Update” operation from the
“Current Connection” menu.

8.2.11 Graph files

Graph files (extension "gel’) are binary files that store the current state of a graph displayed in CBGraph.
Since they are constructed from a ConceptBase database, they are a (materialized) view on the database.
The view consists of the nodes and links displayed in the window, their positions, their graphical types,
the hostname, portnumber and module from which the graph was created, the size of the window, its
background color and image, and the window’s zoom factor. You can thus save the current state of your
graphical view in the gel file and load it in a subsequent session with CBGraph to continue editing it, much
like with a drawing tool.
The graph file stores serialized Java objects in the following sequence

String title of the internal frame
Dimension size of the graph editor
Dimension size of the internal window
Dimension size of the drawing area of the internal window
Integer number of nodes (incl. edge objects)
{ nodel

Rectangle bound of nodel

node?2

Rectangle bound of node2

}
Integer number of edges

{ String source node of edge 1
String node object on the edge 1
String destination of edge 1
String source node of edge 2
String node object on the edge 2
String destination of edge 2

}
Color background color
Float zoomfactor
String hostname
String port number
String module context as absolute path
String long title of the graphical palette
String name of the graphical palette
Integer saveflag (bitO: HAS_IMAGE, bitl: HAS_SOURCE, bit2: HAS_PARAMS)
IF HAS_PARAMS

{ String[] params

141

}
IF HAS_SOURCE
{ String saved modules e.g. "modl-mod2"
{ String source of module 1
String source of module 2

}

IF HAS_IMAGE
{ PNG image of the background image
}

Since edges are also objects in Telos, the nodes stored in the graph file include the edge node that
represents the edge itself. The graph file stores complex information about the nodes including the graphical
types of the nodes, their dimension and location. By default, the graph files stores the Telos module sources
needed to manipulate the graph. The graph file stores the sources of all modules that are on the path from
the root module System to the current module (the module that is active when the graph file is saved).
The module System is not saved since it is typically not updated. Note that ConceptBase database can
include a tree of module (see section 5.3). Hence, a graph file does in general not store the Telos sources of
the complete database. If you create graph files for all leave modules of a database, then the combination
of the graph files is completely containing the database as sources models. The extraction of Telos sources
uses the builtin query 1istModule (see section 5.8). This is in most cases a faithful listing. However,
there are rare cases when the extracted cannot be told to a CBserver. For example, if a module contains
deductive rules that are essential for satisfying integrity constraints for objects defined in the same module,
then a single TELL operation could fail bacause ConceptBase requires the deductive rules to be compiled.
See section 5.8.1 for more details.

If you specified command line parameters like ”+1”, ’-r”’, ”+rw”, or ”-rw”” at the start of CBGraph, then
these parameters are stored in the GEL file.

The background image is not stored as a serializable Java object but as a PNG image using the ImagelO
class of Java. It is always stored as the last element since the input routines shall read it until the end of the
file. Note that some strings can be just null.

8.3 An example session with ConceptBase

In this section we demonstrate the usage of the ConceptBase.cc User Interface, by involving an exam-
ple model. It consists of a few classes including Employee, Department, Manager. The class
Employee has the attributes name, salary, dept, and boss. In order to create an instance of
Employee one may specify the attributes salary, name, and dept. The attribute boss will be
computed by the system using the bossrule. There is also a constraint which must be satisfied by all
instances of the class Employee which specifies that no employee may earn more money than its boss.
The Telos notation for this model is given in Appendix D.1.

8.3.1 Starting ConceptBase

To start a ConceptBase session, we use two terminal windows, one for the ConceptBase.cc server and one
for the usage environment. We start the ConceptBase.cc server by typing the command

cbserver -port 4001 -d test
in a terminal window of, let us say machine alpha'®. The parameter -port sets the port number under which
the CBserver communicates to clients and the parameter -d specifies the name of the directory into which

10A full list of all parameters is described in section 6. Note that the script CBserver must be in the search path. It is available in
the subdirectory bin of your ConceptBase.cc installation directory.

142

the CBserver internally stores objects persistently. Then, we start the usage environment with the command
cbiva in the other window.

It is also possible to start the CBserver from the user interface. To do so, choose “Start CBserver” from
the “File Menu” of CBlva (see section 8.1.2) and specify the parameters in the dialog which will be shown
(see figure 8.13). The option Source Mode controls whether the CBserver accessing the database via the
—d parameter (database maintained in binary files), or via the —db parameter (database maintained both in
binary files and in source files). See section 6 for more details. Once the information has been entered via
the OK button, the server process will be started and its output will be captured in a window. This output
window provides also a button stop the server. If you started the server this way then you can skip the next
section, as the user interface will be connected to the server automatically.

@ Start CBserver: Parameters CBserver output

IE‘ o 4001 = Includes plugins: selactfirst -~
Database: /hame/jeusfeld/dk| ||= This is ConceptBase.cc (CBserver) 7.6.10, Skovde, 2014-01-31 -
= Copyright 1987-2014 by The ConceptBase Team. All rights reserved.
Source Mode: off ¥ | ||> Distributed under a FreeBSD license. See CB-FreeBSD-License.txt for details. A
Trace Mode: minimal - I

= M.Jeusfeld, University of Skovde,5 4128 Skovde /Sweden
Update Mode: nonpersistent |« = M.Jarke, C.Quix, RWTH Aachen, Ahornstr.55,52056 Aachen/Germany LS
= http://conceptbase. cc

Untell Mode: cleanup -

Multi- user Mode: |disabled w | ||» CBserver ready an host 'myon' serving port number 4001

Predicate Typing: |strict ¥ | ||>>>2014-01-31 13:21:06 - : CALL ENROLL_ME ON [CElva, jeusfald@myon]

£ kee|

Cache Mode L h =xx 2014-01-31 13:21:06 - CBlva_s&9558723 _9: CALL GET _MODULE_CONTEXT ON []

ECA Mode: safe - |
[l il [D |

I oK Ccancel Stop CEserver

Figure 8.13: Start CBserver dialog and CBserver output window

8.3.2 Connecting CBIva to another CBserver

By default, CBIva will automatically connect to a local or public CBserver when started. If you want
to start a CBserver with dedicated parameters from CBNIva, then first select File/Disconnect and then
establish a new connection between the ConceptBase.cc server and the user client CBIva. This is done by
choosing the option Connect from the File menu of CBIva. An interaction window appears (see Figure
8.14) querying for the host name and the port number of the server (i.e. the number we have specified
within the command cbserver -port 4001 -d test).

Connect to CBserver

T
Port: 4001 |~

Figure 8.14: The connect-to-server dialog

8.3.3 Loading objects from external files

The objects manipulated by ConceptBase.cc are persistently stored in a collection of external files, which
reside in a directory called application or database''. The actual directory name of the database is supplied
as the -d parameter of the command CBserver.

Historically, we used the terms "application’ or *object base’ instead database’. We now believe that database’ is a much better
term.

143

The -u parameter of the CBserver specifies whether updates are made persistent or are just kept in
system memory temporarily. Use —u persistent for a update persistence or —u nonpersistent
for a non persistent update mode '2.

The database can be modified interactively using the editor commands TELL/UNTELL. Another way
of extending ConceptBase.cc databases is to load Telos objects (expressed in frame syntax) stored in plain
text files with the extension *.sml. Call the menu item Load Model from the File Menu to add these
objects to the database. In our example the database (directory) Employee was built interactively and can
be found together with files containing the frames constituting the example in the directory

CB_HOME/examples/QUERIES

where you have to replace CB_LHOME with the ConceptBase installation directory. The following files
contain the objects of the Employee example expressed in frame syntax: Employee_Classes.sml,
Employee_Instances.sml, Employee Queries.sml. An alternative to interactively building
a database is to start the server with an empty database (—d (newfile)) and then add the objects in these
files by using Load Model. Note, that the *.sml extension may be omitted. During the load operation of
external models, ConceptBase checks for syntactical and semantical correctness and reports all errors to
the history window as it is done when updating the object base interactively using the editor. This protocol
field collects all operations and errors reported since the beginning of the session.

8.3.4 Displaying objects

To display all instances of an object, e.g. the class Employee, we invoke the Display Instance facility by
selecting the item Display Instances from the menu bar. In the interaction window we specify Employee
as object name. The instances of the class Employee are then displayed (see Figure 8.15).

Display Instances

Class: |Emp|0\:‘ee |Histunr |Class |v

Angus &

Bill

Christopher

Edward

Eleonore

Felix

Herbert

Jack

Joe

John

Lloyd

Mary

Max -
OK | Telos Editor Cancel

Figure 8.15: Display of Employee instances

After selecting a displayed instance we can load the frame representation of an instance to the Telos
Editor or display further instances.

8.3.5 Browsing objects

The Graph Editor is the preferred tool for browsing the objects managed by a CBserver. CBGraph is
started by using the menu item “Graph Editor” from the “Browse” menu of CBlva. Select Employee as
the initial object to be shown in CBGraph. After starting CBGraph, it will open an internal frame, connect
it with the current server, and load the Employee object.

12In nonpersistent update mode, the database is actually copied to a temporary directory. This copy will be removed when you
shutdown the server.

144

The CBGraph Editor (described in detail in section 8.2) allows you to display arbitrary objects from
the current onceptBase server. Then, we select the Employee object and choose the Sub classes option
from the context menu available via the right mouse-button. We choose to only display explicit subclasses
from the submenu and select the Manager object. The displayed graph is now expanded (figure 8.16).

localhost:4001 @ A

4 Il »

Figure 8.16: The resulting graph after expanding the node Employee with subclasses

Now we expand the node Manager, a subclass of Employee, by choosing the menu item Instances
from the popup menu for Manager. We select the menu item “Show all” to display all instances of
Manager. The resulting graph is shown in figure 8.17.

Note that different object types are represented by different graphical objects. The instances of Manager
are shown only as grey rectangles, because they are normal individual objects. The nodes Manager,
Salesman, Employee etc. are shown as ovals, since these nodes are instances of the system class
SimpleClass (see for a full description of graphical object semantics: Appendix C).

One can move nodes and links by selecting a node or a link and then holding down the left mouse
button while moving the cursor to a different position. When the button is released the selected object will
be located at the current position and the related links are redisplayed. Selection and movement of multiple
nodes and links is also possible. Nodes and linkes are selected by clicking on its label, e.g. Manager in
figure 8.17. Some links like the blue specialization link in the figure have no label. Then one can select the
link by clicking on the small square dot in the middle of the link. This square dot is by default invisible. It
becomes visible when you click on any other node or link label in the graph, e.g. on Manager.

We can further experiment with CBGraph by showing the classes and attributes of Employee. The
classes of Employee are shown by selecting “Instance of” from the popup menu. Attributes of an object
can be shown by selecting “Outgoing attributes” from the menu. The next submenu will show all attribute
classes that apply for the current object. In our example, Employee is an instance of Class. There-
fore, it has the attribute classes constraint, rule, and mrule (see figure 8.18). The attribute class
Attribute applies to all objects as in Telos any kind of object can have an attribute. Furthermore, all
attributes of an object are member of the attribute class Att ribute. As we want to see all attributes, we
select this attribute class and select “Show all” from the next submenu. All attributes and their values will
be shown in CBGraph.

CBGraph can also show implicit relationships between objects, e.g. relationships deduced by rules or

145

localhost4001

|Angus| |Eleonore|

4] Il | [»]

Figure 8.17: The resulting graph after expanding with the instances of Manager

localhost:4001 g &

=]

SimpleClass

| % forall e/Employee b/Manag... |

w%rall e/Employee m/Mana.. |
——

Toggle component view

super classes

sub classes
instance of
instances

outgoing attributes
incoming attributes
Add Instance rule [
Add Class graphtype »
Add SuperClass
[Add SubClass E
Add Attribute
4 Add Individual >
Delete Object from Database

Attribute P only explicit »
constraint k| all b

v v | wv v v v

Figure 8.18: The graph after expanding it with the classes and the attributes of the class Employee

the Telos axioms. For example, if we select the object John and select “Instance of” from the popup
menu, we can display the implicit classes of John by selecting “All” from the next submenu. As John

146

is an instance of Manager and Manager is a subclass of Employee, John is also an instance of
Employee. As there is no explicit object John->Employee, the instantiation link between John and
Employee will be represented as an implicit link, i.e. a dashed line (see figure 8.19).

The same applies also to attribute links. For example, the employee Herbert has an implicit boss-
attribute to Phi 1. This can be shown by selecting “Outgoing attributes” — “boss” — “All” — “Phil” from
the popup menu. Note, that the submenu “All” for the attribute class Attribute will be always empty
as only explicit attributes can be displayed in this category.

o @

localhost4001

FY

SimpleClass

|$ forall e/Employes thanag...|

Employee w%rall e/Employee meana...| ‘

|Angus | | Eleonore | John Lloyd Oscar Phil

4 Il | [»]

Figure 8.19: The graph showing implicit instantiation and attribute links

8.3.6 Editing Telos objects
Editing Telos objects with the Telos editor

Before we are able to edit a Telos object, we have to load its frame representation in to the Telos Ed-
itor field first. For loading a Telos object to the Editor field, we choose the Telos Editor Button from
either the Display Queries oder Display Instances Browsing facilities or the Load Frame button from the
ConceptBaseWorkbench window (see Figure 8.20).

Now we add an additional attribute, e.g. education, to the class Employee (for the description of
the Telos syntax see Appendix A). We have added the line education : String asshown in figure
8.21. To demonstrate error reports from the ConceptBase.cc user interface and how to correct them, we
have made mistakes in the syntax notation of the added attribute.

By clicking the left mouse button on the Tell icon, the content of the editor is told to the ConceptBase
server. Syntactical and semantical correctness is checked and the detected errors are reported to the Protocol
field. The report resulting from our mistakes by specifying the new attribute is also shown in figure 8.21.
Note, that this syntax error would have been already detected at the client side without interaction with the
server if we would have enabled the option “Pre-parse Telos Frames” in the options menu.

We correct the error by adding a semicolon to the previous line and choose the Tell symbol again. This
time, since there are no further mistakes, the additional attribute is added to the class Employee.

147

x CBIlva - ConceptBase.cc User Interface in Java

File Edit Browse Options Histqry windows Help-
P ofe=e e 4
[5] Telos Editor B % :

1 Employee in Class,SimpleClass with

!

2 attribute
3 name : String: 5] Display Instances i Gl v |
4 salary : Integer; E——
S dept: Department; Class: Class History IClass Iv
6 boss : Manager ECAmode PN
7 rule
s} bossrule : § forall e/Employee m) ECArule
9 (exists [Emp_and_Dep
10 === (d|Employee L
11 constraint EmployeeSalaries
12 SalaryBound: § forall e/EmployedlFunction
13 (e bosq GenericQueryClass
14 ===y GetjavaGraphicalPalette
AHis‘tory Window — : GetJavaGraphicalType
GraphicalPalette

S: ASK IEI GraphicalType

Query: get_object[Employeefobjname HighSalary =
Format: OBJNAMES, Answer Format: FH/™=* =

Result: OK Telos Editor Cancel
Employee in Class,SimpleClass with

attribute

name : String;
salary : Integer;
dept : Department;
boss : Manager

4]

Version: Now -- 2015-09-11 09:36 (UTC) Module: oHome

Figure 8.20: The TelosEditor Field with the object Employee

Now we can choose again the item Outgoing Attributes from the popup of the Graph Editor window
for the node Employee. If we select “Show all” attributes of the attribute class “Attribute” the new attribute
will NOT be shown. CBGraph uses an internal cache which will only be updated on request. Therefore,
we select the object Employee and select “Validate and update selected objects” from the menu “Current
connection”. The cache for the object Employee will be emptied. Now, showing all attributes should add
the new attribute education to the graph.

Editing Telos objects using CBGraph

Telos objects can also be edited graphically in CBGraph. In our example, we want to add another attribute
named address to the class Employee. The attribute destination of this attribute should be a new class
called Address.

First, we select the object Employee and click on the “Create Attribute” button in the tool bar or select
“Add Attribute” operation from the tool bar. As we have selected the Employee object, it should be already
inserted as source of the attribute. We have to type the label (address) and the destination of the attribute in
the text fields (see figure 8.22). As this attribute does not belong to a specific attribute category (it is just
an attribute), we do not have to specify an attribute class.

By clicking on the Ok button, CBGraph will create a new object for Address represented by the
default graphical type (a gray box). Then, it will create the attribute link from Employee to Address
with the label address. The result is shown in figure 8.23.

Now, we want to declare Address as an instance of Class. Therefore, we select Address, hold
down the Shift-key and select Class. Both objects should be selected now. We click on the “Create
Instantiation” button and a dialog as shown in figure 8.23 should appear.

148

% CBlva - ConceptBase.cc User Interface in Java

File Edit Browse Options History Windows Help

[Dl%s® [0 elea o5)

- { Tells content of Telos Editor}
[5] Telos Editor :

1 Employee in Class,SimpleClass with
attribute
name : String;
salary : Integer;
dept : Department;
boss : Manager
education: String
rule
bossrule : § forall e/fEmployee m/Manager
10 (exists d/Department (e dept d) and (d head m))
11 === (e bossm) §
12 constraint
13 SalaryBound: § forall e/Employee b/Manager x/Integer y/integer

[» |5,

IIl

OCOoO~NNoOOUEWN

6: ERROR] [t [r]

Error Message: =
Syntax error 1 in line 7, parser message:
syntax error, unexpected ', expecting LABEL or NUMBER or ',

Syntax error Unable to parse Employee in Class,SimpleClass with
attribute
name : String;
salary : Integer;
dept : Department;

Connected " Tell failed

Version: Now -- 2015-09-11 09:45 (UTC) Module: oHome

<]

Figure 8.21: Trying to add an attribute to the class Employee with the resulting error report

As we have selected the objects in the correct way, the dialog already specifies the object we want to
create (Address in Class) and we can click directly on Ok. The new instantiation link will be added to
the graph.

Now, we are satisfied with our changes and want to commit them in the server. So far, the changes
have been stored in an internal buffer of CBGraph and have not been sent to the server. We click on the
“Commit” button in the upper right corner. CBGraph generates now Telos frames for the added objects
and sends them to the server. If we did not make an error, all changes should be consistent and accepted by
the server. This is shown by the appearing message box “Changes committed”. If an error occurs, an error
message will displayed instead. The graphical editing is an alternative to the textual editing via the Telos
Editor. It is appropriate for incremental changes to a model. Larger changes should better be made via
the Telos Editor or even to an external text file that is loaded via the File / Load Model facility of CBlva.
If the changes were successfully told to the CBserver, CBGraph reloads the information of every visible
object. In particular, the graphical types of the objects will be updated. As the object Address is declared
as instance of Class, it will get the graphical type of a class, i.e. a turquoise box. The result is shown
in figure 8.24. The object Employee is shown in the detailed component view, in this case the frame
representation of the object is shown. As you can see, the attribute address is now also visible in the
frame representation.

8.3.7 Using the query facility

Lets assume that we need to ask the server for all Employees working for Angus. We open a new Telos
Editor (see menu item Browse). Then, we define a new query class (AngusEmployees) as follows:

149

localhost4001

ed

1non

SimpleClass

| $ forall e/Employee b/Manag... |

Employee Create Object: Attribut

‘.‘ |Emp|0\,ﬂee | |a]ddres Address " Select |
.

b s."o. Attr. Class: | || Select |

.) Show Attribute Instantiation
Manager
| Ok | | Cancel |
3 m‘-\‘_
t.‘ ~“'.*)
|Angus | | Eleonore | John Lloyd Oscar Phil

[4]

1 Il »

Figure 8.22: Adding an attribute to Employee

localhost4001 &

SimpleClass

Create Object: Instantiation :

Address

Address) | in
Class

=
]
\il

| Ok | Cancel |

1 Il

Figure 8.23: Adding an instantiation link between Address and Class

AngusEmployees in QueryClass isA Employee with
constraint

c: $ (this boss Angus) $
end

We can tell this query, so that it is stored in ConceptBase.cc and we can reuse it later, or we can just ask
the query, i.e. the query will told temporarily and evaluated. If we ask the query, the answer is displayed in
the Telos Editor field as well as in the history window. Figure 8.25 shows the CBIva with the query class

150

localhost:4001

SimpleClass

$ forall e/Employee b/Manag.. |

appBound
’ / |$ forall e/Employee m.fMana...|
Individual Employee
Employes in Class,SimpleClass with i
attribute
name : 5tring;
salary : Integer;
-

dept : Department;
boss . Manager;
education : String;
address : Addraess

4] i | []

4 Il »

Figure 8.24: The resulting graph after commit

and the answer.

CBlva - ConceptBase.cc User Interface in Java
File Edit Browse Options History Windows Help

O el e®

[Telos Editor 77 : o &7

1 Angus in AngusEmployees -

2 end

3 N S

4 Robert in AngusEmployees [7] Telos Editor : o= IZI
5 end 1 AngusEmployees in QueryClass isA Emplo

6 2 constraint

7 Edward in AngusEmployees 3 c: $ (this boss Angus) $

8 end 4 end

9

5
10 Bill in AngusEmployees
11 end

12

13

History Window

10: ASK | | (1] I I]

Query: AngusEmployees in QueryClass isA Employee with |~ |
constraint =]
c: $ (this boss Angus) $
end —|
ack Time: Now i
Connected
Version: Now -- 2015-09-15 13:09 (UTC) Module: oHome

Figure 8.25: Query class and its answer

We can also execute this query from CBGraph. From the menu “Current connection” we select “Query

151

to server”. A dialog we ask for the name of query class. If we have told the example query, we can type
AngusEmployees in the text field and hit on the “Submit Query”. The query will be evaluated and the
objects in the result will be shown in the list box. We can select the objects which should be added to
the graph (multiple selection with the Shift-key is possible) and click on the “Show objects” button. The
selected objects will be added to the graph, however with no connection to existing objects.

8.4 Configuration file

The configuration options are stored in a file “.CBjavalnterface” in the home directory of the user. The
settings are stored automatically on exit. You can edit the file manually with a normal text editor. It
contains name-value pairs in the format variable=value. All variables can also be modified CBlIva
via the ”Options” menu.

* Variables related to CBIva
PathForLoadModel: Path used by the load model dialog (contains the most recent directory se-
lected in a dialog).

RecentConnections: Comma-separated list of recent connections in the format host/port, applies
also to CBGraph.

PreParseTelosFrames: Frames are be parsed on client-side before sent to the server (true/false).
UseQueryResultWindow: Use the query result window to display results of a query (true/false).
ConnectionTimeout: Number of milliseconds the interface waits for a response of the server
LPICall: Enable LPI-Call (internal use only).

ShowLineNumbers: If set to t rue, the Telos editor of CBlva shall display line numbers.

CBIvaSmallfont: The font size of the TelosEditor text and log area as regular (small) font, default
12f.

CBIvaLargefont: The font size of the TelosEditor text and log area as large font, default 18f.

PublicCBserver: Either none (=disabled) or the domain name of a computer that hosts a pub-
licly accessible ConceptBase server. A port number can be appended as well like in ’cb-
server.acme.com/4002°. Default port number is 4001. The variable PublicCBserver also
applies to CBGraph and CBShell. See section 6.6 for more details. If the value is different
from ’none’, then CBIva shall attempt to connect to the public CBserver at startup.

CBIvaBrowserWindows: Set to true if CBlva shall display windows for the currently defined
queries and the visible modules nect to the TelosEditor window. Defaultis false.

DarkMode (experimental): Set to true if CBIva/CBGraph shall use the dark mode of the Ul
Look-and-Feel if supported. Default is false.
* Variables related to CBGraph
PathForLayout: Path used by the dialog to store and load graphs (contains the most recent directory
selected in a dialog).

ComponentView: Default view for the detailed representation in CBGraph (might be “frame” or
“tree”).

SaveLayoutWithGraphType: Layouts of CBGraph are stored with all information about graphical
types (true/false).

InvalidObjectsMethod: Specifies whether objects that have been identified as invalid should be
marked or deleted (mark/delete).

DiagramDesktopBackgroundColor: Background color of the desktop of CBGraph (comma-separated
representation of an RGB-value).

152

DebugLevel: Level for debug messages. Possible values are SEVERE, WARNING, INFO, CON-
FIG, FINE, FINER, FINEST (according to the java.util.logging package). Default is WARN-
ING.

ModuleSeparator: Can be either *-” or ’/’.

NodeLevelAware: Enables or disables the special behavior of nodes with negative level in CB-
Graph. See also section C.3.2. Default is “’true”.

153

Appendix A

Syntax Specifications

A.1 Syntax specifications for Telos frames

<object> —-—> <objectname> <objectname> <inspec> <isaspec>
<withspec> <endspec>
| <objectname> <inspec> <isaspec> <withspec> <endspec>

<objectname> -—> (<objectname>)
| <label> <bindings>
| <objectname> SELECTOR1l <label>
| <objectname> SELECTOR2 <objectname>

<bindings> -—> <empty>
| [<bindinglist>]
<bindinglist> —-—> <singlebinding>

| <bindinglist> , <singlebinding>

<singlebinding> —--> <objectname> / <label>
| <label> : <objectname>
<inspec> -—> <empty>

| in <classlist>

<isaspec> -=> <empty>
| isA <classlist>

<classlist> -—> <objectname>
| <objectname> , <classlist>

<withspec> -=> <empty>
| with <decllist>

<decllist> -—> <empty>
| <declaration>
| <decllist> <declaration>

<declaration> —-—> <attrcatlist> <proplist>

<attrcatlist> —-—> <label>
| <attrcatlist> , <label>

<proplist> —-—> <property>

154

| <proplist> ; <property>

<property> -—> <label> : <objectname>

| <label> : <complexref>

| <label> : <enumeration>

| <label> : <pathexpression>
<complexref> —-—> <objectname> <withspec> <endspec>
<enumeration> —> [<classlist>]

<pathexpression>--> <objectname> SELECTORB <pathargument>

<pathargument> --> <label>
| <label> SELECTORB <pathargument>
| <restriction>

| <restriction> SELECTORB <pathargument>
<restriction> ——> (<label> : <enumeration>)

| (<label> : <pathexpression>)

| (<label> : <objectname>)
<endspec> --—> end
<label> ——> ALPHANUM

| LABEL
[NUMBER

Note: ConceptBase represents internally object identifiers as id NUMBER where NUMBER is a se-
quence of digits. For this reason, labels matching this pattern are forbidden in the Telos frame syntax.

A.2 Syntax of the rule and constraint language

In the definitions below the term 1iteral is a synonym for predicate.

<assertion> —-=> <rule>
| <constraint>

<rule> —-—> forall <variableBindList> (<formula>) ==> <literal>
| <formula> ==> <literal>
| <literal>

<constraint> -—> <formula>

<formula> —-—> exists <variableBindList> <formula>

| forall <variableBindList> <formula>
| not <formula>

| <formula> <==> <formula>

| <formula> ==> <formula>

| <formula> and <formula>

| <formula> or <formula>

| (<formula>)
| <literal>
| <literal2>

<variableBindList>--> <variableBind> <variableBindList>
| <variableBind>

155

<variableBind> --> <varList> / <objectname>
| <varList> / [<objList>]
| ALPHANUM / <selectExpB>

<varList> —-—> ALPHANUM , <varList>
| ALPHANUM

<objectname> -—> <label>
| <selectExpA>
| <deriveExp>

<label> ——> ALPHANUM
| LABEL
| NUMBER

<literal> ——> FUNCTOR (<literalArgList>)

| (<literalArg> <infixSymbol> <literalArg>)

| (<arExpr> COMPSYMBOL <arExpr>)

| (<literalArg> <label>/<label> <literalArg>)
|

BOOLEAN
<literal2> —-—> (<label> in <selectExpB>)
| (<selectExpA> in <selectExpB>)
| (<selectExpB> isA <selectExpB>)
| (<selectExpB> = <selectExpB>)
<infixSymbol> ——> INFIXSYMBOL
| <label>

<literalArgList>--> <literalArg> , <literalArgList>
| <literalArg>

<literalArg> ——> <objectname>

<arExpr> ——> <arExpr> + <arTerm>
| <arExpr> - <arTerm>
| <arTerm>

<arTerm> ——> <arTerm> x <arFactor>
| <arTerm> / <arFactor>
| <arFactor>

<arFactor> -—> (<arExpr>)
| <objectname>
| <funExpr>

<selectExpA> ——> <selectExpA> <selector> <selectExpA>
| (<selectExpA>)
| <label>

<selector> ——> SELECTORL1
| SELECTOR2

<deriveExp> —-—> <label> [<deriveExpList>]

| <label [<literalArgList>]
| <funExpr>

156

<funExpr> —-=> <label> ()
| <label>(<literalArgList>)

<deriveExpList> —--> <singleExp> , <deriveExpList>
| <singleExp>
<singleExp> --> <literalArg> / <label>

| <label> : <label>

<selectExpB> ——> <label> SELECTORB <label>
| <label> SELECTORB <selectExpB2>
| <label> SELECTORB <restriction>

<selectExpB2> —-—> <selectExpB>
| <restriction> SELECTORB <label>
| <restriction> SELECTORB <selectExpB2>
| <restriction> SELECTORB <restriction>

<restriction> ——> (<label> : <label>)
| (<label> : <selectExpA>)
| (<label> : <selectExpB>)
| (<label> : [<objList>])
<objList> —-—> <objectname> , <objList>
| <objectname>

A.3 Syntax of active rules

The event, condition and actions of an ECArule are specified as a special assertion. Therefore, the syntax
is an extension of the normal assertion language, shown in the section before.

<ecarule> ——> <variableBindList>
ON [TRANSACTIONAL] <ecaevent> [FOR ALPHANUM]
<ifclause> <ecacondition>
DO <actionlist>

<optelseaction>
<ifclause> --> IF
| IFNEW
<ecaevent> —-—> <eventop> (<literal>)

| <eventop> <literal>
| <askop> (<literalArg>)
| <askop> <literalArg>

<eventop> -—=> Tell | tell
| Untell | untell

<askop> -—> Ask | ask
<ecacondition> —--> <condformula>
| true
| false
<condformula> -=> <literal>

| not <condformula>
| <condformula> and <condformula>
| <condformula> or <condformula>

157

| (<condformula>)

<actionlist> --—> <action> , <actionlist>
| <action>

<action> —-—> <actionop>(<literal>)
| <actionop> <literal>
| noop
| reject

<actionop> -=> Tell | tell
| Untell | untell
| Retell | retell
| Ask | ask
| Call | call | CALL
| Raise | raise

<optelseaction> --> ELSE <actionlist>
| <empty>

A.4 Terminal symbols

ALPHANUM -—> [a-z|A-Z|0-9|ACCENTCHAR]+
ACCENTCHAR —-—> umlauts and accents that are included in the 8bit ASCII code
LABEL -—> sequences of characters excluding .[""S$:;!"—>=, () []1{}/ and
special characters like newlines, tabs, backspace, blanks
| any sequence of characters enclosed in double quotes ("),

a double quote must be escaped by \ which must be escaped by
| any sequence of characters enclosed in $ except $,
which must be escaped by \

NUMBER -—> REAL | INTEGER
REAL —=> [=1?([0-91+4\.[0-91%|[0-9]%\.[0-9]+) ([Ee] [-+]12[0-9]+)?
INTEGER -—> [-]2[0-9]+
BOOLEAN --> TRUE | FALSE
FUNCTOR -—> From | To | A | Ai | AL | In
| Isa | Label | P | LT | GT | LE | GE | EQ | NE | IDENTICAL

| UNIFIES | Known

COMPSYMBOL ——> < | > | <= | >= | = | <> | =] \=
INFIXSYMBOL —-> COMPSYMBOL | in | isA

SELECTOR1 ——> wim o owem

SELECTOR2 NI

SELECTORB ——> mw o wgm

158

A.5 Syntax specifications for SML fragments

This format is only internally used to represent Telos frames as Prolog terms. It is included only for
historical reasons.

<SMLfragment> --> SMLfragment (<what> , <in_omega> , <in> , <isa> , <with>)
<what> --> what (<object>)
<in_omega> —-—> in_omega (nil)

| in_omega ([<classlist>])

<in> ——> in(nil)
| in([<classlist> 1)

<isa> ——> isa(nil)
| isa([<classlist> 1)

<with> ——> with(nil)
| with([<attrdecllist> 1)

<classlist> —-—> class (<object>)
| <classlist> , class (<object>)

<attrdecllist> --> attrdecl (<attrcategorylist> , <propertylist>)
| <attrdecllist> , attrdecl (<attrcategorylist> , <propertylist>)

<attrcategorylist>--> nil
| [<labellist>]

<propertylist> —--> nil
| [<propertylist2>]

<propertylist2>--> property(<label> , <propertyvalue>)
| <propertylist2> , property(<label> , <propertyvalue>)

<propertyvalue>--> <object>
| <selectExpB>
| enumeration([<classlist>])
| [<SMLfragment>]

<selectExpB> ——> selectExpB(<restriction> , <selectOperator> , <selectExpB>)
| selectExpB(<restriction> , <selectOperator> , <object>)
| selectExpB(<object> , <selectOperator> , <selectExpB>)
| selectExpB(<object> , <selectOperator> , <object>)

<restriction> --> restriction(<label> , <selectExpB>)
| restriction(<label> , enumeration([<classlist>]))
| restriction(<label> , <object>)

<selectOperator> —-> dot
| bar
<labellist> -—> <label>

| <labellist> , <label>
<label> ——> ALPHANUM

| LABEL
| NUMBER

159

<object> -——>

<substlist> ——>

<singlesubst> -->

<selectexp> ——>
|
|

derive ([<substlist>])
<selectexp>

<singlesubst>
<substlist> , <singlesubst>

substitute (<object> , <label>)
specialize (<label> , <label>)

<label>

select (<selectexp> , SELECTORI,
select (<selectexp> , SELECTORZ,

160

<label>)
<selectexp>

)

Appendix B

O-Telos Axioms

O-Telos is the variant of Telos (originally defined by John Mylopoulos, Alex Borgida, Manolis Koubarakis
and others) that is used by the ConceptBase system. This list is the complete set of pre-defined axioms of
O-Telos and thus defines the semantics of a O-Telos database (without user-defined rules and constraints).
The subsequent axioms are written in a first-order logic syntax but all can be converted to Datalog with
negation (though there is some choice in the conversion wrt. mapping to rules or constraints).

Axiom 1: Object identifiers are unique.
v 0,21,MN1,Y1,22,M2,Y2 P(Oa xlanlayl) A P(O) T2, N2, 292) =
(X1 =22) A (N1 =n2) A (11 = ¥2)

Axiom 2: The name of individual objects is unique.
Vo1,02,n P(01,01,1,01) A P(02,02,n,02) = (01 = 02)

Axiom 3: Names of attributes are unique in conjunction with the source object.
Y o1,%,m,Y1,02,y2 P(o1,x,n,y1) A P(o2,z,n,y2) = (01 = 02) V (n =in) V (n = isa)

Axiom 4: The name of instantiation and specialization objects (in, isa) is unique in conjunction with
source and destination objects.
v 01,%,M,Y, 02 P(01a$7 n>y) A P(02,$7’I’L,y) A ((TL = Zn) \4 (n = ’LSCl)) = (Ol = 02)

Axioms 5,6,7,8: Solutions for the predicates In, Isa, and A are derived from the object base.
Yo,x,c Plo,z,in,c) = In(zx,c)

Y o,c,d P(o,c,isa,d) = Isa(c, d)

v 0,Z,1,Y, P, C,M, d P(Oa ‘T,nvy) A P(pv ¢, m, d) A II’Z(O,p) = AL(:c,m,n,y)

Yz, m,n,y AL(x,m,n,y) = Az, m,y)

Axiom 9: An object x may not neglect an attribute definition in one of its classes.
YVa,y,p,¢c,m,dIn(z,c) N Alx,m,y) A P(p,c,m,d) =
Jo,n P(o,z,n,y) AIn(o,p)

Axioms 10,11,12: The isa relation is a partial order on the object identifiers.
Y ¢ In(c, #0Obj) = Isa(c, ¢)

Ve, d,elsa(c,d) Alsa(d, e) = Isa(c, e)

Ve, d Isa(e,d) AN sa(d,c) = (¢ =d)

Axiom 13: Class membership of objects is inherited upwardly to the superclasses.
Vp,x,c,dIn(z,d) A P(p,d,isa,c) = In(z,c)

Axiom 14: Attributes are “typed” by their attribute classes.
Vo,z,n,y,p Plo,x,n,y) AIn(o,p) = ¢, m,d P(p,c,m,d) A\ In(z,c) A In(y,d)

161

Axiom 15: Subclasses which define attributes with the same name as attributes of their superclasses
must refine these attributes.

v & daal,a27mvea f

Isa(d,c) N P(a1,c,m,e) A P(az,d,m, f) = Isa(f,e) A Isa(az, a1)

Axiom 16: If an attribute is a refinement (subclass) of another attribute then it must also refine the
source and destination components.

Ve, d,ar,az,my,ma, e, f

Isa(ag,a1) A P(ai,c,my,e) A P(ag,d,ma, f) = Isa(d, c) A Isa(f,e)

Axiom 17: For any object there is always a unique “smallest” attribute class with a given label m.
v x,m,y,c, da ar, az, €, f (IH(IL’, C) A In(x, d) A P(G’l? c,m, 6) A P(a27 da m, f)
= 3g,a3,hIn(z,g) A P(as,g,m,h) Nlsa(g, c) A lsa(g, d))

Axioms 18-22: Membership to the builtin classes is determined by the object’s format.
Vo,z,n,y (P(o,z,n,y) < In(o,#0bj))

Vo,n (P(o,0,n,0) A (n #in) A (n # isa) < In(o, #Indiv))

Vo,x,c(P(o,z,in,c) A (0 # x) A (0 # ¢) < In(o, #Inst))

Vo,c,d (P(o,c,isa,d) A (o # c) A (o # d) < In(o, #Spec))

Vo,z,n,y (Plo,z,n,y) A (0o#x)A(o#y) A(n#in)A(n#isa) < In(o, #Attr))

Axiom 23: Any object falls into one of the four builtin classes.
Y o In(o,#0bj) = In(o, #Indiv) V In(o, #Inst) V In(o,#Spec) V In(o, #Attr)

Axioms 24-28: There are five builtin classes.
P(#0bj, #0bj, Proposition, #0bj)
P(#Indiv, #Indiv, Individual, #Indiv)
P(#Attr, #0bj, attribute, #0bj)
P(#Inst, #0bj, InstanceOf, #0bj)
P(#Spec, #00bj, IsA, #0bj)

Axiom 29: Objects must be known before they are referenced. The operator < is a (predefined) total
order on the set of identifiers.
Vo,z,n,y Plo,z,n,y) = (x 2 0) A (y 2 0)

Axioms 30,31 (axiom schemas): For any object P(p, ¢, m, d) in the extensional object base we have
two formulas for “rewriting” the In and A predicates. The In is mapped to a unary predicate where
the class name is forming part of the predicate name and the A predicates is mapped to a binary
predicate that carries the identifier of the class of the attribute in its predicate name. Internally,
user-defined deductive rules that derive In and A predicates will also be rewritten accordingly. This
extends the choices for static stratification.

Y o In(o,p) = In.p(0)

Yo,z,n,y Plo,x,n,y) AIn(o,p) = A.p(z,y)

The following axioms are taken from papers on Telos (i.e. formulated by Mylopoulos, Borgida, Kouba-
rakis, Stanley and Greenspan): axioms 2, 3, 4, 10, 12, 13, 14. Axiom 1 is probably also in an earlier Telos
paper though we could not immediately find it there. The axioms 15 and 16 are similar to the structural ISA
constraint of Taxis [MBWS80] for attributes. In O-Telos, we do however not inherit attributes downward
to subclasses but rather constrain refined attributes at subclasses in the sense of co-variance. Moreover,
attributes in O-Telos are objects as well, hence the notion of specialization is more complicated than for
the Taxis case. Axiom 17 is needed to be able to uniquely match an attribution predicate to a most specific
attribute. This is utilized in the compilation of logical expressions, in particular for generating triggers
that only evaluate the affected logical expressions when an update occurs. The remaining axioms 18-28
are also specific to O-Telos. They define the five predefined objects in O-Telos. Axiom 29 takes care that
objects cannot refer via its source/destination parts to objects that were defined later than the object itself.
This virtually forbids to define an link between two objects when one of the objects is not yet defined.

162

While this sounds natural, we need to posutlate it. Otherwise, we can’t guarantee that we can refer to
any object by a name. Axioms 30 and 31 are used to transfer instantiation and attribution facts from the
extensional databases to the intensional database. They have more a technical purpose in the mapping of
logical expressions to Datalog.

While O-Telos has just five predefined objects and 31 predefined axioms, the ConceptBase system
has many more pre-defined objects to provide a better modeling experience and for representing concepts
like query classes, active rules, functions etc. They are in a way also predefined but are less essential in
understanding the foundations. So, O-Telos is the foundation of ConceptBase but ConceptBase has more
pre-defined constructs than those mentioned in the axioms of O-Telos.

Axiom 15 is only applicable to attribute classes, i.e. where the attribute value is an object that potentially
can have instances. If the attribute value is for example a number, then ConceptBase will not enforce the
axiom. We leave the formula unchanged, since classes for numbers such as Integer, are not part of the
axiomatization.

ConceptBase allows to add user-defined rules and constraints. The semantics of an O-Telos database
including such rules and constraints is the perfect model of the deductive database with the P(o, z,n,y)
as the only extensional predicate and all axioms and user-defined rules/constraints as deductive rules. Note
that integrity constraints can be rewritten to deductive rules deriving the predicate inconsistent.

This list of axioms is excerpted from M.A. Jeusfeld: Anderungskontrolle in deduktiven Objektbanken.
Dissertation Universitit Passau, Germany, 1992. Available as Volume DISKI-19 from INFIX-Verlag, St.
Augustin, Germany or viahttp://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d340216/
diskil9.pdf (in German).

Axioms 19-21 have been corrected after Christoph Radig found an example that led to the undesired
instantiation of an individual object to #Inst or #Spec, respectively.

163

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d340216/diski19.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d340216/diski19.pdf

Appendix C

Graphical Types

The concept of a graphical type enables the specification of an external graphical presentation for Concept-
Base objects. The graphical type is declared using a special pre-defined attribute category. An application
program then uses this information to determine the graphical presentation of an object.

The next subsection introduces the basic concepts behind graphical types, while section C.2 presents the
standard graphical type definitions for the ConceptBase Graph Editor. Section C.3 describes the definition
of application-specific types.

C.1 The graphical type model

A specific graphical type is defined as an instance of the object GraphicalType. CBGraph uses the
subclass JavaGraphicalType. Instances of this class specify a graphical representation of an object
by defining graphical attributes such as shape, color, line thickness, font etc. Since the actual attributes and
their admissible value depend on the used visualization tool, the definition of GraphicalType looks
very simple.

GraphicalType in Class

end

JavaGraphicalType isA GraphicalType
end

The declaration of a graphical type for a concrete object is done by using the attribute graphtype
which is defined for Proposition and therefore available for all objects:

Proposition with
attribute
graphtype : GraphicalType
end

The attribute can be defined explicitely for an object or can be specified by using a deductive rule (see
section C.2 for an example). One can attach a priority value to each graphical type. If there multiple
graphtype attributes defined for one object, the graphical type with the highest priority value will be used
by CBGraph.

Many modeling applications require multiple notations to provide different perspectives on the same
set of objects. Each perspective emphasizes a specific aspect of the world, such as the data-oriented, the
process-oriented and the behavior-oriented viewpoint, and uses an aspect-specific notation. A graphical
notation (as e.g. the Entity-Relationship diagram) typically consists of a set of different graphical symbols
(as e.g. diamonds, rectangles, and lines). A graphical palette is used to combine the set of graphical types
that together form a notation. Note that CBGraph uses JavaGraphicalPalette instead of the less
expressive GraphicalPalette.

164

Individual GraphicalPalette in Class with

attribute
contains : GraphicalType;
default : GraphicalType
end
JavaGraphicalPalette in Class isA GraphicalPalette
end

In such a setting the same object may participate in different perspectives. ConceptBase offers the
possibility to specify multiple graphical types for the same object. A tool can then provide different graph-
ical views on the same object. To get the desired graphical type of an object under a specific palette, an
application program specifies the name of the actual graphical palette as answer format when querying the
ConceptBase server. Although this mechanism is available for arbitrary application programs we restrict
our description to the CBGraph Editor.

The default specification serves as a catch all: an answer object, for which none of the graphical
types of the current palette is specified, is presented using the default graphical type of that palette.

C.2 The standard graphical types

CBGraph is implemented using the Java Programming Language. It is entirely based on the Swing toolkit
(package javax.swing). The graphical objects shown in CBGraph are all instances of the class JComponent
in the javax.swing package. User-defined representations of objects can be provided by overwriting a
specific class of CBGraph (details are given below).

C.2.1 The extended graphical type model

Based on our experience with a legacy graph browser for X11, we have extended the graphical type
model for the CBGraph Editor. First, the class GraphicalType has been specialized by a class Java—
GraphicalType:

Class JavaGraphicalType isA GraphicalType with
attribute
implementedBy : String;
property : String;

priority : Integer
rule
rPriority : $ forall jgt/JavaGraphicalType (not (exists i/Integer
A_e(jgt,priority,i))) ==> A(jgt,priority,0) $
end

Individual DefaultIndividualGT in JavaGraphicalType with

property

bgcolor : "210,210,210";

textcolor : "0,0,0";

linecolor : "0,0,0";

shape : "i5.cb.graph.shapes.Rect"
implementedBy

implBy : "i5.cb.graph.cbeditor.CBIndividual™"

end

The object DefaultIndividualGT is an example for the instantiation of a graphical type. The
attribute implementedBy specifies the full name of the Java class that provides the implementation for
this graphical type. This class has tobe asubclassof "i5.cb.graph.cbeditor.CBUserObject".
The property attribute specifies name-value pairs which will be used by the Java implementation to set
certain properties, e.g. color, shape, font!. The priority value is used to resolve ambiguity if multiple

IColors are given as RGB color value, e.g. 210,210,210 is light grey and 0,0,0 is black.

165

graphical types apply to one object. The graphical type with the highest priority will be used. The rule
specifies a default value of O for the priority.

The graphical palette has also been extended. There are now defaults for different types of objects, and
graphical types for implicit links can be defined. Thus, the default attribute defined in Graphical-
Palette will not be used anymore. The contains attribute has still to be used, i.e. a graphical type
will only be used if it is also contained in the current graphical palette. Although the attributes are not
declared as single and necessary, each graphical palette should have exactly one value for the each
of the default and implicit attributes.

Class JavaGraphicalPalette isA GraphicalPalette with
attribute

defaultIndividual : JavaGraphicalType;
defaultLink : JavaGraphicalType;
implicitIsA : JavaGraphicalType;
implicitInstanceOf : JavaGraphicalType;
implicitAttribute : JavaGraphicalType;
palproperty : String

end

JavaGraphicalPalette offer categories for the defaultIndividual graphical type (speci-
fies how nodes are displayed by default) and defaultLink (default graphical type for links). The four
implicit graphical types are for specifying how derived attributes (derived specializations, derived instan-
tiations) are visualized in CBGraph. The attribute palproperty is used for declaring any number of
properties of a palette. The properties are passed to the CBGraph Editor when it loads the palette at startup
time. CBGraph supports the following properties for palettes:

bgcolor: sets the background color of the windows that displays the graph; format should be "r, g, b",
e.g. "255,255,255" for white

bgimage: sets the background image for the graph windows; the image shall be specified by the URL to a
PNG, GIF, or JPG image; it is scaled by the CBGraph editor to fit into the internal window showing
a graph of this palette

longtitle: used for setting the title of the graph windows employing this palette; if no long title is specified,
then CBGraph uses the name of the palette itself for forming the window title; if the longtitle is set
to the empty string ”, then it will cause CBGraph not to include it in the title of the graph windows

The purpose of the background image is to highlight regions of a graph, e.g. regions for instances,
classes, and meta classes. Another typical use is to support canvasses like the business model canvas http:
//merkur.informatik.rwth—aachen.de/pub/bscw.cgi/d3595098/bmg-egadget .png used in
the Telos models described in the CB-Forum at http://merkur.informatik.rwth-aachen.de/pub/
bscw.cgi/d3595098/. Only "http” URLSs are supported.

If a background image is specified for a palette shown in an internal window of CBGraph, then CB-
Graph links it with the size and zoom factor of the internal window. Initially, the zoom factor is set to
100% and the internal window size is set to display the image in its original resulution, provided that it fits
well to the screen size. You can then resize the internal window and the background image shall be resized
accordingly. Analogously, the image is resized when the zoom factor changes. The background image is
also stored in the GEL file, see section 8.2.3.

C.2.2 Default graphical types

For the standard objects, there are a number of predefined graphical types. There are contained in the
graphical palette DefaultJavaPalette which is used by default by the CBGraph Editor.

166

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3595098/bmg-egadget.png
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3595098/bmg-egadget.png
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3595098/
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3595098/

type of object | graphical type | style

Individuals DefaultIndividual GT | gray box

Links DefaultLinkGT thin black line with label
InstanceOf DefaultlnstanceOfGT | green line without label

IsA DefaultIsAGT blue line without label; white edge heads
Attribute DefaultAttributeGT black line with label

Class ClassGT turquoise box

SimpleClass SimpleClassGT pink oval

MetaClass MetaClassGT light blue oval

MetametaClass MetametaGT bright green oval

QueryClass QueryClassGT red oval

Derived In ImplicitlnstanceOfGT | dashed green line

Derived IsA ImplicitIsAGT dashed blue line; white edge heads
Derived Attribute | ImplicitAttributeGT dashed black line

The object DefaultJavaPalette has also some rules which define the default relationship be-
tween objects and graphical types, e.g. all instances of Class have the graphical type ClassGT.

If you want to customize the graphical types for your model, then you must define the new graphical
types (see below) and then add them to a new graphical palette as instance of JavaGraphicalPalette.
Take the default graphical palette as a starting point since you may want to reuse some of the exist-
ing graphical types. See file 03-ERD-GTs.sml athttp://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/188651 for an example.

Starting from ConceptBase 8.2, we provide an alternative graphical palette TelosPalette, which
is closer to the style of UML class diagrams and allows for easy specialization when creating user-defined
palettes. See section C.4 for more information.

BMG_Palette in JavaGraphicalPalette isA TelosPalette with

palproperty
bgimage: "http://conceptbase.sourceforge.net/CBICONS/bgimages/bmgcolor.png";
longtitle: "Business Model"

contains
bmgl: Customer_GT;
bmg2: Revenue_GT;
bmg3: CustomerRelationship_GT;
bmg4: Channel_GT;

end

C.3 Customizing the graphical types

To support the user in defining his own graphical types we provide some examples and documentation of
the properties.
There are two ways to customize the graphical types:

 Defining new graphical types with dedicated graphical properties properties using the provided im-
plementations
i5.cb.graph.cbeditor.CBIndividual (for nodes) and i5.cb.graph.cbeditor.CBLink (for links)

* Defining new graphical types with a different implementation class which extends
i5.cb.graph.cbeditor.CBUserObject (or CBIndividual or CBLink); this option requires changes to the
Java source code of CBGraph

Both possibilities will presented in the next two subsections.

167

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651

C.3.1 Graphical properties of nodes and links

The easiest way to modify the representation of an object in the CBGraph Editor is to load an existing
graphical type, modify its properties and store it as a new graphical type.

The properties available and there meaning are given in the following. Note that colors have to be given
as RGB color value, e.g. ”0,0,0” is black, 7255,0,0” is red, 7255,255,255” is white, etc. Furthermore, all
attributes have to be strings, even if they are just numbers, e.g. use ”’1” instead of 1 as attribute value.

bgcolor: Background color of the shape (default: invisible).

textcolor: Foreground color of the shape (i.e. text color) (default: black ~0,0,0™).
linecolor: Color of the border of the shape (default: invisible).

linewidth: Width of the border of the shape (default: ’17).

edgecolor: Color of the edge (default: black 70,0,0”); for CBLink only.

edgeheadcolor: Color of the edge head; the edge head is drawn in edge color if no edge head color is
defined; for CBLink only.

edgeheadshape: Shape of the edge head at the destination side. If set to "none”, then the edge head has
no shape. Possible other values are listed in the table below; for CBLink only.

edgewidth: Width of the edge (default: ’17); for CBLink only.

edgestyle: possible values are: “continuous”, “dashed”, “’dotted”, ”dashdotted”, ”Idashed” (dashed with
longer intervals), ”Idotted” (default: ’continuous”); for CBLink only.

shape: The name of the class representing the shape and implementing the interface 15.cb.graph. -
shape.IGraphShape (default: no shape). The package 15.cb.graph. shape defines some
useful default shapes, see below for details. The shape will be drawn in the background of the small
component. In the default implementation, the small component is a transparent JLabel, thus the
shape is completely visible. Note, that this might not be the case if you are going to change the
implementation of a graphical type (see subsection C.3.4 below).

image: The location (URL) of an image icon file that shall be used to display a node (CBIndividual) The
image tag is a replacement for the shape attribute but can also be combined with a shape. The image
icon can be in PNG, GIF, or JPG format. See subsection C.3.5 for more details.

textposition: Relative position of the node’s text label to the image icon. This property is only evaluated

if a graphical type defines an image icon. Possible values are “center”, "left”, “right”, “top”, and
“bottom” (default).

label: The label to be used for this object instead of the object name.

labellength: The maximum number of characters displayed as label of an object in CBGraph (default:
”40”). A label that exceeds the length is truncated to the maximum length and the last four characters
are replaced by ” ...”” in the display in CBGraph.

[TIEEY)

align: Alignment of the label; possible values are “center”, left”, “right”, "top”, “bottom”, “topleft”,
“topright”, “bottomleft”, and “bottomright”; default is “center”.

size: Initial size of the node in pixels, e.g. 720x20”; the non-numeric values “resizable” (node size can
be resized) and “wrap” (node size can be resized and label will be wrapped) are allowed as well.
The value ”wrap_” works like ”wrap” but shall also replace ”_” in the node label by a blank. If the
value is ”wrap”, then each uppercase character except the first character will have an extra preceding
blank. This allows to handle very long labels in combinantion with the labellength property. If the
size property is set, the user can also resize the element via mouse actions (default: undefined, then

the size is set by CBGraph).

168

location: Designate the initial location of a node or the label of an edge. The value shall be in the format
”x,y”. For example, the value ”10,100” has the x coordinate 10 and the y coordinate 100. This
property may be useful when certain nodes should have a given initial location, e.g. for canvas nodes
that contain other nodes. (default: undefined, then the location is set by CBGraph).

freeze: The value ’yes” indicates that the node (or the edge label) is fixed to its current location in the
graph editor. The value “no” (default) indicates that the node can be freely moved. You can set this
flag also via the “gproperty” attribute individually for each object (see section C.5).

nodelevel: The level of the node relative to the standard node layer (=200) in the graph’s diagram. Negative
values put the node more in the background, positive values more in the foreground. Use this feature
if you want to put certain nodes on top of each other (default: ”0”).

font: Name of the font to be used for the shape (e.g., ”Arial”, default: Default font of Java).
fontsize: Size of the font in pixels (default: default font size of Java).
fontstyle: The style of the font (e.g., ’bold”, italic”, underlined”, ”bold,italic”, ...).

clickaction: The name of a query class that shall be called directly when an object with this graphical type
is clicked. See section C.3.3 for details.

Edges with empty label (anonymous edge) are displayed with a square dot in the middle of the edge?.
The color of the square dot is by default the edgecolor and its size is set to 6 pixels. If the graphical type
of an anonymous edge has bgcolor defined, then the square dot is adjusted to the edgewidth and displayed
in bgcolor. If you set an explicit bgcolor for an edge, then the bounding box around the edge label shall be
painted in that color. If you choose as bgcolor the same value as for the bgcolor of the palette, then edge
labels appear more readable.

Do not forget to include the new graphical type into the graphical palette. It is not necessary to define a
new graphical palette, you can extend the default palette. Furthermore, you have to define the graphtype
attribute of some object in such a way that it refers to the new graphical type. Make sure, that the new
graphical type has a higher priority than other graphical type which might apply (10 is the highest priority
of the default graphical types).

The color strings in bgcolor, textcolor, linecolor, and edgecolor are encoded in the format "r, g, b",
where 1, b and g represent the red, green, and blue share of the color. All values must be from O to 255.
The color string "0, 0, 0" results in black and "255, 255, 255" results in white. You can also add a
so-called alpha value for the transparency of the color as fourth component of a color string. The value
255 stands for opaque (not transparent) colors. This is also the default. The smallest value 0" stands for
maximal transparency, i.e. the color is not visible at all. Any value in between is a relative transparency. For
example, "255, 0, 0, 127" represents a red color that is about 50% transparent with respect to objects
below such as the background.

An example of user-defined graphical types can be found in D.2, see also the CB-Forum at http://
merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651 for a complete specification of ER
diagrams including graphical types.

Below are the supported edge head shape (property edgeheadshape). Theoretically, you can also
use the node shapes like Rect but they are not configured specifically for edge heads and would be ren-
dered in tiny sizes.

2 An empty label is a label equal to " ". Such labels only work for edges. If you want to display an node with an empty label, then
set the label to ™ " (one blank character).

169

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/188651

| edge head shape | description
Arrow triangular arrow head (default for thicker edges)
Arrow Vee vee-shaped arrow head (default for thin edges)
SmallArrow small arrow head with straight base
RevArrow reversed arrow (base pointing to the object))
HalfArrow half arrow head
Karo diamond-shaped arrow head
Square square arrow head
Circular circular arrow head (approximated)
Caret caret shaped arrow head
Bar small bar orthogonal to the edge line
Dot small square arrow head
none no arrow head

C.3.2 Node levels

CBGraph paints the nodes and edges of a graph in a so-called layered pane. This helps to separate nodes
from edges and from interactive elements such as pop-up menus. The default absolute level for a node is
200 and the default absolute level for an edge is 100. That means that nodes are by default painted on top
of edges, i.e. the node’s shape is painted over an edge if they overlap. In some modeling languages, one
may want to have certain elements always painted over some other elements. For example, the process
elements of a BPMN process model should be painted on top of the pool, in which they are defined. Or
consider a traffic light element that is composed of red, yellow and green lights. Then the symbol for the
traffic light element should be painted below the symbol for the three part lights.

This ordering can be achieved by the nodelevel property for the graphical types. The nodelevel property
is a relative increment to the default absolute node level 200. For example, by setting the node level to ”-17,
the resulting absolute node level shall be 199. By setting the relative node level to ”-101”, the resulting
absolute node level would be 99, i.e. even below the level of edges.

As an example consider the traffic light scenario. The node level is set to ”-1”, hence it shall be
painted behind the other node elements. The example is taken from the CB-Forum at http://merkur.
informatik.rwth—-aachen.de/pub/bscw.cgi/3762781.

TrafficLight_GT in Class, JavaGraphicalType with

property
textcolor : "255,255,255";
linecolor : "0,0,0";
linewidth: "3";
bgcolor : "60,60,60";
shape : "i5.cb.graph.shapes.RoundRectangle";
size: "resizable";
align : "bottom";
nodelevel: "-1"
implementedBy
implBy : "i5.cb.graph.cbeditor.CBIndividual"
priority
pr : 22
rule

gtrule: $ forall x/TrafficLight (x graphtype TrafficLight_GT) $
end

You can also use positive node levels to explicitly specify that the nodes are painted in the foreground
of other nodes. The default relative node level is ”0”. If nodes have the same level, then they are painted in
the order in which they are added to the diagram.

170

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3762781
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3762781

The node selection in CBGraph is adapted to take the node level into account. It a node with a negative
level is selected by a left mouse click, then all nodes with a higher level whose center point is contained
in the bounds of the first node also get selected. Nodes with negative levels are interpreted as a kind of a
container. So, selecting and moving them is simplified by this behavior. You can also disable this behavior
by the configuration variable "NodeLevel Aware”, see section 8.4.

C.3.3 Click actions

A click action is a property of a graphical type and contains the name of a query class as a string. A simple
example is:

clickaction: "fireTransition";

If an object has a graph type with a click action, then the corresponding query class is called using
the object name as single parameter. For example, if t1 is the object name, then a click on the object in
CBGraph will result in calling the query fireTransition[t1]. Itis assumed that the ConceptBase
server includes an active rule that is triggered by the query call. Hence, such calls can result in an update
to the database. CBGraph shall refresh its graph after performing the query call to show the effect of the
database update to the graph. You can also specify a click action with arity zero:

clickaction: "fire/0";

In this case the name of the clicked object is not included as a parameter of the query call. A click
action like "fireTransition" is equivalentto "fireTransition/1".

Click actions let a graph directly interact with the ConceptBase server. Each click on a node whose
graphical type has a click action will result in a corresponding query call that triggers active rules — as-
suming that there are active rules matching the query call. The active rule in the CBserver can change the
database state, but it can also trigger calls to external programs.

You can also specify clickactions with two arguments like in
clickaction: "playMove/2";

In such cases, CBGraph will prepend the username before the object name of the node that has been
clicked. The generated query call would look like playMove [jonny, ml] Note that the query must
have two arguments in this case, e.g.

GenericQueryClass playMove isA Position with
parameter
argl: CB_User;
arg2: Move

end

Note that the first argument for the username must have a label (argl) that is lexicographically ordered
before the label of the second argument (arg2). The username is the same that is used by the CBGraph tool
to register to the CBserver. That user is then stored as instance of the predefined class CB_User.

Another option with click actions is to limit the scope of nodes and links in the current diagram that
are refreshed after calling the click action. The click action can invoke an active rule which changes the
database state. Consequently, certain objects in the diagram may get a new graphical type. By default,
CBGraph shall refresh all nodes and links in the diagram after executing a click action. This can be rather
slow when the displayed graph is large. The option ”-n” allows to limit the refresh to the neighborhood
of the selected object. The neighborbood is defined as the set consisting of the selected object, the direct
neighbors object of the selected object, the direct neighbors of those neighbors, and all the links in between.
Note that this only refers to the objects displayed in the graph!

You can enable the “neighbor” refresh by adding the string ’-n” to a click action like in

171

clickaction: "fireTransition -n";

The -n” option is not guaranteed to work correctly since some objects outside the neighborhood may
be affected by the click action. Hence, only use this when you know that the effect is bound to the neigh-
borhood and when the displayed diagram has all the required links displayed to compute the neighborhood.

You can enable and disable click actions by a checkbox in the options menu of CBGraph. The setting
is also stored in the configuration file .CBjavalnterface. The entry is called ”ClickActions” there.

See http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3762781 for examples.

C.3.4 Shapes

The package i5.cb.graph.shapes contains several shapes which might be useful for the ConceptBase CB-
Graph Editor. To use these shapes, you can either specify the full path,e.g. "i5.cb.graph.shapes.Cloud",
or just the last part like "Cloud™" as value of the property shape of a graphical type.

class name graphical representation

Arrow?2, ArrowL, ArrowR, | various arrows

DoubleArrow, DownArrow

Banner a banner

Circle a circle

Cloud a cloud shape

Cross a cross (like the red cross)

Diamond a diamond/rhombus

DiRect, DiRectL, DiRectR direction signs

DownPentagon like Pentagon but rotated 180 degrees
Ellipse an ellipse

FolderL, FolderR folder shapes

House a house shape

Pentagon, Hexagon,
tagon, Octagon

Sep-

as the name says

Rect a rectangle

RoundRectangle a rectangle with round corners
Page a page shape

Star a star

Triangle, TriangleL, Trian-
gleR, DownTriangle

various triangles

Tube a tube shape

UpHexagon hexagon with pointed vertex on top/bottom
StadionCurve variant of a round rectangle resembling a stadion curve
UpStadionCurve variant of StadionCurve

XCross a cross in the form of an X

PolygonShape user-definable polygon

The user-defined polygon-curve shape allows you to specify any shape consisting of a set of points.
The start point must be the same as the end point. Assume, you want to triangle pointing to the right, but
the right extreme point being at the same height O as the upper left point. Then, the following graphical
type would do the job:

MyTriangle_GT in JavaGraphicalType with

property

shape : "PolygonShape; 0,3,0,0; 0,0,4,0"
implementedBy

implBy : "i5.cb.graph.cbeditor.CBIndividual"

172

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3762781

priority
pr : 22

end

In the shape string, the first part "PolygonShape" indicates that it is a user-defined polygon shape,
the second part "0, 3, 0, 0" are the x-coordinates of the polygon points, and the third part "0, 0, 4, 0"
are its y-coordinates. Note that the number of x-coordinates must be the same as the number of y-
coordinates and that the polygon line ends in its starting point, here (0,0). The size of the bounding
rectangle in the above example is 4x5 pixels. If your shape is more complicated, e.g. a curved shape,
then you should embed it into a bigger rectangle. The polygon lines may not intersect each other.

) DiRect)(DiRectL DiRectR)-@ DoubleArrow WN'DW

i I =]
W - FolderL | | FolderR
< Hexagon> Gﬂ:‘taga Fage @ Rect CHDLII‘IE' Hectanglej

Palygon Shape XY

Figure C.1: Some of the standard shapes

Figure C.1 visualizes the pre-defined graph shapes. Note that by default the dimensions of a shape are
adjusted from the area that the object label occupies. This is fine for the shapes that are close to a rectangle.
The other shapes should be used in combination with the size “resizable”.

A variant of the “resizable” option is the "wrap”/’wrap_” option. It will additionally wrap the node
label text according to the current node size. The “wrap”/’wrap_” option renders the node label with the
HTML implementation of Java.

Examples for the use of resizable shapes graphical types can be found in the CB-Forum at http:
//merkur.informatik.rwth—aachen.de/pub/bscw.cgi/3596768.

You can extend the shapes by using the parameterized graph type PologonShape as shown in the
previous subsection. Use the “align” property to specify at which position the node’s label should be
displayed. Default is “center”. The above link also contains examples of user-defined shapes.

C.3.5 Icons

You can specify an image icon that is displayed instead of a shape to be drawn for the small compoment of
a node (CBIndividual). The syntax for specifying an image icon is

image: "<image file location>"
You can specify either the URL of the image file or the local path of the file in the URL syntax. For

example

173

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3596768
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3596768

Class AgentGT in JavaGraphicalType with

rule

gtrule : $ forall a/Agent (a graphtype AgentGT) $
property

textcolor : "0,0,0";

linecolor : "0,0,0";

image: "http://myserver.comp.eu/images/AgentIcon.png"
implementedBy

implBy : "i5.cb.graph.cbeditor.CBIndividual™"
priority

pr : 20

end

associates the graphical type AgentGT to the image icon Agent Icon.png. Note that only normal
http addresses are supported, not https. You can also point to local files via the £ile protocol:

Class AgentGT in JavaGraphicalType with

rule

gtrule : $ forall a/Agent (a graphtype AgentGT) $
property

textcolor : "0,0,0";

linecolor : "0,0,0";

image: "file:///home/jonny/images/AgentIcon.png"
implementedBy

implBy : "i5.cb.graph.cbeditor.CBIndividual"
priority

pr : 20

end

Note that the image icon is looked up by CBGraph. Hence, the location must be in the file system of
the computer on which CBGraph runs. If you place the image icon on a web server, then CBGraph will be
able to fetch it from any computer provided that the access rights are set properly. Note that the URL must
use the "http” protocol. CBGraph does not support https” links for image files.

If you specify an image icon for a graphical type, then you can also set its textposition, for example:

image: "file:///home/jonny/images/AgentIcon.png";
textposition: "top";

By default, the node’s text label is placed at the bottom of the image. In this case it shall be placed on
top of it. Other possible values are “’center”, "left”, and right”. Note that the property textposition
is only evaluated in combination with an icon image. If a graphical type has no image ocon, then any text
position specified for it would be ignored. In most cases, the default value ’bottom” is just fine.

You can also combine shapes with image icons. In such cases, the image icon plus the label are the
“inner content” and the shape is drawn around it. In the example below, the label is placed left of the
image icon. Both are aligned in the center of a circular shape with gray background and black line color.
CBGraph shall compute the required size of the surrounding shape from the dimensions of the image icon
and its label. An exception holds when the ”’size” property is set to a fixed dimension like ”50x40”.

image: "file:///home/jonny/images/AgentIcon.png";
textposition: "left";

shape : "i5.cb.graph.shapes.Circle";
align : "center";

bgcolor : "200,200,200";

linecolor : "0,0,0";

174

The location specified in the “image” and “bgimage” property can either be a URL to an image file
(starting with "http://” or “file://”, not "https://”’) or a relative file location such as “diaicons/iconl.png”.
In the latter case, CBGraph shall first check if a local directory "CBICONS” exists in the ConceptBase
installation directory (environment variable CB_HOME). If that exits, it shall expand the relative path to
and absolute path using the location of CB_HOME. If the local directory does not exist, CBGraph shall
expand the relative path to a URL starting with "http://conceptbase.sourceforge.net/CBICONS/”. You can
add your own icons to the local directory CBICONS in your ConceptBase installation directory. Below is
an example of a relative image location.

image: "images/AgentIcon.png";

Further examples on using image icons are provided in the CB-Forum at http://merkur.informatik.
rwth-aachen.de/pub/bscw.cgi/3506150.

C.4 TelosPalette: A modern graphical palette for ConceptBase

TelosPalette is anew graphical palette introduced in ConceptBase 8.2 to replace the original Default—
JavaPalette (which continues to be supported for backward compatibility). The main difference is
that most objects are now displayed as white rectangles, whose size can be extended. The link layout for
instantiation and specialization are now closer to the style used in UML class diagrams to allow easier
recognition. The definition of TelosPalette is as follows:

TelosPalette in Class, JavaGraphicalPalette isA XBridgePalette with
contains,defaultIndividual
tpl : INDIVIDUAL_TP_GT
contains,defaultLink

tp2 : ATTR_TP_GT
contains,implicitIsA

tp3 : ISADEDUCED_TP_GT
contains, implicitInstanceOf

tp4 : INSTOFDEDUCED_TP_GT
contains,implicitAttribute

tp5 : ATTRDEDUCED_TP_GT
contains

tp6 : CLASS_TP_GT;

tp7 : QUERYCLASS_TP_GT;

tp8 : INSTOF_TP_GT;

tp9 : ISA_TP_GT;

tpl0 : STRING_TP_GT;

tpll : VALUE_TP_GT;

tpl2 : ASSERTION_TP_GT

end

The superclass XBridgePalette serves to bridge the default graphical types of DefaultJava-
PalettetoTelosPalette andits subclasses. These default graphical types are required to be included
by CBGraph. XBridgePalette makes this inclusion transparent to the user via a set of deductive rules.
The overriding graphical types of TelosPalette listed in the table:

175

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3506150
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3506150

type of object | graphical type | style

Individuals INDIVIDUAL_TP_GT white rectangle

Attribute ATTR_TP_GT thin black line with label in smaller font
InstanceOf INSTOF_TP_GT green broken line without label and caret arrow head
IsA ISA_TP_GT blue line without label; white edge heads
Class CLASS_TP_.GT almost white rectangle

QueryClass QUERYCLASS_TP_.GT white-pink rectangle

Derived In INSTOFDEDUCED._TP_GT | like for InstanceOf but thinner line
Derived IsA ISADEDUCED_TP_GT like for IsA but thinner line

Derived Attribute | ATTRDEDUCED_TP_GT dashed black line

String STRING_TP_GT light grey rectangle with text wrapping
Integer,Real VALUE_TP_GT light grey rectangle

MSFOLassertion | ASSERTION_TP_GT light pink rectangle with text wrapping

A particular advantage of TelosPalette is its extensibility via specialization. Consider for example
the case, where a class Employee is defined. Employees shall be displayed as yellow rectangles. All one
has to do is to define the new graphical type like EMPLOYEE_TP_GT and add this to EmployeePalette,
which specializes TelosPalette.

Employee in Class end

EMPLOYEE_TP_GT in Class,JavaGraphicalType with

property
bgcolor : "255,255,0";
textcolor : "0,0,0";
linecolor : "0,0,0";
shape : "Rect";
size : "resizable";
linewidth : "1"
implementedBy
implBy : "i5.cb.graph.cbeditor.CBIndividual"
priority
pr : 10
rule

gtrulel : $ forall x/Employee (x graphtype EMPLOYEE_TP_GT) $
end

EmployeePalette in Class, JavaGraphicalPalette isA TelosPalette with
contains
epl : EMPLOYEE_TP_GT
end

The shape “Rect” is a shortcut for the shape string “’i5.cb.graph.shapes.Rect”. CBGraph works with
both values. Note that the added graphical type EMPLOYEE_TP_GT needs to have a higher value for
priority than the default graphical type for so-called individual objects. All pre-defined graphical types
have priorities lower than 10. Hence the values of 10 is sufficient to make sure that employees get the
dedicated graphical type.

C.5 Object-specific graphical properties

Nodes and links get their graphical properties from the graphical type assigned to them. The assignment is
typically defined by deductive rules deriving a fact (x graphtype gt). In general, several such facts
may be true for a given object x. Then, the priority of the graphical type is used to pick a unique solution.
As aresult, all objects with the same graphical types are also rendered in the same way, except of the name
of the object.

176

In some situations, one may want to assign specific graphical properties to objects depending on the
object state. The graphical type provides the general properties and specific graphical properties are de-
rived from the object. For example, all employees could be displayed by a rectangular node with white
background, but employees with a high salary are displayed in yellow color. Further, employees that are
assigned to departments get a thicker line width.

In principal, the different cases can be realized by dedicated graphical types. In the example above,
one would need at least four different graphical types (regular employees without department, high salary
employees without department, regular employees with department, and high salary employees without
department). The different cases thus lead to an explosion of graphical types.

ConceptBase thus provides a second mechanism to directly assign graphical properties to objects. The
graphical properties are defined for any proposition:

Proposition with
attribute
gproperty: Proposition
end

Note that the target class is Proposition rather than St ring, as used for the attribute property
of graphical types. The reason is to add more flexibility, e.g. to assign integers as values for certain
gproperty attributes like line width.

Any object’may have (derived or explicit) gproperty attributes. The values of these attributes over-
rule the corresponding values of the graphical type of the object:

bill in Employee with
gproperty
bgcolor: "240,240,0";

linecolor: "0,0,220"
end

The properties may also be derived by rules, e.g.

Employee in Class with
attribute
salary: Integer
rule
rel: $ forall e/Employee s/Integer (e salary s) and (s > 1000)
==> (e gproperty/bgcolor "255,255,200") $
end

The labels of the gproperty attributes shall be taken from the list in section C.3.1. The object-
specific graphical properties are not assigned to any palette. They are global and overrule the properties
from the graphical type. It could be that there are multiple rules that derive the same gproperty attribute,

e.g.

Individual in Class with
rule
rxl: $ forall x/Individual (x gproperty/bgcolor "255,255,255") $
end

This rule may collide with rule rel. In such cases, both "255,255,200" and "255, 255, 255"
as values of bgcolor. CBGraph will then pick any of them (actually the last one transmitted overrules
any previous ones). Since the order is subject to the CBserver rule engine, one can hardly predict, which
value prevails. Hence, write design the rules in such a way that such collisions are avoided.

3Due to technical limitations, only node objects (=instances of Individual) get their gproperty feature scanned by CB-
Graph. Hence, you can only use it for node objects, not for edges.

177

The gproperty attribute 1abel adds a new functionality to the system: you can overrule the node
and link name displayed in CBGraph. For example, it may be useful to replace the name of a shelf with its
current fill level. Another example are "places’ of petri nets. Instead of the place name, one can display the
number of tokens of that place as the label of the place node.

Another interesting gproperty attribute is *1abellength’. By default, CBGraph assumes a max-
imum label length of 40 characters. If the node label length exceeds this threshold, it will be truncated and
the last four characters are set to ” ...”. If you need to have longer labels, then use the ’1abellength’
property. An example shows how to use it:

Employee in Class with
attribute
name : String
rule
rl : $ forall e/Employee n/String (e name n) ==> (e gproperty/label n)$;
r2 : $ forall e/Employee (e gproperty/labellength 50)$
end

bill in Employee with
name
n : "William the Conquerer from Abessinia della Cruz"
end

You can easily check, which object-specific properties are currently assigned to objects by the following
query:

ObjectProperty in QueryClass isA Proposition with
retrieved_attribute
gproperty : Proposition
end

You can retrieve the objects with colliding gproperty attributes via the query

ObjectWithMultipleProperties in QueryClass isA Proposition with
retrieved_attribute
gproperty : Proposition
constraint
clash : $ exists L/Label pl,p2/Proposition (this gproperty/L pl) and
(this gproperty/L p2) and (pl <> p2) $
end

We advise to use the gproperty feature in combination with graphical types. The graphical type of
an object provides the graphical properties that apply to all objects that fall into the class covered by the
graphical type. The object-specific properties then overrule certain properties of that graphical type or add
properties that were not defined by the more general graphical type. Use the gproperty feature with
great care. For example, assigning object-specific properties to all instances of the class Individual is
not wise since Individual is a generic class: all node-like objects are instances of Individual.

C.5.1 HTML node labels

The gproperty “’label” can be used to assign long node labels to specific objects, see object ”bill” above.
ConceptBase also supports to specify a node label that shall be HTML-formatted, more precisely in the
subset of HTML that the Java Swing supports. There are however some caveats. Since ConceptBase uses
XML to pass information between the CBGraph client and the server, the HTML code may not include the
characters < and ”>". Instead, you have to use square brackets. The square brackets are replaced within
CBGraph to render the HTML code. As a simple example, consider

178

anna with
gproperty label: "[center]Annal/center] [hr][/hr]
Anna Catharina III Regina de Abessinia della Cruz"
gproperty labellength: 200
gproperty size: "wrap"
end

CBGraph will render the node with a first centered line containing the Strring ”Anna”, followed by a
horizontal rule, then followwed by the rest of the label. You have to make sure to extend the labellength
property to a sufficiently large value. Further, the size property must be set to "wrap”.

You can also set labellength and size via the graphical type that is applicable to the object. With help
of the "resultOf” function (see section E.2.2) in combination with answer formats, you can also derive the
HTML code for objects of a class. See CB-Forum at https://bscw.dbis.rwth-aachen.de/pub/
bscw.cgi/4696707 for an extended example. Be careful with the implementation of the answer format
since it generates new hidden objects for the HTML labels.

C.6 Graphical types for derived links

Derived links (and attributes) are displayed by default with the graphical type ImplicitAttributeGT,
i.e. a dashed line with the attribute label defined at the class level. Derived links have no object identity.
Thus, one cannot attach a graphtype or gproperty attribute to them.

ConceptBase uses another method to allow user-definable graphical types for such links. Assume, there
is a class definition as follows:

Person in Class with

attribute
knows : Person
rule
trrule : $ forall x,y,z/Person
(x knows y) and (y knows z)
==> (x knows z) $
end

Let the attribute knows be derived by some rules.
Then, one can define a graphical type ImplicitGT_knows that shall be applied to all derived using
the class label knows, e.g.

ImplicitGT_knows in JavaGraphicalType with

property
textcolor : "20,20,220";
edgecolor : "250,20,20";
bgcolor : "255,255,255,100";
edgestyle : "dashdotted";
edgewidth : "3"
implementedBy
implBy : "i5.cb.graph.cbeditor.CBLink"
priority
p : 10
end

This graphical type then has to be added to the right graphical palette:
PersonPalette in JavaGraphicalPalette isA TelosPalette with
contains
xx14 : ImplicitGT_knows
end

179

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4696707
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4696707

Note that the label of the graphical type starts with the prefix Imp1icitGT_, which is then followed by
the label of the derived link. CBGraph shall assign this graphical type for derived links if the current graph-
ical palette contains such a graphical type. Otherwise, the default (usually ITmplicitAttributeGT or
the graphical type listed as implicitAttribute in the graphical palette) is used.

The user-defined graphical types for derived links allows to create domain-specific visualizations of
derived information. It is rather common to have multiple derived link types such as knows. It thus makes
sense to distinguish them also in the graphical visualization.

Derived instantiations (”in”") and derived specializations ("isA”) are handled differently. Their dedi-
cated graphical type can be specified in the graphical palette as follows:

contains, implicitIsA
c3 : MyImplicitIsAGT
contains, implicitInstanceOf
c4 : MyImplicitInstanceOfGT

where MyImplicitInstanceOfGT and MyImplicitIsAGT are user-defined names of graphical
types.

C.7 Palette-specific methods to expand related objects

Nodes and links in the graph editor CBGraph can be expanded to show their instances/classes, sub-
classes/superclasses, and attributes/relations. For the latter, the default behavior of CBGraph is to deter-
mine which attribute/relation categories are actually used by the selected object and then create the suitable
popup-menu for the object by only shows those categories that are actually used. The queries to compute
these categories are:

find_used_attribute_categories
in GenericQueryClass isA Proposition!attribute with
parameter, required
objname : Proposition
constraint
r : $ exists x/Proposition AD(this, “objname, x) S
end

find_used_incoming_attribute_categories
in GenericQueryClass isA Proposition!attribute with
parameter, required
objname : Proposition
constraint
r : $ exists x/Proposition AD(this, x, “objname) S
end

This is convenient but can also be a very costly operation in case that the object is occuring in many
derived facts (derived relations, derived attributes).

A way out of this dilemma are dedicated queries that computes the eligible categories of the derived
outgoing and incoming attributes/relations. Consider the example below:

MyPalette in Class,JavaGraphicalPalette isA XPalette with
contains

gtl: THING_GT;

palproperty

outcatquery : "alt_used_attribute_categories";
incatquery : "alt_used_incoming_attribute_categories"
end

180

The two new palette properties outcatquery and incatquery specify the replacement queries
for the default queries. Note that you need to define these queries as well, e.g.:

alt_used_attribute_categories
in GenericQueryClass isA Proposition!attribute with
parameter, required
objname : Proposition
constraint
r : $ exists gt/JavaGraphicalType
("objname graphtype gt) and (gt forOutgoing ~“this) $

end
In this case, the applicable attribute categories are attached to the graphical types of objects:

THING_GT in Class,JavaGraphicalType with
property

rule
gtrule : $ forall x/Thing (x graphtype THING_GT) $
forOutgoing
outl : Thing!aproperty
end

The new feature allows to hide certain attribute/relation properties from the pop-up menu.

181

Appendix D

Examples

D.1 Example model: the employee model

The Employee model can be found in the directory $CB_HOME/examples/QUERIES/. It consists out
of the following files:

Employee_Classes.sml: The class definition
Employee_Instances.sml: Some instances for this model

Employee_Queries.sml: Queries for this model

Note, that the files must be loaded in this order into the server.

D.2 A Telos modeling example - ER diagrams
D.2.1 The basic model

This example gives a first introduction into some features introduced in ConceptBase version 4.0. It
demonstrates the use of meta formulas and graphical types while building a Telos model describing Entity-
Relationship-Diagrams. The following model forms the basis:

{**************************}
{* *}
{ File: ERModelClasses *}
{* *}

{Fxkkkkkhkkkhkkkhkk Ak kkkkkkkkxk }

Class Domain
end

Class EntityType with attribute
eAttr : Domain;
keyeAttr : Domain
end
Class RelationshipType with attribute

role : EntityType
end

182

Class MinMax
end

"(1,*)" in MinMax with
end

"(1,1)" in MinMax with
end

Attribute RelationshipType!role with attribute
minmax: MinMax
end

The model defines the concepts of EntityTypes and RelationshipTypes. Each entity that participates in
a relationship plays a particular role. This role is modelled as a Telos attribute-link of the object Rela-
tionshipType. The attributes describing the entities are modelled as Telos attribute-links to a class Domain
containing the value-sets. Roles can be restricted by the “(min,max)”-constraints “(1,*)” or “(1,1)”. The
next model contains a concrete ER-model.

{Fxkkkhhkkkhkkkhkkkhkkhkkhkkxk }
{* *}
{* File: Emp_ERModel * }
{* *}

{**************************}

Class Employee in EntityType with
keyeAttr, attribute

ssn : Integer
eAttr,attribute
name : String

end

Class Project in EntityType with
keyeAttr,attribute
pno : Integer
eAttr,attribute
budget : Real
end

Integer in Domain end
Real in Domain end
String in Domain end
Class WorksIn in RelationshipType with role,attribute
emp : Employee;
prj : Project
end
WorksIn!emp with minmax
mProjForEmp: " (1,*)"
end
WorksIn!prj with minmax

mEmpForProj: " (1,*)"
end

183

ConceptBase in Project with pno
cb_pno : 4711
end

Martin in Employee with ssn
martinSSN : 4712
end

M_CB in WorksIn with
emp
mIsEmp : Martin
prj
cbIsPrj : ConceptBase
end

Hans in Employee with ssn
hans_ssn : 4714
end

The entity-types Employee and Project participate in a binary relationship Worksin. The attributes
Employee!ssn and Project ! pno are key-attributes of the respective objects.

D.2.2 The use of meta formulas

The above model distinguishes attributes and key attributes. One important constraint on key attributes
is monovalence. In the previous releases of ConceptBase it was possible to declare Telos-attributes as
instance of the attribute-categories single or necessary, but the constraint ensuring this property could not
be formulated in a general manner, because the use of variables as placeholders for Telos-classes e.g in
an In-Literal was prohibited. To overcome this restriction, meta formulas have been integrated into the
system. An assertion is a meta formula if it contains such a class-variable. The system tries to replace
this meta formula by a set of semantic equivalent formulas which contain no class-variables. In previous
releases properties as single or necessary had to be ensured “manually” by adding a constraint for each
such attribute. This job is now performed automatically by the system.

Example: necessary and single

The following meta formula ensures the necessary property of attributes, which are instances of the cat-
egory Proposition!necessary. The semantics of this property is, that for every instance of the
source class of this attribute there must exist an instantiation of this attribute.

Class with constraint, attribute

necConstraint:
$ forall c¢,d/Proposition p/Proposition!necessary x,m/VAR
P(p,c,m,d) and (x in c) ==>

exists y/VAR (y in d) and (x m y) $
end

It reads as follows:

For each attribute with label m between the classes ¢ and d, which instantiates the attribute
Proposition!necessary and for each instance x of c there should exist an instance y
of d which is destination of an attribute of x with category m.

One should notice that the predicates In (x, c) and In (y, d) cause this formula to be a meta formula.
The instantiation of x and m to the class VAR is just a syntactical construct. Every variable in a constraint

184

has to be bound to a class. This restriction is somehow contrary to the concept of meta formulas and the
VAR-construct is a kind of compromise. The resulting In-predicates are discarded during the processing
of meta formulas. The VAR-construct is only allowed in meta formulas. It enables the user to leave the
concrete classes of x and m open, without instantiating them to for example to Proposition.

The single-constraint can be defined in analogy. These constraints can be added to the system as if they
were “normal” constraints. Their effect becomes visible, when declaring attributes as necessary or single.
This is done in the following model.

{Fxkkkhhkkhhkkkhkkkkkkkkkkkkxk }
{* *}
{ File: ERSingNec * }
{* *}

{**************************}

{* necessary constraint (metaformula) =}
Class with constraint

necConstraint:
$ forall c¢,d/Proposition p/Proposition!necessary x,m/VAR
P(p,c,m,d) and (x in c) ==>

exists y/VAR (y in d) and (x m y) $
end

{* every Entity has a key =}
Class EntityType with
necessary
keyeAttr : Domain
end

{* single constraint (metaformula) =}
Class with constraint
singleConstraint
$ forall c¢,d/Proposition p/Proposition!single x,m/VAR
P(p,c,m,d) and (x in c) ==>
(
forall al,a2/VAR

(al in p) and (a2 in p) and Ai(x,m,al) and Ai(x,m,a2) ==>
(al=a2)
) 8
end
{* every Entity key is monovalued (= necessary and single) x}

Class EntityType with rule
keys_are_necessary:
Sforall a/EntityType'!keyeAttr In(a,Proposition!necessary)s$;
keys_are_single:
Sforall a/EntityType'!keyeAttr In(a,Proposition!single)$
end

The effects of this transaction can be shown by displaying the instances of instances of the class
metaMSFOLconstraint. The single- and necessary constraints are inserted into this class after adding
them to the system. These constraints themselves can have specializations: constraints which are added
automatically to the system when inserting objects into the attribute-category single resp. necessary.

For the ER-example, one of the created formulas reads as:

$ forall x/EntityType (exists y/Domain (x keyeAttr y)) $

185

We observe the relationship to the necConstraint-formula: the formula has been generated by
computing one extension of In (p, Proposition!necessary) and P (p,c,m,d) and replacing
the predicates In (p, Proposition!necessaryandP (p,c,m,d) by this extension, which results
in the following substitution for the remaining formula:

c | EntityType
d | Domain
m | keyeAttr

Metaformulas defining sets of rules

Another use of Metaformulas is the formulation of deductive rules. Metaformulas defining deductive rules
extend the possibilities of defining derived knowledge.

Assignment of graphical types: This example first demonstrates the use of meta formulas to assign
graphical types to object-categories. The minimal graphical convention for ER-diagrams is to use rect-
angular boxes for entities and diamond-shaped boxes for relationships. In our modelling example these
graphical types are assigned to objects which are instances of EntityType or RelationshipType and to in-
stances of these objects.

{***}

{* *}

{* File: ERModelGTs * }
{* Definition of the graphical palette for =x}
{* ER-Diagrams for use on color displays *}

{* *}

{***}

{* graphical type for inconsistent roles =}
Class InconsistentGtype in JavaGraphicalType with
attribute, property

textcolor : "0,0,0";

edgecolor : "255,0,0";

edgewidth : "2"
implementedBy

implBy : "i5.cb.graph.cbeditor.CBLink"
priority

p : 14

end

{* graphical type for entities x}
Class EntityTypeGtype in JavaGraphicalType with

property
bgcolor : "10,0,250";
textcolor : "0,0,0";
linecolor : "0,55,144";
shape : "ib5.cb.graph.shapes.Rect"
implementedBy
implBy : "i5.cb.graph.cbeditor.CBIndividual™"
priority
p : 12
end

{* graphical type for relationships =}
Class RelationshipGtype in JavaGraphicalType with

186

property

bgcolor : "255,0,0";

textcolor : "0,0,0";

linecolor : "0,0,255";

shape : "i5.cb.graph.shapes.Diamond"
implementedBy

implBy : "i5.cb.graph.cbeditor.CBIndividual™"
priority

p : 13

end

{* graphical palette x}
Class ER_GraphBrowserPalette in JavaGraphicalPalette with
contains,defaultIndividual
cl : DefaultIndividualGT
contains,defaultLink
c2 : DefaultLinkGT
contains, implicitIsA
c3 : ImplicitIsAGT
contains, implicitInstanceOf
c4 : ImplicitInstanceOfGT
contains,implicitAttribute
c5 : ImplicitAttributeGT
contains
c6 : DefaultIsAGT;
c7 : DefaultInstanceOfGT;
c8 : DefaultAttributeGT;
cld : EntityTypeGtype;
cl5 : RelationshipGtype;
cl6 : InconsistentGtype
end

EntityType with rule

EntityGTRule:

$ forall e/EntityType A(e,graphtype,EntityTypeGtype)$;
EntityGTMetaRule:

$ forall x/VAR (exists e/EntityType In(x,e)) ==>

A (x,graphtype, EntityTypeGtype) $
end

RelationshipType with rule
RelationshipGTRule:
$ forall r/RelationshipType A (r,graphtype,RelationshipGtype)$;
RelationshipGTMetaRule:
$ forall x/VAR (exists r/RelationshipType In(x,r)) ==>
A (x,graphtype,RelationshipGtype) $
end

To activate the ER_GraphBrowserPalette , select this graphical palette when you start the Graph Editor
or make a new connection in the Graph Editor (see section 8.2).

Handling inconsistencies The necessary and single conditions on attributes from the previous section
could also be expressed as deductive rule. The difference is, that if they are formulated as constraints,
every transaction violating the constraint would be rejected. The definition of rules handling necessary and
single enables the user to handle inconsistencies in his model. The following example demonstrates this

187

concept in the context of our ER-model. The example defines rules handling the restriction of roles by the
“(min,max)”-constraint “(/, *)”. This restriction is not implemented using constraints. Instead a new Class
Inconsistent is defined, containing all role-links which violate the “(7,*)” constraint. These inconsistent
links get a different graphical type (e.g a red coloured attribute link) than consistent role links to visualize
the inconsistency graphically.

{‘k*‘k***‘k‘k****‘k*‘k***‘k************************}

{=x *}

{x File: ERIncons * }
{* Definition of a Class "Inconsistent" * }
{* containing roles violating the " (1,*)" x}
{* constraint %}

{= *}

{***}

{* new attribute category revNec for attributes
which are "reverse necessary" =*}
Class with attribute
revNec : Proposition
end

{* roles with "(1,*)" must fullfill revNec property =*}
RelationshipType with rule, attribute

revNecRule:
$ forall ro/RelationshipType!role
A(ro,minmax, " (1,*)") ==> In(ro,Class!revNec) $

end

{x definition of Class "Inconsistent" =}
{* forall instances "p" of Class!revNec:
If there exists a destination class "d", there must
be a source class "c" with an attribute instantiating "p",
otherwise "p" is inconsistent
*}
Class Inconsistent with rule, attribute
revNecInc:
$ forall p/Class!revNec
(exists c¢,m,d/VAR y/VAR P(p,c,m,d) and In(y,d) and
not (exists x/VAR In(x,c) and A(x,m,y))) ==>
In(p, Inconsistent)$
end

To activate the different graphical representation of inconsistent roles, the definition of the graphical
type for attributes has to be modified. Tell the following frame:

Inconsistent with rule,attribute
incRule
$ forall e/Attribute In (e, Inconsistent) ==>
(e graphtype InconsistentGtype)$
end

The effect of these transactions can be shown when starting the Graph Editor and displaying the at-
tributes of the RelationshipType instance WorksIn. Be sure to switch the graph editor to the palette
ER_GraphBrowserPalette before doing so (see section 8.2). The attribute WorksIn!emp is dis-
played as red link like in figure D.1. If you had already started the graph editor before telling the last
frame, you should synchronize it with the CBserver via the menu Current connection. By telling

H CB in WorksIn with

188

emp
hIsEmp : Hans
prj
cbIsPrj : ConceptBase
end

the inconsistency is removed from the model. To see the update of the graphical type in the Graph
Editor, you have to select the inconsistent link and select “Validate and update selected objects” from the
“Current connection” menu.

X CBGraph - /home/jeusfeld/Desktop/fig_d1.gel
File Edit Options View Current connection

DOR & Bt o B

[*] ER_GraphBrowserPalette: oHome --localhost:4001

o]

R

I

EntityType |~ rote ﬁ RelationshipType

mProjlorEmp

= fig_dl.gel loaded

Figure D.1: Graph Editor showing the example model with inconsistent link

D.2.3 Limitations and final remarks

Metaformulas extend the expressive power of defining rules and constraints for ConceptBase Objectbases.
The implementation of this mechanism is not complete at the moment, but should enable the use of the
most frequently requested concepts like single and necessary. Some limitations are listed below:

* limited partial evaluation

The partial evaluation procedure is limited to a conjunction of predicates, preceeded by forall-
quantors.

* no source-to-source transformation
Formulas are not converted automatically into the form mentioned above supported by the meta

189

formula mechanism, even if they could be transformed. If the class-variables can’t be bound using
partial evaluation of the input-formula, the formula is rejected, even if there exists an equivalent
formula, in which partial evaluation could be used to bind the class-variables.

* not all classes are supported
Generated formulas where variables are quantified over instances of the following classes or at-
tributes of them will be ignored. Those classes are:
Boolean,Integer,Real, String, TransactionTime,
MSFOLassertion, MSFOLrule, MSFOLconstraint,
metaMSFOLconstraint,metaMSFOLrule,
BDMConstraintCheck, BDMRule Check, LTruleEvaluator, ExternalReference,
QueryClass, BuiltinQueryClass,AnswerRepresentation,
GraphicalType,X11_Color,ATK TextAlign,
ATK _Fonts,ATK LineCap,ATK ShapeStyle
The justification is twofold. Some of these generated formulas, e.g. a formula beginning with

$ forall x/1 ...$S

are regarded as redundant, because the object / as instance of Integer should have no instances.
Another justification is, that the use of meta formulas should be restricted to user-defined modeling
tasks. Manipulation of the most system classes is disabled for reasons of efficiency and safety.

In the case of deductive rules, additional problems arise similar to the straticfication problem. At
the moment only monotonous transactions are allowed. This means that generated formulas can only be
inserted or deleted during one transaction, both operations at the same time are not permitted.

The meta formula mechanism also influences the efficiency of the system: every transaction has to be
supervised whether it affects the meta formulas or one of the generated formulas. If the preconditions of
the generated formulas don’t hold anymore, e.g. if the instances of EntityType!eAttr are no longer
instances of Proposition!necessary in the previous model, the corresponding generated formula
has to be deleted. If additional attributes are instantiated to Proposition!necessary, additional
formulas have to be created. The process of supervising the transactions is quite expensive and if it slows
down the overall performance too much, some of the meta formuals can be disabled temporarily (Untelling
a meta formula removes all the code generated).

Many more examples for meta formulas, e.g. for defining transitivity of attributes, are available from
the CB-Forum (http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1042523).

190

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/1042523

Appendix E

Predefined Query Classes

This chapter gives an overview of the query classes which are predefined in a standard ConceptBase in-
stallation. The names of parameters of the queries are set in typewriter font. Most of the queries
listed here are used by the ConceptBase user interface CBlva to interaction with the CBserver. A normal
user typically formulates queries herself. In fact, most queries listed below are very simple and directly
representation as query class. An exception are the functions for computation and counting. They cannot
be expressed by simple query classes but extend the expressiveness of the system.

E.1 Query classes and generic query classes

These queries can also be used in the constraints of other queries.

E.1.1 Instances and classes
ISINSTANCE: Checks whether ob j is instance of class. The result is either TRUE or FALSE.

IS_EXPLICIT_INSTANCE: Same as before, but returns TRUE only if obj is an explicit instance of
class.

find_classes: Lists all objects of which objname is an instance.
find_instances: Lists all instances (implicit and explicit) of class.

find_explicit_instances: Same as before, but only explicit instances are returned.

E.1.2 Specializations and generalizations
ISSUBCLASS: Checks whether sub is subclass of super. The result is either TRUE or FALSE.

IS_EXPLICIT_SUBCLASS: Same as before, but returns TRUE only if sub is an explicit subclass of
super.

find_specializations: Lists the subclasses of class. If ded is TRUE, then the result will also include
implicit subclasses, if ded is FALSE only explicit information will be included.

find_specializations: Same as before, but for super classes.

191

E.1.3 Attributes

IS_ATTRIBUTE_OF: Returns TRUE if src has an attribute of the category attrCat which has the
value dst.

IS_EXPLICIT_ATTRIBUTE_OF: Same as before, but only for explicit attributes.
find_all_explicit_attribute_values: Lists all attribute values of ob jname that are explicitely defined.
find_iattributes: Lists the attributes that go info class.

find_referring_objects: Lists the objects that have an explicit attribute link to class.

find_referring_objects2: Lists the objects that have an explicit attribute link to ob jname and for which
the attribute link is an instance of cat.

find_all_referring_objects2: Same as before, but including implicit attributes.

find_attribute_categories: Lists all the attribute categories that may be used for objname. This is a
lookup of all attributes of all classes of ob jname.

find_incoming_attribute_categories: In contrast to the previous query, this query returns all attribute cate-
gories that go into ob jname (i.e. attribute categories for which ob jname can be used as an attribute
value).

find_attribute_values: Lists all objects that are attribute values of ob jname in the attribute category cat.

find_explicit_attribute_values: Same as before, but only for explicit attributes.

E.1.4 Links between objects

find_incoming links: Lists the links that go info ob jname and are instance of category. Note that all
types of links are returned, including attributes, instance-of-links and specialization links.

find_incoming_links_simple: Same as before, but without the parameter category.

find_outgoing_links: Lists the links that come out of ob jname and are instance of category. Note that
all types of links are returned, including attributes, instance-of-links and specialization links.

find_outgoing links_simple: Same as before, but without the parameter category.
get_links2: Return the links between src and dst.

get_links3: Return the links between src and dst that are instance of cat.

E.1.5 Other queries

find_object: This query just returns the object given as parameter ob jname, if it exists. Thus it can be
used to check whether ob jname exists, but there is a builtin query exists which does the same.
The query is mainly useful in combination with a user-defined answer format (e.g. the Graph Editor
is using this query to retrieve the graphical representation of the object).

AvailableVersions: Lists the instances of Version with the time since when they are know. This query
is used by the user interface to use a different rollback time (Options — Select Version).

listModule: Lists the the content of a module as Telos frames, see also section 5.8.

listModuleReloadable: Like listModule but adding a flag to set the module context to the right module
context when the frames need to be loaded again into a CBserver.

192

E.2 Functions

Functions may also be used within other queries. You may define your own functions (see section 2.5).

E.2.1 Computation and counting

COUNT: counts the instances of a class, this may be also a query class

SUM: computes the sum of the instances of a class (must be reals or integers)

AVG: computes the average of the instances of a class (must be reals or integers)

MAX: gives the maximum of the instances of a class (wrt. the order of < and >, see section 2.2)
MIN: gives the minimum of the instances of a class (wrt. the order of < and >, see section 2.2)
COUNT _Attribute: counts the attributes in the specified category of an object

SUM_Attribute: computes the sum of the attributes in the specified category of an object (must be reals
or integers)

AVG _Attribute: computes the average of the attributes in the specified category of an object (must be
reals or integers)

MAX Attribute: gives the maximum of the attributes in the specified category of an object (wrt. the order
of < and >, see section 2.2)

MIN_Attribute: gives the minimum of the attributes in the specified category of an object (wrt. the order
of < and >, see section 2.2)

PLUS: computes the sum of two reals or integers

MINUS: computes the difference of two reals or integers

MULT: computes the product of two reals or integers

DIV: computes the quotient of two reals or integers

IPLUS: computes the sum of two integers; result is an integer number
IMINUS: computes the difference of two integers; result is an integer number
IMULT: computes the product of two integers; result is an integer number

IDIV: computes the quotient of two integers and then truncates the quotient to the largest integer number
smaller than or equal to the quotient

ConceptBase realizes the arithmetic functions via its host Prolog system SWI-Prolog. Integer num-
bers on Linux are represented as 64-bit numbers, yielding a maximum range from —2%4 — 1 to 264 — 1.
SWI-Prolog supports by default under Windows and Linux64 arbitrarily long integers. Real numbers are
implemented by SWI-Prolog as 64-bit double precision floating point numbers. ConceptBase uses 12
decimal digits.

193

E.2.2 String manipulation functions

ConcatenateStrings: concatenates two labels, typically strings; the two arguments can be expressions that
are concatenated after their evaluation; the result is a string in double quotes

ConcatenateStrings3: concatenates three labels; arguments may not be expressions
ConcatenateStrings4: concatenates four labels; arguments may not be expressions
concat: same as ConcatenateStrings

StringToLabel: removes the quotes of a string and returns it as a label (not an object), useful if labels
should be passed as a parameter of a query

toLabel: evaluates the argument and that creates an individual object with the canonical representation
of the argument result; the canonical representation is an alphanumeric where special characters are
replaces by substrings like "C30_" for special characters

concatl: concatenates the two labels (being the names of any object); the result is stored as an individual
with the concatenated labels; the result is shown as a label, double quotes are added when the label
is not alphanumeric

concatl4: like concatl but with the four arguments (being the names of any object); the result is stored as
an individual with the concatenated labels

concatl6: like concatl but with concatenates the six arguments; the result is stored as an individual with
the concatenated labels

resultOf: The function resultOf (g, x, a) computes the text answer of calling the query g [x] using
the answer format a to create the textual answer. This allows for example to specify complex gprop-
erty labels on the fly (see also section C.5.1) The result of the function call is stored as an instance
of the class HiddenLabel. This hides the label from being displayed by the listModule query

toString: returns a string for the label of an object, e.g. toString (Class)="Class".

length: returns the number of characters of an object label, excluding the double quotes when the object
is a string, e.g. length ("Class")=length (Class)=5

isLike: returns TRUE of the object label (first parameter) matches the wildcard pattern (second parameter),
otherwise FALSE, e.g. isLike (Class, "Clax")=TRUE

valueOf: takes as parameter the name of an instance of the class GlobalVariable and returns its
value. Currently, we support the global variable currentPalette. It holds the instance of Java-
GraphicalPalette, which is currenty used by the current CBGraph client connected to the CBserver.
Example: valueOf (currentPalette)=TelosPalette.

Example 1: the expression toLabel (concat ("+",1+2)) will return C42_3. The substring
"C42_" is the canonical representation (ASCII number) of "«". The subexpression 1+2 is evaluated
to 3.

Example 2: the expression concatl ("alfa",concatl (1+1, "beta")) returns alfa2beta.
Note that the arguments “alfa” and “beta” are string constants created as objects on the fly. You can
also have attributes like bill!earns as arguments of concatl. Then, their labels are used for the
concatenation, here “earns”. Expressions like concatl ("alfa"," ") are also evaluated but are
enclosed in double quotes like "alfax«". Note that all arguments shall be objects. Strings and integers
are automatically recognized by ConceptBase as objects.

194

E.3 Builtin query classes

These queries must not be used within other queries as they do not return a list of objects. They may only
be used directly from client programs.

exists: Checks whether ob jname exists and returns yes or no.

get_object: Returns the frame representation of objname. This query may be either called with just
one parameter (ob jname) or with four parameters (ob jname, dedIn, dedIsa, dedWith). The
ded«-parameters are boolean flags that indicate whether implicit (deduced) information should also
be included in the frame representation. Note that the order of the parameters hast to be the same as
listed above.

get_object_star: Returns the frame representation for all objects with a label that match the given wildcard
expression. Only simple wildcards with a star (*) at the end are allowed.

rename: Renames an object from oldname to newname. This is a low-level operation directly on the
symbol table that works directly on the symbol table. It only checks whether newname is not already
used as label for a different object, no other consistency checks are performed. The parameters have
to be given in the order newname, oldname.

195

Appendix F

CBserver Plug-Ins

An LPI plug-in ("logic plug-in”) is a small Prolog program that is attached to the CBserver (which is
implemented in Prolog) at startup-time. It extends the functionality of the CBserver, for example for user-
defined builtin queries. A plug-in can also interface to the services of the operating system'.

You can create a file like myplugin.swi. lpi to provide the implementation for user-defined builtin
queries or for call actions in active rules (see section 4). You can use the full range of functions provided
by the underlying Prolog system (here: SWI-Prolog, http://www.swi-prolog.org) and the functions
of the CBserver to realize your implementation. You can consult the the CB-Forum for some examples
at http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2768063. You find there exam-
ples for sending emails from active rules, and for extending the set of builtin queries and functions.

F.1 Defining the plug-in

Once you have coded your file myplugin.swi. lpi, there are two methods to attach it to the CBserver.
The first method is to copy the file into an existing database directory created by the CBserver:

cbserver —-g exit -d MYDB
cp myplugin.swi.lpi MYDB

The first command creates the database directory MYDB if not already existing and initializes it with
the pre-defined system classes and objects. The second command copies the LPI file to the database
directory. This method makes the definitions only visible to a CBserver that loads the database MYDB.

The second method instructs ConceptBase to load your LPI code to any new database created by the
CBserver. To do so, copy the LPI file into the system database directory that holds the definitions of
predefined ConceptBase objects:

cp myplugin.swi.lpi <CB_HOME>/lib/SystemDB

where CB_HOME is the directory into which you installed ConceptBase. The number of LPI files is not
limited. You may define zero, one or any number of plug-in files.

A couple of useful LPI plug-ins are published via the CB-Forum, see http://merkur.informatik.
rwth-aachen.de/pub/bscw.cgi/2768063. Note that these plug-ins are copyrighted and typically
come with their own license conditions that may be different to the license conditions of ConceptBase. If
you plan to use the plugins for commercial purposes, you may have to acquire appropriate licenses from
the plug-in’s authors.

ISince we currently supply the CBserver for Linux only, you need to run the CBserver on a local Linux computer in
your network if you want to use the plug-ins. Note that we supply a ready-to-use virtual appliance that includes Linux and
ConceptBase and that can be executed via a virtualization engine, see http://conceptbase.sourceforge.net/
import-cb-appliance.html for details.

196

http://www.swi-prolog.org
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2768063
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2768063
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2768063
http://conceptbase.sourceforge.net/import-cb-appliance.html
http://conceptbase.sourceforge.net/import-cb-appliance.html

F.2 Calling the plug-in
There are two ways to trigger the call of a procedure implemented by an LPI plugin.

1. By explicitely calling a builtin query class (or function) whose code has been implemented by the
LPI plugin. The LPI code would then look similar to the code in SYSTEM.SWL.builtin and you must
have defined an instance of BuiltinQueryClass that matches the signature of the LPI code. The
call to the builtin query class may be enacted from the user interface, or it may be included as an
ASKquery call in an instance of AnswerFormat. Refer for more information to section 3.2.5 and
to the directory Examples/BuiltinQueries in your ConceptBase installation directory.

2. By calling the implemented function as a CALL action of an active rule. See section 4.2.2 for an
example. In that case, there does not need to be a definition of a builtin query class (or function) to
declare the signature of the procedure.

If the code of an LPI plugin realizes a ConceptBase function, e.g. selecting the first instance of a class,
then you can use that function whereever functions are allowed. As an example, consider the definition
of the LPI plugin selectfirst.swi.lpi fromhttp://merkur.informatik.rwth-aachen.de/
pub/bscw.cgi/d2984654/selectfirst.swi.lpi.txt:

compute_selectfirst (_res,_class,_cl) :-
nonvar (_class),

cbserver:ask([In(_res,_class)]),
|

tell: ’'selectfirst in Function isA Proposition with
parameter class: Proposition end’.

The first clause is the Prolog code. The predicate must start with the prefix compute_ followed by
the name of the function. The first argument is for the result of the function. Subsequently, each input
parameter is represented by two arguments, one for the input parameter itself and a second as a placeholder
of the type of the input parameter. The second clause tells the new function as ConceptBase object so
that it can be used like any other ConceptBase function. For technical reasons, the ’tell’ clause may not
span over more than 5 lines. Use long lines if the object to be defined is large. The function object (here:
selectfirst) is stored in the System module of the database. This is the root module of the module
hierarchy, thus functions defined in this way are visible and executable in all sub-modules. If you omit
the ’tell’ clause in the LPI file, then you need to tell it manually to the database. This can also be done in
a module different to System. In this case, the function can only be called in those modules where the
function object is visible.

If you just want to invoke the procedure defined in an LPI plugin via the CALL clause of an active
rule, you do not need to include a ’tell’ clause. Consider for example the SENDMAIL plugin from http:
//merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2269675.

You need to be very careful with testing your code. Only use this feature for functions that cannot be
realized by a regular query class or by active rules. LPI code has the full expressiveness of a programming
language. Program errors may lead to crashes of the CBserver or to infinite loops or to harmful behavior
such as deletion of files. Query classes, deductive rules and integrity constraints can never loop infinitely
and can (to the best of our knowledge) only produce answer, not changes to your file system or interact
with the operating system. Active rules could loop infinitely but also shall not change your file system and
shall not interact with the operating system unless you call such code explicitely in the active rule.

You can disable the loading of LPI plugins with the CBserver option —g nolpi. The CBserver will
then not load LPI plugins upon startup. This option might be useful for debugging or for disabling loading
LPI plugins that are configured in the 1ib/SystemDB sub-directory of your ConceptBase installation.

197

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2984654/selectfirst.swi.lpi.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d2984654/selectfirst.swi.lpi.txt
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2269675
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2269675

F.3 Programming interface for the plug-ins

The CBserver plug-ins need to interface to the functionalities of the CBserver, the Prolog runtime, and
possibly the operating system. To simplify the programming of the CBserver plug-ins, we document here
the interface of the module cbserver. We assume that the code for the plug-ins is written in SWI-Prolog
and the user is familiar with the SWI-Prolog system.

cbserver:ask(Q,Params,A) asks the query Q with parameters Params to the CBserver. The answer is
returned as a Prolog atom in A. The atom holds the answer represented in the answer format of Q,
see also chapter 3.
Example: cbserver:ask (find.classes, [bill/objname],A)

cbserver:ask(Preds) evaluates the predicates in list Preds. The predicate can backtrack and will bind
in case of success the free variables in Preds. We currently support only the following predicates:
In, A, AL, and Isa.
Example: cbserver:ask ([In(X,Employee),A(X,salary,1000)])

cbserver:askAll(X,Preds,Set) finds all objects X that satisfy the condition in Preds and puts the result
into the list Set. Supported predicates in Preds are: In, A, AL, and Isa.
Example: cbserver:askAll (X, [In(X,Employee),A(X,salary,1000],S)

cbserver:tellFrames(F) tells all frames contained in the atom F. The call will fail if there is any error in
F.
Example: cbserver:tellFrames (‘bill in Employee end’)

cbserver:makeName(Id,A) converts an object identifier to a readable object name.

cbserver:makeld(A,Id) converts an object name (Prolog atom) into an object identifier used by the CB-
server to identify Telos objects. If A is already an object identifier, it is returned as well in Id.

cbserver:arg2val(E,V) transforms an argument (either an object identifier or a functional expression) to
a value (a number or a string). The value can then be used in Prolog style computations such as
arithmetic expressions.

cbserver:val2arg(V,I) transforms a Prolog value (number, string) to an object identifier, possibly by cre-
ating a new object for the value.

cbserver:concat(X,Y) concats the strings (Prolog atoms) contained in the list X. The result is returned in
Y.

Note that ConceptBase internally manages concepts by their object identifier. The programming in-
terface instead addresses concepts (and objects) by their name, i.e. the label of the object or the Prolog
value corresponding to the label. You may have to use the procedure makeName and makeId to switch
between the two representations. The two procedures arg2val and val2arg are useful for defining new
builtin functions on the basis of Prolog’s arithmetic functions. Assume for example, that the object iden-
tifier 1d123 has been created to correspond to the real number 1 .5. Then, the following relations hold:
makeName (1d123,’1.5"), arg2val (id123,1.5). Hence, makeName returns the label 7 1.5’
whereas arg2val returns the number 1.5.

The interface shall be extended in the future to provide more functionality. Be sure that you only use
this feature if user-defined query classes cannot realize your requirements!

198

References

[A1183]

[BBMRSg9]

[BCG*87]

[BMS84]

[Chen76]

[CWO6]

[DPZ2002]

[Eber97]

[Gall90]

[HJEK90]

[Jark93]

[JeJa91]

[JeSt92]

Allen, J.F.: Maintaining knowledge about temporal intervals. Comm. ACM, Vol. 26, No. 11,
Nov. 1983, doi http://dx.doi.org/10.1145/182.358434.

Borgida, A., Brachman, R.J., McGuiness, D.L., Resnick, L.A.: CLASSIC: a structural data
model for objects. Proc. ACM-SIGMOD Intl. Conf. Management of Data, Portland, Or, 58-67,
1989, doi http://dx.doi.org/10.1145/66926.66932

Banerjee, J., Chou, H.-T., Garza, J.F., Kim, W., Woelk, D., Ballou, N., Kim, H.-J.: Data model
issues for object-oriened applications. ACM Trans. Office Information Systems 5, 1, 3-26,
1987, doi http://dx.doi.org/10.1145/22890.22945.

Brodie M.L., Mylopoulos J., Schmidt J.W. (ed.): On Conceptual Modeling, Springer-Verlag,
1984, doi http://dx.doi.org/10.1007/978-1-4612-5196-5.

Chen, P. P.-C.: The Entity-Relationship-Model — Towards a Unified View of Data. ACM
Transact. on Database Systems. Vol. 1, No. 1, March 1976, pp. 9-36, 1976, doi http:
//dx.doi.org/10.1145/320434.320440.

Chen, W., Warren, D.S. : Tabled Evaluation with Delaying for General Logic Programs. Vol.
43, No. 1, January 1996, pp. 20-74, 1996, doi http://dx.doi.org/10.1145/227595.
227597.

Dahchour, M., Pirotte, A., Zimanyi, E.: Materialization and its metaclass implementation.
IEEE Trans. Knowledge and Data Engineering, 14, 5, pp 1078 - 1094, Sept/Oct 2002, doi
http://dx.doi.org/10.1109/TKDE.2002.1033775.

Eberlein, A.: Requirements Acquisition and Specification for Telecommunication Services.
PhD Thesis, University of Wales, Swansea, UK, 1997.

Gallersdorfer, R.: Realization of a Deductive Object Base by Abstract Data Types (in German),
Diploma thesis, Universitdt Passau, Germany, 1990.

Hahn, U., Jarke, M., Eherer, S., Kreplin, K.: COAUTHOR: a hypermedia group authoring en-
vironment. In Benford, J.M., Bowers, S.D. (eds.): Studies in Computer-Supported Cooperative
Work, North-Holland, 79-100, 1990.

Jarke, M. (ed.): Database Application Engineering with DAIDA, Springer-Verlag, 1993, doi
http://dx.doi.org/10.1007/978-3-642-84875-9.

Jeusfeld, M.A., Jarke, M.: From Relational to Object-Oriented Integrity Simplification. Proc.
2nd Intl. Conf. Deductive and Object-Oriented Databases, Munich, Dec. 1991, doi http:
//dx.doi.org/10.1007/3-540-55015-1_25; also as Aachener Informatik-Berichte 91-
19, RWTH Aachen, Germany, 1991.

Jeusfeld,M., Staudt,M.: Query optimization in deductive object bases. In Freytag, Vossen,
Maier (eds.): Query Processing for Advanced Database Applications, Morgan-Kaufmann,
1992; also as Aachener Informatik-Berichte 91-26, RWTH Aachen, Germany, URL http:

//conceptbase.sourceforge.net/mjf/91-26—r.pdf.

199

http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1145/66926.66932
http://dx.doi.org/10.1145/22890.22945
http://dx.doi.org/10.1007/978-1-4612-5196-5
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/227595.227597
http://dx.doi.org/10.1145/227595.227597
http://dx.doi.org/10.1109/TKDE.2002.1033775
http://dx.doi.org/10.1007/978-3-642-84875-9
http://dx.doi.org/10.1007/3-540-55015-1_25
http://dx.doi.org/10.1007/3-540-55015-1_25
http://conceptbase.sourceforge.net/mjf/91-26-r.pdf
http://conceptbase.sourceforge.net/mjf/91-26-r.pdf

[Jeus92]

[Jeus09]

[JGJ*95]

[JIM*09]

[JIN*98]

[JIQV99]

[JJR88]

[JJROO]

[JJS*99]

[JN2016]

[JQJ98]

[Koub20]

[Lud2010]

Jeusfeld, M.A.: Anderungskontrolle in deduktiven Objektbanken. Dissertation, Univer-
sitdt Passau, Germany, postprint http://merkur.informatik.rwth-aachen.de/pub/
bscw.cgi/d340216/diskil9.pdf.

Jeusfeld, M.A.: Metamodeling and Method Engineering with Concept-
Base. In [JIM*09], preprint http://conceptbase.sourceforge.net/mjf/
Metamodeling—and-method-engineering-with-ConceptBase—-preprint.pdf.

Jarke, M., Gallersdorfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: ConceptBase: A deductive
object base for meta data management. Journal of Intelligent Information Systems, Vol. 4, No.
2, pp. 167-192, March 1995, doi http://dx.doi.org/10.1007/BF00961873.

Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds.): Metamodeling for Method Engineering.
Cambridge, MA, 2009. The MIT Press, ISBN-10: 0-262-10108-4, https://mitpress.

mit.edu/books/metamodeling-method-engineering.

Jeusfeld, M.A., Jarke, M., Nissen, H-W., Staudt, M.: ConceptBase - Managing Conceptual
Models about Information Systems. In Bernus, P., Mertins, K., Schmidt, G., (eds.): Handbook
on Architectures of Information Systems, Springer-Verlag, pp. 265-285, 1998, http://dx.
doi.org/10.1007/3-540-26661-5_12.

Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and Quality for Data Ware-
houses: An Extended Repository Approach Information Systems, Vol. 24, No. 3, pp. 229-253,
1999, doi http://dx.doi.org/10.1016/50306-4379(99)00017-4.

Jarke, M., Jeusfeld, M., Rose, T.: A global KBMS for database software evolution: docu-
mentation of first ConceptBase prototype, Report MIP-8819, Universit”at Passau, Germany,
1988.

Jarke, M., Jeusfeld, M., Rose, T.: A software process data model for knowledge engineering
in information systems. Information Systems 15, 1, 85-116, 1990, doi http://dx.doi.org/
10.1016/0306-4379(90)90018-K.

Jeusfeld, M.A., Jarke, M., Staudt, M., Quix, C., List, T.: Application Experience with a
Repository System for Information Systems Development. In R. Kasckek (ed.): Proceed-
ings Entwicklungsmethoden fuer Informationssysteme und deren Anwendung (EMISA’99).
Reihe Wirtschaftsinformatik, Teubner Verlag, Stuttgart, Germany, pp. 147-174, 1999, post-
print http://conceptbase.sourceforge.net/mjf/itrs004.pdf.

Jeusfeld, M.A., Neumayr, B.: DeepTelos: Multi-level Modeling with Most General In-
stances. Proc. 35th International Conference on Conceptual Modeling (ER 2016), Gifu, Japan,
Springer, LNCS 9974, 2016, 198-211, postprint http://conceptbase.sourceforge.
net/mjf/deeptelos—er201l6-postprint.pdf.

Jeusfeld, M.A., Quix, C., Jarke, M.: Design and Analysis of Quality Information for Data
Warehouses. 17th International Conference on the Entity Relationship Approach (ER’98), Sin-
gapore, 1998, postprint http://conceptbase.sourceforge.net/mjf/er98.pdf.

Koubarakis, M., Borgida, A., Constantopoulos, P., MDoerr, M., Jarke, M., Jeusfeld, M., My-
lopoulos J., Plexousakis, D.: A Retrospective on Telos as a Metamodeling Language for
Requirements Engineering. Requirements Engineering, doi https://doi.org/10.1007/
s00766-020-00329-x.

Ludwig, S.A.: Comparison of a Deductive Database with a Semantic Web reasoning engine.
Knowledge-Based Systems, 23, 6, 2010, pp. 634-642, doi http://dx.doi.org/10.1016/
j.knosys.2010.04.005

200

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d340216/diski19.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d340216/diski19.pdf
http://conceptbase.sourceforge.net/mjf/Metamodeling-and-method-engineering-with-ConceptBase--preprint.pdf
http://conceptbase.sourceforge.net/mjf/Metamodeling-and-method-engineering-with-ConceptBase--preprint.pdf
http://dx.doi.org/10.1007/BF00961873
https://mitpress.mit.edu/books/metamodeling-method-engineering
https://mitpress.mit.edu/books/metamodeling-method-engineering
http://dx.doi.org/10.1007/3-540-26661-5_12
http://dx.doi.org/10.1007/3-540-26661-5_12
http://dx.doi.org/10.1016/S0306-4379(99)00017-4
http://dx.doi.org/10.1016/0306-4379(90)90018-K
http://dx.doi.org/10.1016/0306-4379(90)90018-K
http://conceptbase.sourceforge.net/mjf/itrs004.pdf
http://conceptbase.sourceforge.net/mjf/deeptelos-er2016-postprint.pdf
http://conceptbase.sourceforge.net/mjf/deeptelos-er2016-postprint.pdf
http://conceptbase.sourceforge.net/mjf/er98.pdf
https://doi.org/10.1007/s00766-020-00329-x
https://doi.org/10.1007/s00766-020-00329-x
http://dx.doi.org/10.1016/j.knosys.2010.04.005
http://dx.doi.org/10.1016/j.knosys.2010.04.005

[MBJKO90]

[MBW380]

[NJS*14]

[NJJ*96]

[OMG11]

[Quix96]

[QSJ02]

[RaDh92]

[RIG*91]

[RLGW14]

[SSW94]

[SIGA91]

[StJa96]

[Soir96]

[Stan86]

[Stau90]

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: a language for representing
knowledge about information systems. ACM Trans. Information Systems Vol. 8, No. 4, 1990,
doi http://dx.doi.org/10.1145/102675.102676.

Mylopoulos, J., Bernstein, P.A., Wong, H.K.T.: A language facility for designing database-
intensive applications. ACM TODS, Vol. 5, No. 2, June 1980, doi http://dx.doi.org/10.
1145/320141.320150.

Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schiitz, C.: Dual Deep Instantiation and its
ConceptBase Implementation. Proc. Advanced Information Systems Engineering (CAiSE
2014), Thessaloniki, Greece, June 16-20, 2014, 503-517, postprint http://conceptbase.
sourceforge.net/mjf/Neumayr-et-al-CAiSE2014_postprint.pdf.

Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G.V., Huber, H.: Managing Multiple Re-
quirements Perspectives with Metamodels. IEEE Software, pages 37-48, March 1996, doi
http://dx.doi.org/10.1109/52.506461.

Object Management Group: OMG Unified Modeling Language Infrastructure, Version 2.4.1
OMG Document Number: formal/2011-08-05, URL http://www.omg.org/spec/UML/2.
4.1/.

Quix, C.: Sichtenwartung und Anderungsnotifikation fiir Anwendungsprogramme in deduk-
tiven Objektbanken. Diploma Thesis, RWTH Aachen, 1996.

Quix, C., Schoop, M., Jeusfeld, M.A.: Business Data Management for Business-to-Business
Electronic Commerce SIGMOD Record, Vol. 31, No. 1, pp. 49-54, March 2002, URL http:
//dl.acm.org/ft_gateway.cfm?ftid=76258&1d=507348.

Ramesh,B., Dhar,V.: Supporting systems development by capturing deliberations during re-
quirements engineering. /IEEE TSE, Vol. 18, No. 6, 1992, doi http://dx.doi.org/10.
1109/32.142872.

Rose, T., Jarke, M., Gocek, M., Maltzahn, C., Nissen, H.: A decision-based configuration
process environment. Software Engineering Journal, Special Issue on Software Environments
and Factories, July 1991.

Rossini, A., de Lara, J., Guerra, E., Wolter, U.: A formalisation of deep metamodelling.
Formal Aspects of Computing, 26, 6, pp 1115-1152, November 2014, doi http://dx.doi.
0rg/10.1007/s00165-014-0307~-x.

Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine. Proceed-
ings of the ACM SIGMOD International Conference on the Management of Data, pages 442-
453, Minneapolis, Minnesota, May 1994, doi http://dx.doi.org/10.1145/191843.
191927.

Rich, C. (ed.): “Special Issue on Implemented Knowledge Representation and Reasoning
Systems”, SIGART Bulletin Vol. 2, No. 3, June 1991.

Staudt, M., Jarke, M.: Incremental Maintenance of Externally Materialized Views. In Proc. of
the 22th VLDB Conference, Bombay, India, 1996.

Soiron, R.: Kostenbasierte Anfrageoptimierung in deduktiven Objektbanken. Diploma Thesis,
RWTH Aachen, 1996.

Stanley M.T.: CML — a knowledge representation language with application to requirements
modeling, M.S.thesis, University of Toronto, Ontario, 1986.

Staudt, M.: Anfragereprisentation und -auswertung in deduktiven Objektbanken. Diploma
thesis, Universitit Passau, 1990.

201

http://dx.doi.org/10.1145/102675.102676
http://dx.doi.org/10.1145/320141.320150
http://dx.doi.org/10.1145/320141.320150
http://conceptbase.sourceforge.net/mjf/Neumayr-et-al-CAiSE2014_postprint.pdf
http://conceptbase.sourceforge.net/mjf/Neumayr-et-al-CAiSE2014_postprint.pdf
http://dx.doi.org/10.1109/52.506461
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://dl.acm.org/ft_gateway.cfm?ftid=76258&id=507348
http://dl.acm.org/ft_gateway.cfm?ftid=76258&id=507348
http://dx.doi.org/10.1109/32.142872
http://dx.doi.org/10.1109/32.142872
http://dx.doi.org/10.1007/s00165-014-0307-x
http://dx.doi.org/10.1007/s00165-014-0307-x
http://dx.doi.org/10.1145/191843.191927
http://dx.doi.org/10.1145/191843.191927

[TKDE90] Stonebraker M. (ed.): Special Issue on Database Prototype Systems, IEEE Trans. on Knowl-
edge and Data Engineering Vol. 2, No. 1, March 1990.

202

	Introduction
	Background: Telos and O-Telos
	The architecture of ConceptBase.cc
	Hardware and software requirements
	Installation

	Overview of this manual
	Differences to earlier versions
	License terms
	Disclaimer

	O-Telos by ConceptBase.cc
	Propositions and frames
	Anonymous object labels

	Rules and constraints
	Basic predicates
	Notes on attribution
	Assigning attribute categories to explicit attributes
	Reserved words
	Comparison predicates
	Typed variables
	Semantic restrictions on formulas
	Rule and constraint syntax
	Meta formulas
	Further object references
	User-definable error messages for integrity constraints
	Immutable properties

	Query classes
	Query definitions versus query calls
	Query classes and deductive integrity checking
	Nested query calls and shortcuts
	Reified query calls

	View definitions
	Functions
	Functions as special queries
	Shortcuts for function calls and functional expressions
	Example function calls and definitions
	Programmed functions
	Recursive function definitions

	Query evaluation strategies
	Multi-level modeling with ConceptBase
	Expressing semantics at the metamodel level
	DeepTelos
	Crossing abstraction levels

	Datalog queries and rules
	Extended query model
	Datalog code
	Examples

	Answer Formats for Queries
	Basic definitions
	Constructs in answer formats
	Simple expressions in patterns
	Pre-defined variables
	Iterations over expressions
	Special characters
	Function patterns
	Calling queries in answer formats
	Expressions in head and tail
	Conditional expressions
	Views and path expressions
	Encoding answers via answer formats

	Parameterized answer formats
	File type of answer formats
	Bulk query calls

	Active Rules
	Definition of ECArules
	ECAassertion
	Events
	Conditions
	Actions
	Priorities
	Coupling mode of an ECA rule
	Execution Semantics
	Switching Queues
	Activate and Deactivate ECA rules
	Depth
	User-definable Error Messages
	Constraints

	Examples
	Materialization of views by active rules
	Counter
	Timestamps
	Simulation of Petri Nets

	Optimization of ECA rules
	Limitations of the current implementation

	The Module System
	Definition of modules
	Switching between module contexts
	Using nested modules
	Exporting and importing objects
	Modules and metamodeling
	Setting user home modules
	Limiting access to modules
	Access to System module

	Listing the module content
	Restrictions of listModule

	Purging a module
	Saving and loading module sources
	Server-side materialization of query results
	Post-export command

	The ConceptBase.cc Server
	CBserver parameters
	Updating the CBserver software

	ConceptBase under Windows 10
	Database format
	Modifying the system database
	Tracing and restarting
	Public CBservers
	The tabling subsystem
	Database persistency
	The UNTELL operation
	Cascading UNTELL

	Memory consumption and performance
	The Java API to the CBserver

	The CBShell Utility
	Syntax
	Options
	Commands
	Rollback time for ASK
	Argument delimiters

	Interactive use of CBShell
	Positional parameters
	Executable CBShell scripts
	CBShell scripts within regular shell scripts
	CBShell in a pipe

	The ConceptBase.cc Usage Environment
	The workbench CBIva
	The tool bar
	The menu bar
	The status bar
	Telos editor
	History window
	Display instances
	Frame browser
	Display queries
	Display functions
	Query editor
	Tree browser

	The graph editor CBGraph
	Overview
	Starting CBGraph via CBIva
	The cbgraph command
	Redirecting the CBserver location
	Moving objects
	Menu bar
	Tool bar
	Popup menu
	Editing of Telos objects
	Caching of query results within CBGraph
	Graph files

	An example session with ConceptBase
	Starting ConceptBase
	Connecting CBIva to another CBserver
	Loading objects from external files
	Displaying objects
	Browsing objects
	Editing Telos objects
	Using the query facility

	Configuration file

	Syntax Specifications
	Syntax specifications for Telos frames
	Syntax of the rule and constraint language
	Syntax of active rules
	Terminal symbols
	Syntax specifications for SML fragments

	O-Telos Axioms
	Graphical Types
	The graphical type model
	The standard graphical types
	The extended graphical type model
	Default graphical types

	Customizing the graphical types
	Graphical properties of nodes and links
	Node levels
	Click actions
	Shapes
	Icons

	TelosPalette: A modern graphical palette for ConceptBase
	Object-specific graphical properties
	HTML node labels

	Graphical types for derived links
	Palette-specific methods to expand related objects

	Examples
	Example model: the employee model
	A Telos modeling example - ER diagrams
	The basic model
	The use of meta formulas
	Limitations and final remarks

	Predefined Query Classes
	Query classes and generic query classes
	Instances and classes
	Specializations and generalizations
	Attributes
	Links between objects
	Other queries

	Functions
	Computation and counting
	String manipulation functions

	Builtin query classes

	CBserver Plug-Ins
	Defining the plug-in
	Calling the plug-in
	Programming interface for the plug-ins

	References

