
Rule Representation and Management in ConceptBase

Matthias Jarke, Manfred Jeusfeid

Fakult,it fiir Mathematik und Informatik, Universit~t Passau

Posffach 2540, 8390 Passau, F.R. Germany

Abstract. ConceptBase is an experimental knowledge base management system for design
applications, especially in the software engineering area. The knowledge representation language it
supports, CML/Telos, combines the functionalities of deductive and temporal databases with
structural object orientation. In this paper, we demonstrate how to exploit a process, oriented software
data model that uses just the object-oriented structural language kcmcl, to bootstrap efficient internal
representations of the rule sub-language.

Introduction Overview of CML/Telos

Among the proposals for extended database
functionality, object-oriented and deductive databases
have attracted the greatest attention. The ConceptBase
system tries to integrate aspects of both of these
extensions in order to support design applications,
especially those in software engineering [JJR89a]. As
its data descnption and manipulation language,
ConceptBase offers a version of the knowledge
representation language CML/Telos [KMSB89]
which "integrates predicative rules, constraints, and
queries together with an embedded time calculus in a
structurally object-oriented framework inspired by
semantic networks.

In its implementation strategy, ConceptBase follows a
bootstrapping approach: the structural concepts
offered by the CML/Telos object language are
exploited to derive efficient implementations of the
predicative subsystem. Thus, our f'urst goal in this
paper is to answer the question: what kinds of objects
are rules? In a second part, we discuss the efficient
compilation and evaluation of such rule objects. We
discuss the usage of rules in query processing and
deductive integrity checking; also addressed is the
representation of queries and derived data in the
same, uniform framework. It is shown that the
structural rule representation above yields fast access
paths for all of these uses. Moreover, a small
extension -- again based on the software process data
model -- allows the elegant integration of triggered
rule evaluation and assertion checking procedures (as
well as their automatic generation from predicative
formulations [FREY87, GD87]) into the system. In
many applications, especially in software specification
and verification, the rule proofs themselves are
objects of interest to the user (= software developer);
they are therefore also modeled in our system.
Finally, we discuss some extensions we are currently
working on.

A CML/Tclos knowledge base can bc seen as (but
need not be stored as) a semantic network. Links
represent attributes, specialization among classes and
instanfiafion relationships between objects and their
classes. Each link is an object with its own identifier.
Nodes ("individual" objects) are special links which
point to themselves. Additionally, each object has two
associated time intervals: one for the time during
which the object is valid in the modelled world, and
one for the time when the object is believed by the
knowledge base. Built-in system classes provided for
these structural features allow arbitrarily high recta-
levels, multiple instantiation and inheritance.

IndividualClass Class with

attribute

attribute: Class;

rule: Assertion;

constraint: Assertion

end Class

Fig. 1: System object Class

To express implicit information beyond that provided
by structural axioms for aggregation, generalization,
and specialization, an assertion language for deductive
rules and integrity constraints is provided. From the
viewpoint of the CML object language, these rules
and constraints are uninterpreted objects of class
Assertion whose role is determined by the links
(rule resp. cons t ra in t) which attach them to other
objects. This decoupling allows the integration of
several different assertion languages and uses of
assertion objects. In the ConceptBase usage
environment, for example, we are not only interested
in standard Horn clause assertions but also in
specialized languages for expressing verification
conditions on software specifications or test programs
which may be difficult to express declaratively.

46 SIGMOD RECORD, Vol. 18, No. 3, September 1989

Instantiation in CMLfrelos means setting up an
ins tanceOf link between the instance object and its
class. Instances may instantiate the attributes of their
classes to get attributes themselves. The object
Employee instantiates the attribute a t c t r i b u t e of
ca.ass four times, the attribute ru le once; it does not
Use the c o n s t r a i n t attribute class.

IndividualClass Employee with
attribute

name: String;
salary: Money;
dept: Department;
boss: Manager

rule
bossrule :

~=>

end Employee

$ forall e/Employee,
d/Department, m/Manager
AttrValue (e, dept,d) and
AttrValue (d, head, m)
Art rValue (e, boss, m) $

Fig. 2: Instantiating C l a s s

As can be seen, the "normal" CML assertion language
is a many-sorted fast-order calculus where variables
range over classes. The b o s s r u l e states that if an
employee works in a depa,h,ent which is headed by a
particular manager, then this manager is the boss of
the employee. [KMSB89] provide a formalization of a
version of CML/Telos very close to ours.

Rules as Knowledge Base Objects

Given the flexible embedding of predicative
constraints in the language, several implementation
strategies can be followed. A fast strategy explored
for CML/Telos was the translation to equivalent logic
programs [GS86, JJR88, KT89]. Each link of the
network is translated to a corresponding Prolog term,
and the semantics of £sa and ins t aneeof axioms is
hardcoded into the system for efficiency. To complete
the logic program, rule, constraint, and query objects
are translated into Prolog rules and queries [LT85].

For the management of large knowledge bases, this
direct and formally nice approach has a number of
disadvantages. Recent research in large-scale rule
management has shown the need to represent more
explicitly the structure and interrelationships of rules,
the storage of intermediate results or derivation paths,
as a basis for reusability in multiple query
optimization [SLR88]. We therefore turn the above
implementation strategy around and represent
assertions as object structures to be managed,
optirnized and manipulated (an alternative attempt to
represent the ideas below as metalevel logic programs
is currendy followed in the COMPULOG ESPRIT

project). From earlier semantic network approaches to
logic [MS81], our approach is distinguished by its
use of CML's use of rather strict structural axioms,
and by the application of a specific metamodel initially
developed by us for the broader context of software
process control [JJR89a]. Nevertheless, graph-based
algorithms for deductive query processing [BR86]
and integrity control can be nicely represented.

Since we wish to support a variety of assertion
languages, our basic structure supports very general,
non-deterministic rules (fig. 3). Motivated by the
software engineering context, it is called a software
process data model; non-determinism stems from
human design decisions and externally provided tools
whose functionality the KB only knows roughly.

from/to ob~ectsemantlc

ID,,~q~,ci,io, I__4, I D,,lq~,J.o~l - ' - ~

I lsA
dectstonsemantle depend

i DecisionDesrtptlonl dependencies

Fig. 3: Software process data model

Applied to software engineering, design objects
represent programs, documentation etc. Design
decision lead from existing design objects to new
ones, for example from a buggy program to an
error-free one. Design objects can be further
described by arbitrary CML classes, and design
decisions by dependencies among object descriptions.
The CML specification of predicative assertions can
now be modeled as an instance of this recta-model:
design decisions relate the condition literals (from)
deterministically to the conclusion literal (to).

Figure 4 shows this interpretation of the software
process model in a semantic network. Unlabelled
links denote instantiadon relationships. For example,
the class Literal is an instance of the metaclass
Des ignObjec t . The truth of the literal A t t r V a l u e
depends on so-called attribute classes like the dept
attribute of Employee. The lower third is occupied by
representation of the example rule. It has two
condition literals and one conclusion literal. The
literals concern the attributes of Employee and
D e p a r t m e n t . Note that the granularity of rule
precision is a single attribute, rather than a full object
class as in most languages (e.g., relational databases).
The assertion compiler of ConceptBase generates this
network automatically.

SIGMOD RECORD, Vol. 18, No. 3, September 1989 47

h~/t,
ot~ct.s~t ic

e0n~it ion

I e0.ehlSl0n ~IA

cot~s
Fig. 4: The data model for assertions

Compilation of Rules -- F ir ing of Evaluators

The network model proposed so far relates assertions
to the parts of the knowledge base they concern.
Determining which rules or constraints to apply in a
specific update situation still determines a comp!ex
search in these structures. The ConceptBase asseruon
oprimiTer therefore compiles the initial structures into
simplified structures and executable evaluation
procedures attached to those objects whose change
may fire the rule or violate the constraint; in other
words, rather than just making objects attributes of
assertions, specialized assertion evaluators are
associated as trigger attributes to the objects.
Typically, triggers are associated with attribute
classes; corresponding parameter-instantiated
evaluation procedures are fired when instantiation
links to these class objects are inserted respectively
deleted. Since a large number of specialized
procedures may be generated, techniques such as
proposed in [KDM88] are explored to manage them.

For an example, figure 5 shows two related insertions
provided as a transaction to ConceptBase.

Individual PR in Department with
head

ledby: mary
end PR

Individual bill in Employee with
name

hisname: "William B. Smith"
salary

earns: $20000
dept

worksfor: PR
end bill

Fig. S: Instances for Employee and Department

According to the boasrule in class Employee, the
b o s s o f B i l l is Mary since he works for the
department PR which is headed by her.
The actual evaluation is done by a rule evaluator tool
of the run-time system. Such tools are modeled as
instances of recta-class DesignTool:

IndividualClass DesignTool
isA DesignDecision with

attribute
from: DesignDecision
to: BehaviorObject

end DeaignTool

Fig. 6: CML definition of design tools

Design tools are formally seen as reusable design
decisions which relate the specification of the tool
(given by another design decision which describes the
kind of transformation the tool performs) with a
behavior object representing the way of invoking the
tool. For example, the b o s s r u l e has two procedure
calls: one for the case when a new department of an
employee is stored (br_dept (e, d)) and one for the
case when a new head of a department is inserted.

Fig. 7 shows the completed model with the
representation of the example rule. Fig. 8 shows what
happens if the attribute head is instantiated for the
department pg.

The ledby attribute is declared to be an instance of the
head attribute class. This event activates the head
trigger to the procedure call br_head (d,m). The
parameters are instanfiated with PR and mary. The
evaluation results in a new attribute of b i l l (instance
of boas). This new attribute may fire another rule
evaluation, e.g., the constraint that no employee may
earn more than his boss. In this way, the same
parad..igm has be used for constraint evaluat ion
[KRUG89] based on the optimization approach
proposed in [BDM88]; here, the conclusion of a
constraint is a special literal cons i s t en t .

48 SIGMOD RECORD, Vol. 18, No. 3, September 1989

t ~
fm . ~ . . ~ e ~ a t l l t l c

i x . -

umllttu I

~maJUu m0r.luli LtA

l.leRt r IIII)S!

r / \
[g.t. \"

I I

tml,:qqt~

Fig. 7: Rule model with triggers

lb:_ Laola (~. m)l

[b', ho.ct (,P,.m.sryJ

headt gAgge

I ~ p . r t , , m n t I 4

.! r . . , , . * . . I

I PI~ | ~ ~ | t o r y I

v o r k . f o g ~ /~hl.bo.,
I b i l l l /

Fig. 8: Rule triggering due to attribute insertion

Similarly, queries to the knowledge base are
expressed by instantiating a QueryC1ass with an
embedded deductive rule (fig. 9). Answers are seen
as instances of the query yielding instantiations of the
answer variables. This uniform representation and
way of accessing the results of a query suggests a
formalism for handling derived data as objects; in
[]]R89b], we discuss how to exploit this
representation for version and configuration
management of KB modules or sub-worlds [WA86],
and for the modelling of user interfaces.

IndividualClass Bigsalaryquery in
QueryC1ass with

answervariable
x: Employee

query
q1: $ each x/Employee exists y/Money

AttrValue(x, salary, y) and
y > 10000 $

end Bigsalaryquery

Fig. 9: An example query in ConceptBas¢

The effect of this approach to derived data
management is similar to the one achieved in Postgres
[SI-IP88] but with more strict supervision of
generated procedures. Explicit modelling of derived
object classes also suggests a choice whether
instances of these classes should be stored
redundantly or recomputed; we have been looking at
algorithms such as incremental view maintenance
[BLAK87], the database version of Rete [SLRS$],
and COSMA [RS89] to explore the trade-offs. It soon
became clear, however, that we should look for a
more compact representation that fits better the
semantic network structure we have; specifically, the
documentation of derivation paths by links that
generalize join indexes appears as an attractive
solution. Later, we discovered that this idea has been
independently (and earlier) explored in the ADMS
prototype [ROUS89]; our implementation strategy is
also close to that described for main-memory
databases in [PT88]. Prom the viewpoint of the model
described above, all these approaches amount to the
modelling not just of derived data but also of their
derivation proofs, as CML/Telos objects. Since this
idea is very natural in the context of software
engineering (e.g., test specifications), our model is
easily extensible to this addition.

Redundant Derivations: Proofs as Objects

The evaluation of rules, queries and integrity
constraints is usually regarded as an atomic operation.
But in many design applications, this approach to rule
evaluation and integrity control has been criticized as
naive; tbesc applications need human intervention and
detailed proof analysis, even hand-coded test
procedures for which a declarative expression is
impractical. For example, mathematical proofs can
take several days or even centuries. For some
theorems, the prover has to develop new theories
beforehand. Inspired by needs for specification
verification and prototype testing in the DAIDA
information systems development environment, we
have therdorc extended the basic rule model.

SIGMOD RECORD, Vol. 18, No. 3, September 1989 49

Essentially, a proof is documented as a process of
proof steps each of which sup.ported by its specific
proof assistant tool and environment of existing
lemmas and proof strategies. Fig. 10 shows the
corresponding meta-level schema, whereas fig. 11
illustrates this model by the evaluation structure for
the example nile introduced earlier -- of course, this is
a very simplistic example but it may give the idea. In
the DAIDA project, another prover we use is Abrial's
[ABRI86] B-Tool, a theorem-proving assistant for
specification refinement and verification [WNS89].

usedtheortes

a s s i s t ~ t

T ~ tocon~ecture
subproofsteps/ /Ls^ ~lSA

[x~.*orFa~.eJ

Fig. 10: CML model for proofs

Is ~o..11 ./.-plo,... ~Dn.~.~../ ,-~..J

I ' ' I

L m m l

IUr.UrVLl.m(lqtohe~,m~ry) $ a ~ &tt.rvslue(d bee ~ry) S

J a i l

Fig. 11: Example of a proof

With this model, the software environment supports
the proof process by recording which proof
obligations (lemmata) have not yet been proven. One
can backtrace the unsuccessful proof steps in order to
fred aitemate solutions. The system can record which
tools and the, odes where used for the different steps
and even how these theories evolved during the
process (though design decisions for changing or
mating theories are not shown in the model).

As mentioned, instances of such a proof procedure
model can be viewed as join indexes which, as
discussed in [ROUS88], allow the efficient querying
and incremental update of database structures. More
detailed dependency modelling also yields the basis
for truth maintenance or belief revision systems
[DOYL79].

Sys tem Status and C u r r e n t W o r k

ConceptBase has been under development in the
context of ESPRIT project DAIDA since early 1986.
A first prototype was completed in spring, 1988, and
distributed to a number of places for experimental
applications; a second prototype with the full
functionality described in this paper is currently being
finalized. The system is implemented in BIM-Prolog
and C, using the SUNVIEW package to provide a
hypertex-like user interface. ConceptBase runs on
SUN under UNIX and on VAX under VMS. Further
extensions to handle belief revision, multimedia data,
and cooperative group design tasks are pursued in the
context of the recently begun ESPRIT projects
MULTIWORKS and COMPULOG. Of specific
interest in our research is also the interaction of
rule/constraint/query processing with temporal
information on the objects; a study of related
optimization issues is made in [JK89].

A c k n o w l e d g m e n t s . Work on ConceptBase is
supported by the European Commission under
ESPRIT Contract 892 (DAIDA), and by the Deutsche
Forschungsgcmeinschaft under Contract Ja445/1-1.
Eva Kriiger and Martin Staudt have participated in the
implementation of the rule component, whereas
Thomas Rose contributed strongly to the underlying
software process data model. Work on proof
modelling was done in collaboration with Ingrid
Wetzel of the University of Frankfurt. Thanks are
also due to Manofis Koubarakis and John Mylopoulos
for useful discussions on CML/Telos implementation.

R e f e r e n c e s

[ABRI86]

[BDM88]

[BEAK87]

Abrial, J.R. (1986) An informal
introduction to B. Draft paper.
Bry, F., Decker, H., Manthey, R.
(1988). A uniform approach to constraint
satisfaction and constraint satisfiability in
deductive databases. Proc. EDBT '88,
Venice, Italy, 488-505.
Blakeley, J.A. (1987). Updating
materialized database views. Ph.D. thesis,
University of Waterloo, Ont.

50 SIGMOD RECORD, Vol. 18, No. 3, September 1989

[BR86]

[DOYL79]

[FREY87]

[GD87]

[GS86]

[J JR88]

[JJR89a]

[JJR89b]

[JK88]

[KDM88]

Bancilhon, F., Ramakrishnan, R. (1986).
An amateur's introduction to recursive
query processing. Proc. ACM-SIGMOD
Conf., Austin, Tx, 16-52.
Doyle, J. (1979). A truth maintenance
system. Artificial Intelligence 12, 3,
231-272.
Freytag, J.C. (1987). A rule-based view
of query optimization. Proc. ACM-
SIGMOD Conf., San Francisco, Ca,
173-180.
Graefe, G., DeWitt, D.J. (1987). The
EXODUS query optimizer generator.
Proc. ACM-SIGMOD Conf., San
Francisco, Ca, 160-172.
Gallagher, J., Solomon, L. (1986). CML
Support System. Report, ESPRIT Project
107 (LOKI), SCS Hamburg, W.
Germany.
Jarke, M., Jeusfeld, M., Rose, T.
(1988). A KBMS for database software
evolution: documentation of first Con-
ceptBase prototype. Report MIP-8819,
Univ. Passau, W.Germany.
Jarke, M., Jeusfeld, M., Rose, T.
(1989). A software process data model
for knowledge engineering in informat-
ion systems. Information Systems, to
appear.
Jarke, M., Jeusfeld, M., Rose, T.
(1989). Software process modelling as a
strategy for KBMS implementation.
Universitat Passau, W.Oermany.
Jarke, M., Koubarakis, M. (1989). Query
optimization in KBMS. Report
KRR-TR-89-6, University of Toronto.
Kotz, A.M., Dittrich, K.R., Muelle, J.A.
(1988). Supporting semantic rules by a
generalized event/ trigger mechanism.
Proc. EDBT "88, Venice, Italy, 76-91.

[KMSB89]Koubarakis, M., Mylopoulos, J.,
Stanley, M., Borgida, A.. (1989). Telos:
Features and Formalization. Technical
Report FORTH/CSI/TR/1989/ 018,
Computer Science Institute, Crete/Greece.

[KRUG89]Krfiger, E. (1989). lntegritlitsprUfung in
deduktiven Objektbanken am Beispiel
ConceptBase. Diploma thesis, Universit~t
Passau, W. Germany.

[KT89] Koubarakis, M., Topaloglou, T. (1989).
An implementation of Telos. Computer
Science Technical Report, Univ. Toronto,
Ont, forthcoming.

[LT85] Lloyd, J.W., Topor, R.W. (1985). A
basis for deductive database systems.
Logic Programming 2, 2, 93-109 and 3,
1, 55-67.

[MS81]

[PT88]

[ROUS89]

[RS89]

[SHP88]

[SLR88]

tWA86]

[WNS89]

McKay, Shapiro (1981). Using active
connection graphs for reasoning with
recursive rules. Proc. 7th IJCAI,
Vancouver, B.C.
Pucheral, P., Thevenin, M. (1988). A
graph based data structure for efficient
implementation of main-memory DBMS.
INRIA, Rocquencourt/France.
Roussopoulos, N. (1989). The
incremental access method of view cache:
concept, algorithms, and cost analysis.
Report UMIACS-TR-89-15, University
of Maryland, College Park.
Regnier, M., Simon, E. (1989). Efficient
evaluation of production rules in a
DBMS. INRIA, Rocqueneourt, France.
Stonebraker, M., Hanson, E.,
Potamianos, S. (1988). The Postgres rule
manager. IEEE Trans. Software
Engineering 14, 7, 897-907.
Sellis, T., Lin, L., Raschid, L. (1988).
Implementing large production systems in
a DBMS environment: concepts and
algorithms. Proc. ACM-SIGMOD Conf.,
Chicago, II., 404-412.
Wile, D.S., Allard, D..G. (1986). Worlds:
an organizing structure for object-bases.
Proc. 2nd Symposium on Practical
Software Environments.
Wetzel, I., Niebergall, P., Schmidt, J.W.
(1989). A mapping assistant for database
program development. Report, ESPRIT
project 892 (DAIDA), Universitat
Frankfurt, W. Germany.

SIGMOD RECORD, Vol. 18, No. 3, September 1989 51

