
Method Chunks for Interoperability

Jolita Ralyté1, Per Backlund2, Harald Kühn3, Manfred A. Jeusfeld4

1 CUI, University of Geneva, Rue de Général Dufour, 24, CH-1211 Genève 4, Switzerland
Jolita.Ralyte@cui.unige.ch

2 University of Skövde, P.O. Box 408, SE 541 28 Skövde, Sweden
Per.Backlund@his.se

3 BOC Information Systems GmbH, Rabensteig 2, A-1010 Vienna, Austria
Harald.Kuehn@boc-eu.com

4 Tilburg University, CRISM/Infolab, 5000 LE Tilburg, The Netherlands
Manfred.Jeusfeld@uvt.nl

Abstract. Interoperability is a key property of enterprise applications, which is

hard to achieve due to the large number of interoperating components and se-

mantic heterogeneity. Platform-based approaches such as service-oriented ar-

chitectures address the technical integration of systems. However, a deep inte-

gration needs to cover the whole lifecycle of the interoperable system. We pro-

pose method engineering as a means for encoding situated knowledge about

achieving interoperability in the form of method chunks. We analysed the field

of interoperability for enterprise applications and propose that a tool modelling

the business- and ICT-related choices in the form of method chunks is needed

for a knowledge-based solution of interoperability problems. An industrial case

is included to back our claims.

1 Introduction

The competitiveness and efficiency of an enterprise largely depends on its ability to

interact with other enterprises and organisations. Not only large organisations set up

cooperation agreements with other enterprises, also small and medium sized enter-

prises are combining their forces to compete jointly in the market. This evolution

makes interoperability between enterprises and software systems an increasingly

important issue. Interoperability is one of the key challenges for modern enterprises.

The problem of interoperability is as old as the existence of software systems. A

first idea was to make enterprise applications interoperable via central databases. This

approach failed in practice because not enough semantics could be covered in the

database schema to understand the semantics of data. As a consequence, non-

interoperable applications were created based on decentralised data management. The

next attempt was to save the original vision of data independence by so-called feder-

ated databases. For the same reason as for the central databases, this approach has not

passed the test in practice: it is almost impossible to create a global understanding of

data without referring to application semantics, let alone business semantics.

Another school of interoperability has been concerned with standardising system

interfaces in a way that one system can call the other system. This has led to plat-

forms such as RPC, CORBA, J2EE and .NET, to name a few. Here, the problem of

interoperability is only addressed at the technical level and fundamentally relies on

information hiding. It may be perfectly feasible to call a remote service with the pa-

rameter values that are completely non-sensical.

We claim that we need a domain-dependent approach to interoperability. Rather

than focusing on technical interoperability alone (which is mainly solved by industry

standardisation), we propose to encode successful solutions to interoperability prob-

lems as suggested in Situational Method Engineering [13]. Some solutions deal with

technical interoperability problems; others are about aligning business processes.

Situational Method Engineering promotes project-specific method construction by

selecting and assembling method fragments [3] or chunks [16, 20] stored in a method

repository [3, 6, 16, 19] hence addressing the method requirements of the specific

project. The repository then becomes the common knowledge base which can aid in

interoperability solution projects. Hence, our approach can contribute in the early

stages of such projects by setting up a project specific method. In this sense we envis-

age method engineering as a knowledge management application for projects within

the interoperability domain. Instead of providing one universal method for interop-

erability problems solution we propose to define a knowledge base of reusable

method chunks each of them addressing one or more specific interoperability prob-

lems. The latter are grouped in an extensible hierarchy of interoperability problem

classes.

The remainder of this paper is organised as follows. In section 2 we characterise

the field of interoperability between enterprises and systems. Section 3 presents an

industrial case and identifies some associated interoperability problems. In section 4

we discuss how situational method engineering and the notion of reusable method

chunks can be adopted to structure specific solutions to interoperability problems.

The paper ends with a review of this work, and outlines future research.

2 Characterising the Interoperability Domain

Interoperability may be seen as “the ability for a system or a product to work with

other systems or products without special effort of the part of the customer” [10].

Interoperable systems have been the goal for quite some time. However, there are

some obstacles in terms of technology, organisational problems and powerful tech-

nology vendors [15, 7]. The basic infrastructure seems to be in place [15] but we have

not yet achieved sufficient interoperability. The problem is well known and recurring

in many domains, some examples are: database schema integration [18], interopera-

bility between modelling techniques [5], interoperability in metamodelling platforms

[14], interoperability of ERP with other systems [1], and CNC manufacturing [23].

Interoperability is not only a problem concerning software and technologies. It is

also a problem that concerns knowledge and business references that must be shared

in order to achieve interoperability [4]. Hence, interoperability is described in terms

of a three-layered model consisting of a business layer, a knowledge layer and an ICT

systems layer. In order to achieve meaningful interoperation between enterprises,

interoperability must be achieved on all layers of an enterprise. This includes the

business environment and business processes on the business layer, the organisational

roles, skills and competencies of employees and knowledge assets on the knowledge

layer, and applications, data and communication components on the ICT layer. In

addition, semantic descriptions can be used to get the necessary mutual understanding

between enterprises that want to collaborate.

Similarly, Mak and Ramprasad [15] point out that organisations must be able to

contact each other using agreed protocols, share a common language, agree on goals

and tasks, and have people assigned to complete these tasks in order to achieve inter-

operability. Moreover, we may not assume that interoperability concerns only the

interoperability between enterprises.

We also draw on the experience of systems integration [8, 7] to further characterise

the concept of interoperability. Wainwright and Waring [24] show that the term inte-

gration is open for interpretation, as is indeed the term interoperability. There are four

domains of integration: technical, systems, strategic, and organisational. The techni-

cal domain corresponds to the ICT layer, which is further, refined into application,

data and communication interoperability [22]. Johannesson and Perjons [12] propose

three types of architectures for application integration: point-to-point, message bro-

kers, and process brokers. We complement these views by making a distinction be-

tween development and execution with respect to the ICT layer. The development

aspect concerns all parts of the systems development life cycle whereas the execution

aspect focuses on runtime issues.

The business and knowledge layers are further refined in the systems, organisation

and strategic domains [24]. The systems domain encompasses approaches to under-

stand the technical, strategic and organisational behaviours from a holistic perspec-

tive. That is, organisations are complex and any effort has to handle all aspects in

order to achieve interoperability between systems. Interoperability is a strategic issue;

hence interoperability has to incorporate strategic planning for the entire system.

Finally, the organisational domain encompasses issues such as work practices, power

and knowledge sharing which are all affected if enterprises are to be interoperable.

Interoperability between two organisations is a multifaceted problem since it concerns

both technical and organisational issues, which are intertwined and complex to deal

with. We summarise our view of interoperability in Fig. 1.

There are already various technologies to realise interoperability; some examples

are TCP/IP, XML, SOAP and BPEL. However, true interoperability is not yet here

since enterprises running different applications built with different designs and archi-

tectures still have difficulties talking to each other [15]. Whereas achieving interop-

erability also has to do with cooperative work between people from different organi-

sations. Furthermore, we also note that interoperability in the organisational and stra-

tegic domains also remain to be achieved in many cases.

Divergence and interoperability is a well-known problem in the open source soft-

ware (OSS) community. A study by van Wendel de Joode and Tineke [25] reveals a

set of strategies for dealing with interoperability issues within OSS projects. In gen-

eral, two types of strategies are used: committee standardisation and market coordina-

tion. We also observe that coding style guidelines and respected gatekeepers, i.e. a

knowledgeable and trusted person, are two important means for coordination [25].

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Interoperability

Organisation A Organisation B

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Interoperability

Organisation A Organisation B

Fig. 1. Interoperability between two organisations entails interoperability in all domains

Interoperability is to be facilitated by combining knowledge concerning architec-

tures and enabling technologies (to provide implementation frameworks), enterprise

modelling (to define interoperability requirements) and ontology (to identify interop-

erability semantics of enterprises). The three knowledge domains identified by NoE

INTEROP [10] have been further analysed to identify relevant interoperability prob-

lems [17]. From the perspective of our work we note that data integration and busi-

ness process integration were identified as recurring problems. Hence, we find this

issues relevant and worth pursuing from the interoperability perspective.

3 Interoperability in the Insurance Domain: a Case

In this section we analyse an industrial case of interoperability in the insurance do-

main and identify interoperability problems related to this case. We classify them

following our characterisation framework presented in Fig. 1.

3.1 Business Model

Insurance companies develop business models based on Internet technology either to

reduce administration costs or to establish new sales channels. They have to establish

a well-defined strategic position in the network of their competitors - especially when

they join together to establish a common Internet platform for their sales partners, e.g.

agents and brokers, to share platform development and operation costs.

The following industry case describes a B2B sales platform for insurance partners

based on Internet technology ("insurance portal"). The main objective of the insur-

ance portal is to support independent insurance agents with a single point of access to

products and services of different insurance companies. An agent is working for sev-

eral competing insurance companies on a commission basis. Some advantages for the

agents are a single point of access to reduce cycle times for business processes such

as offer management, contract management, and portfolio management, less admini-

stration costs, and improved service quality because of a broad product and informa-

tion portfolio. Some advantages for the insurance companies are reduced maintenance

and operation costs for their partner systems due to cost sharing and an enlarged sales

force because of potentially new agents.

Sales Partner
(e.g. agent, broker,

agencies etc.)

Customer
(i.e. buyer of

insurance products)

Sub Service
Provider

Insurance
Company

Insurance
Platform

(operated by
platform company)

21

6 5

3a

3b
4a

4b

7

8

Sales Partner
(e.g. agent, broker,

agencies etc.)

Customer
(i.e. buyer of

insurance products)

Sub Service
Provider

Insurance
Company

Insurance
Platform

(operated by
platform company)

21

6 5

3a

3b
4a

4b

7

8

Fig. 2. Business Model from Insurance Domain based on Common Platform

Fig. 2 describes the business model of this industry case, i.e. how the different

business participants interact with each other to create business value. Customers

interact with their sales responsibles e.g. agents, brokers, agencies etc. (step 1). A

sales responsible uses the insurance portal to execute his business processes such as

offer management, order management, policy management etc. For example, a broker

may request certain product offers (step 2) which are calculated and returned to him

(step 5), and then sent to a customer (step 6). The insurance portal, or more precisely

the company operating the platform, interacts with different sub providers such as

application hosting companies, security companies, customer information suppliers

etc. to fulfil its tasks (steps 3a and 4a). Additionally, the company operating the plat-

form interacts with the insurance companies to exchange product data, customer data

etc. (steps 3b and 4b). Finally, the customer signs a contract with the insurance com-

pany, which provided the best offer, and pays the insurance fee to the insurance com-

pany (step 7). The insurance company delivers the appropriate contracts, pays the

commission fees, and fulfils its part of the insurance contract (step 8).

All interactions within this business model raise issues concerning interoperability.

To structure these issues we use three of the interoperability domains proposed in

chapter 2, namely the strategic business domain, the operational business domain, and

the ICT domain including development and execution aspects.

3.2 Interoperability Issues in the Strategic Business Domain

In the strategic business domain, the business strategy of each participating partner

has to be defined in the context of the insurance portal and interoperability questions

such as the following have to be answered:

• Which are the processes and services (products) to be realised on the platform?
Processes, services (products) and their interdependencies have to be identified.

Intra-organisational business processes (e.g. user management on the platform)

and inter-organisational business processes (e.g. application and claims processes)

can be distinguished.

• Which are the appropriate business partners to develop and run the platform?
According to the required processes and services (e.g. insurance core services,

consulting services, implementation and provider services) partners are involved

with different contractual relationships (e.g. associate, supplier, customer etc.).

• Does the business plan of the platform correspond with the business plans of each
partner? Each partner has to agree upon the platform strategy. For example, the

standardisation of strategies of competitors participating in the platform may imply

the request of investigation of antitrust law. Furthermore, advantages realised by

one partner may damage business of another partner (e.g. insurance company A

delivers a particular insurance policy within one day, insurance company B in

seven days).

3.3 Interoperability Issues in the Operational Business Domain

In the operational business domain the various types of processes have to be deter-

mined. The business processes have to be modelled in detail with a special focus on

the products and interfaces between the business actors involved. The roles of each

business actor also have to be modelled. Business processes can be divided into the

following types:

• insurance core service processes, e.g. application processes and claims manage-

ment,

• value adding processes, e.g. cash management processes and event management,

• development processes, e.g. business and software development based on the core

elements: products, processes, organisational units and information technology,

• business operations processes, e.g. process integration of business partners and
• additional services, e.g. legal advisor services, training and learning.

The following list shows some areas of interoperability problems and opportunities

in the business domain:

• Product Management: In every realisation state a set of products is integrated into
the platform, which entails new requirements for the business processes. Implica-

tions for the software development and integration efforts of the insurance partners

should be evaluated as early as possible.

• Process integration of business partners: Each actor participating in the platform

realisation can be certified with respect to its business processes. Some criteria are

complexity of interfaces (business operations as well as data flow), process bench-

marks, availability and integrity.

• Training and Learning: Business processes can be documented online for learning

the sequence of operations of core processes as well as administrative processes.

• Pricing Model: Agents pay for using the insurance portal. If insurance companies

want to consolidate their customer database, the platform company can reduce the

cost of the business process “Customer Data Modification” to encourage the

agents to reach insurance partners objectives.

• Test Management: In combination with the product model, a set of test cases can

be developed as a specification for testing the platform application and interopera-

bility.

3.4 Interoperability Issues in the ICT Domain

The ICT domain is divided into development issues and execution issues. The insur-

ance portal consists of a core service application, dynamic HTML-based user inter-

face, complex application modules etc. During platform development typical interop-

erability problems are:

• How can the different viewpoints of requirement definition be integrated e.g. how

can the metamodels of the specification models be integrated?

• Which implementation technologies and target platforms will be used and how will

they be integrated?

• What are the different modules of the implementation environment and how can

they be integrated?

• Which runtime libraries can be used and how can they be bound to the develop-

ment environment?

The execution domain is influenced by short release cycles - especially driven by

short term content such as news and events and by a high fluctuation of platform

users. Business operation processes such as content management processes, user

management, and first and second level support, are documented by exporting all

required information in a process-based online operating instructions manual. Some

interoperability problems in the execution domain are:

• Data conversions: Customer data, contract data, product data etc.

• Component integration: How can different components of functionality be oper-

ated within a single business service (even if they are realised with different tech-

nologies)?

• How can long lasting transactions be synchronised and consistently integrated?

3.5 Summary of the Case

The above case study is based on a real industrial project. It shows that an ICT

project integrating several organisations is typically characterised by a multitude of

interoperability problems, in our case totalling to about 20. It also shows that a purely

ICT-based answer to the interoperability problem is not only insufficient but also

misses the: first one has to solve the business-related interoperability problems before

one can tackle the ICT-related issues. A consistent method that will solve all possible

interoperability problems does not exist because the business and ICT domains are

too diverse. Instead of a single method, an extensible and domain-specific knowledge

base of method chunks shall support the development of interoperable systems.

4 Situational Method Engineering to Support Interoperability

We use the term method to denote a regular and systematic way of accomplishing a

result. Methods cover a wide spectrum of industrial capabilities and services incorpo-

rated in either pragmatic or scientific working methods. Moreover, we claim that a

method may be decomposed into a set of method chunks [20]. In the realm of meth-

ods there is a lack of a cohesive body of knowledge concerning interoperability issues

as characterised in section 2, i.e. traditional methods have not managed to solve the

interoperability problem. We argue that this is the case due to the inherent complexity

and multi-facetedness of the area. In this sense, we propose method engineering as a

knowledge management application. Systems development has been characterised as

knowledge work [11, 9]. In this context, we view the development method as a body

of knowledge. In order to make it an active body of knowledge it has to be made

available for use, update and refinement, something which may be achieved by con-

structing a dynamic method chunk repository [2, 16, 19].

In the following we will demonstrate how Situational Method Engineering can

help in solving parts of the problem of managing interoperability knowledge. More

precisely, we consider specific method chunks dealing with interoperability problem

solutions such as guidelines and models for data exchange, data integration, informa-

tion logistics mapping, model transformation and comparison.

4.1 Method Chunk

We propose to use the notion of reusable method chunk [16, 20] to represent meth-

odological knowledge related to interoperability. A method chunk is an autonomous,

cohesive and coherent part of a method providing guidelines and related concepts to

support the realisation of some specific system engineering activity. A method is

viewed as a collection of loosely coupled method chunks expressed at different levels

of granularity. Such a modular view of methods favours their adaptation and exten-

sion and permits to reuse chunks of a given method in the construction of new ones.

As illustrated in Fig. 3, from the engineering perspective the body of a method

chunk includes two types of knowledge: the process model, also called guideline,

supporting the engineer in method chunk application, and the product model defining

concepts, relationships between concepts, and constraints used by the corresponding

process. The structure of a guideline can be found in [16, 20]. It can be more or less

rich and represented as an informal description or expressed by using different proc-

ess modelling formalisms. Application examples can be provided in order to help the

method engineer to apply the method chunk.

The context in which a method chunk is relevant is defined in its interface. It is

formalised by a couple <situation, intention>, which characterises the situation in

which the method chunk can be applied in terms of required input product(s) and the

intention, i.e. the goal, that the chunk helps to achieve.

AtomicAggregate

2..*

*
1

1 1..*Reuse Situation

Reuse Intention

Criterion

Descriptor

1

1..*

*

1..*
Interoperability Problem

1..*

Experience
Report

Origin

1..*

1

Method

*
1 1

1
is based on

Interface

1

Not-Chunk1..* 1

1

Situation

Intention

target

1..*

1..*

*

has

1..*1..*

1..*

contains

1..*

1

Body

Process Model

Product Model

Guideline Product
Part

is based on

represented
by

Method
Chunk

ID
Name
Objective
Score

Method
Chunk

ID
Name
Objective
Score

1..*

1..*

1

1..*

Example

*

1

Fig. 3. Metamodel of method chunk

A set of characteristics, called a method chunk descriptor, is associated to each

chunk in order to better situate the context in which it can be reused. The reuse inten-

tion expresses the generic objective that the method chunk helps to satisfy in the

corresponding engineering activity. The reuse situation captures a set of criteria char-

acterising the context in which the method chunk is suitable. A detailed classification

of these criteria, named Reuse Frame, can be found in [16]. Some examples of such

criteria are: system engineering activity (e.g. business modelling, requirements speci-

fication and design) in which the method chunk is relevant and characteristics of the

application domain (e.g. application type, impact of legacy system and application

technology). While the reuse situation and reuse intention are expressed by using

keywords defined in the MCR glossary and the reuse frame, the objective of the

method chunk provides a narrative explanation of its role.

Due to the fact that in this work we consider specific method chunks dealing with

interoperability problems solution, we explicitly relate each method chunk to the

corresponding interoperability problem identified in the interoperability classification

framework illustrated in Fig. 1.

The descriptor also contains the information necessary for method chunk identifi-

cation and selection such as name, ID, information about its structure (i.e. atomic or

aggregate) and origin (i.e. the existing method or best practice provider). It can also

include experience reports in order to help the method engineer to evaluate the ap-

propriateness of the method chunk to a given situation.

4.2 Method Chunk Repository for Interoperability

In our approach, the knowledge about interoperability, based on experience and best

practices or extracted from existing system engineering methods, is formalised in the

form of reusable method chunks stored in a Method Chunk Repository (MCR). The

process of method chunks reuse in a specific project consists of three steps: evaluat-

ing the interoperability problem at hand, selecting the appropriate method chunks

from the MCR and, finally, assembling these method chunks into a situation-specific

method. The last step is not tackled in this paper, see [16, 21] for details. In order to

support the situation evaluation and selection process, we provide a metamodel de-

picted in Fig. 4 for interoperability problems definition and classification. The meta-

model only shows the highest abstraction level of the classification.

 Interoperability
Problem

Organisational
Knowledge

Organisational
Strategy

Business ICT

Strategic Operational Development Execution

Concerns

* *

Concerns

**

B2B
Architecture

Data
Integration

…Product Process
Dependency

… … …

Interoperability
Problem

Organisational
Knowledge

Organisational
Strategy

Business ICT

Strategic Operational Development Execution

Concerns

* *

Concerns

**

B2B
Architecture

Data
Integration

…Product Process
Dependency

… … …

Fig. 4. Metamodel for interoperability problems classification

The interoperability problem identified is matched with those supported by method

chunks stored in the MCR. Let us suppose the question: “How can we integrate the

product data of several insurance companies?” We can identify that the interoperabil-

ity problem that we are facing is classified as “ICT.Development.Data_Integration”.

The next step would be to ask the MCR to retrieve all method chunks associated to

this interoperability problem.

4.3 Identifying Method Chunks for Interoperability: an Insurance Case

Based on the practical experiences in the insurance case we have identified several

method chunks dealing with interoperability problems. Due to the lack of space, we

present only two of them. Among the interoperability problems identified in section

3, we have selected one from the strategic and operational business domain and one

from the ICT domain, which will be addressed to show how method chunks can be

utilised to represent this knowledge.

Method Chunk: Product Process Dependency

Different enterprises form a supply chain and they have to align their products and

their business processes. It must be defined which products and product definitions

are interrelated with which processes and process interfaces. The method chunk be-

low proposes a solution for this kind of interoperability problem.

Chunk ID: MC01 Name: Product Process Dependency

Objective: Identify dependencies between products and their corresponding business processes as basis

for business alignment.

Type: Aggregate Origin: BOC Information Systems

Interoperability problem: Business.Strategic_and_Operational.Business Alignment

Reuse situation:

Application domain.Application type.Inter-organisation application

Application domain.Impact of legacy system.Functional domain reuse

System engineering activity.Business modelling.Business process alignment

Innovation level.Business innovation

Reuse intention: To align product definitions and business process definitions.

Interface:

Situation: Products and business processes of partner enterprises.

Intention: To define integrated product and process modelling language.

Body:

Product Part: Integrated definition of products and business processes.

Business Model

Business
Value

Product

creates

Business
Benefit

handles
has

interacts with

Employee Customer Supplier

Flow
Object

Sub-
process

information
flow

control flow

Decision Parallelity
Synchroni-

zation
End

Process
Start

Activity
Business

Process Model

responsible for

Task

Interface

Business
Actor

connects

consists of

Price
has

has value
for

Guideline: Define the product structure in accordance with the business metamodel. Define the busi-

ness process structure. Assign the responsible business actors to the activities and sub-processes of the

business process. Define the interfaces which are necessary to connect the activities and sub-processes.

By assigning the product responsibilities between products and business actors, the dependencies be-

tween products and business processes are defined transitively.

Application Example:

An application example of this method chunk is the definition of insurance products and their interde-

pendency to business processes executed in the insurance portal. A life insurance product consists of

sub-products such as risk insurance and font investment. A life insurance process consists of sub-

processes such as insurance application, risk check, contracting and payment. Employees of insurance

companies are responsible for executing the sub-processes. These employees are also handling several

insurance products. Via this, the product process dependency is defined.

ICT Method Chunk: B2B Architecture

Different companies want to establish a common Internet-based platform implement-

ing parts of their e-business processes. The existing company strategies, business

processes and information systems have to be interoperable with this new platform.

Chunk ID: MC02 Name: B2B Architecture

Objective: To provide a general architecture for a collaborative Internet-based partner platform.

Type: Atomic Origin: BOC Information Systems

Interoperability problem: ICT. Development. B2B Architecture Design

Reuse situation:

Application domain.Application type.Inter-organisation application

Application domain.Impact of legacy system.Functional domain reuse

System engineering activity.Design

Innovation level.Technology innovation; Business innovation

Reuse intention: To establish a common Internet-based platform.

Interface:

Situation: The strategies, business processes and information systems of the involved companies.

Intention: To define building blocks for a B2B system.

Body:

Product Part: General software architecture of a B2B platform. The arrows depict the different

places of interoperability.

(Temporary) Database
of External Data

(e.g. products etc.)

Application Server/
Business Services

Web Browser

Web Server/
Servlet Server

Platform Database
(internal data)

Company Components
(deployed

to platform)

Company Services
(integrated

into platform)

Company Data
(used

within platform)

…

Analysis and
Retrieval Services

Security Services

Customer Information
Services

…

Sub Service Providers

Partner
Platform

Partner CompaniesPlatform
Users

(Temporary) Database
of External Data

(e.g. products etc.)

Application Server/
Business Services

Web Browser

Web Server/
Servlet Server

Platform Database
(internal data)

Company Components
(deployed

to platform)

Company Services
(integrated

into platform)

Company Data
(used

within platform)

…

Analysis and
Retrieval Services

Security Services

Customer Information
Services

…

Sub Service Providers

Partner
Platform

Partner CompaniesPlatform
Users

Guideline: Identify participants involved in operating and using a B2B platform. For each partici-

pant assign which of the generic building blocks are provided/used. Build an instance of each generic

building block for the specific case. Describe the interrelationships within the B2B platform for each

building block instance.

Application Example: An insurance portal. The identification and assignment is as follows:

Platform users (sales agents, brokers etc.): the sales partners access the portal via Internet and web

browser technology.

Insurance partner platform: The access of the business functionality and the generation of the user

interface are via web server / servlet server. The business functionality runs on an application server. The

application server stores platform internal data in the platform database. External (and temporary) data

are stored in the database for external data. Via business services of the application server sub service

providers and insurance companies interoperate with the insurance partner platform.

Insurance companies: The insurance companies provide components (e.g. product calculators, risk

check modules etc.), services (e.g. printing, mailing etc.), data (e.g. customer data, contract data, product

data etc.), which have to interoperate with the insurance partner platform.

Sub service providers: The sub service providers provide services such as analysis and retrieval services

(e.g. data analysis, management reports, statistical evaluations etc.), security services (e.g. trust centres

certificate management etc.), customer information services (e.g. credit agency services, market evalua-

tion etc.), which have to interoperate with the insurance partner platform.

The above two method chunks have to be seen as examples. A realistic method chunk

repository shall contain hundreds of chunks of varying complexity. While the reus-

able chunks are formulated on generic type level, a specific case like the insurance

case is formulated at a lower abstraction level, the instance level. By making the in-

stance level explicit, the method chunk repository is extended to an experience based

knowledge base (Fig. 5).

 Interoperability
Problem

Method
Chunk1..*1..*

Experience
Report

*

1

Problem Instance

*

1 0..1

1

Grade

Aspect

Type level

Instance level

Interoperability
Problem

Method
Chunk1..*1..*

Experience
Report

*

1

Problem Instance

*

1 0..1

1

Grade

Aspect

Type level

Instance level

Fig. 5. Instance level in the method chunk repository

The interoperability problems from the case are formulated as a set of problem in-

stances, which are classified into the hierarchy of interoperability problems (see also

Fig. 4). When a case has been completed by executing suitable method chunks, an

experience report is added to the repository that includes a critical review of the merit

of the selected method chunk to solve the problem instance(s). By storing this infor-

mation, subsequent cases can exploit the experience from earlier cases and select

those chunks that earned high grades in the earlier cases.

5 Conclusions

Interoperability is an issue that arises when multiple organisations need to cooperate

via information systems. We proposed a knowledge-based approach where solutions

to common interoperability problems are encoded as method chunks. These method

chunks together with experience reports and an extensible taxonomy of interoperabil-

ity problems form the basis of a method chunk repository, which we are currently

developing in the NoE INTEROP [10]. We see the following contributions of this

paper:

• The new method chunk metamodel allows to link best practices for achieving

interoperability to specific interoperability problems. It covers best practices from

the business domain (e.g. aligning the business processes of enterprises) as well as

from the ICT domain (e.g. integrating heterogeneous product catalogues).

• The proposed solution provides a possibility to go from generic knowledge of

interoperability, via experiences of applying that knowledge, to a specific body of

interoperability knowledge.

• The usefulness of the new method chunk data structure has been demonstrated by

applying them to a real-world interoperability case.

A prototype for the method chunk repository is under development using the

METIS tool [26] in cooperation with the METIS developers. The metamodel of Fig. 3

has been mapped to METIS meta classes. The two cases sketched in this paper have

also been represented. It turned out the METIS knowledge base already had many of

the business process modeling features used in the first method chunk example. For

METIS, methods chunks are regarded as a substantial extension to the tool's capabili-

ties since they are encoding procedural knowledge. The tight integration to the enter-

prise modelling views in METIS shall make it possible to automate parts of the

method chunk execution, in particular model transformation. For non-automated

parts, the system can provide assistance through the guidelines encoded in the method

chunks. Additional prototypes based on the Adonis tool [27] and ConceptBase [28]

are under investigation to test the general implementability of the

method chunk metamodel for interoperability.

The repository will first be filled with chunks extracted by academic partners as

well as the IT consulting companies to form a critical mass. Then, successful and

unsuccessful applications will be added to the repository as examples of method

chunks application. These examples form the experience layer of the repository. The

larger the number of successful examples for a method chunk, the higher its score

will be.

Future work is concerned with formalising the textual guidelines of a method

chunk into a computer-interpretable process model, which allows teams from multiple

collaborating enterprises to jointly execute method chunks. A related aspect is to

represent the product side of method chunks, i.e. business as well as ICT models,

within the repository to allow not only collaborative method chunk execution but also

model sharing.

References

1. Botta-Genoulaz V., Millet P.-A. and Grabot B. (2005) A survey on the recent research

literature on ERP systems. Computers in Industry (56), pp. 510-522.

2. Brinkkemper S. (2000) Method Engineering with Web-enabled Methods. Information Sys-

tems Engineering: State of the Art and Research Themes. Eds. S. Brinkkemper, E. Linden-

crona, A. Sölvberg, Springer-Verlag, pp. 124-133.

3. Brinkkemper S., Saeki, M. and Harmsen, F. (1998). Assembly Techniques for Method Engi-

neering. 10th Conference on Advanced Information Systems Engineering, CAiSE’98.

Springer, LNCS 1413, pp.381-400.

4. Chen D. and Doumeingts G. (2003) European initiatives to develop interoperability of enter-

prise applications — basic concepts, framework and roadmap. Annual Reviews in Control

(27) pp. 153–162.

5. Domínguez E. and Zapata M.A. (2000) Mappings and Interoperability: A Meta-modelling

Approach. ADVIS 2000, Ed. T. Yakhno. LNCS 1909, Springer-Verlag, pp. 352-362.

6. Firesmith D. and Henderson-Sellers B. (2001) The OPEN Process Framework. An Introduc-

tion. Addison-Wesley.

7. Garlan D., Allen R. and Ockerbloom J. (1995). Architectural mismatch or why it's hard to

build systems out of existing parts, Proceedings of the 17th international conference on

Software engineering, ACM Press, pp. 179-185.

8. Hasselbring W. (2000). Information system integration. Communications of the ACM 43 (6)

pp. 32-38.

9. Hirschheim R. and Klein H. (2003) Crisis in the IS Field? A Critical Reflection on the State

of the Discipline. Journal of the Association for Information Systems, 4, pp. 237-293.

10. INTEROP (2005) Interop Network of Excellence IST – 508011 Presentation of the Project.

http://interop-noe.org/INTEROP/presentation Last accessed 2005-11-02

11. Iivari J. (2000) Information Systems Development as Knowledge Work: The body of sys-

tems development process knowledge. In Information Modelling and Knowledge Bases XI

(Eds, Kawaguchi, E., Hamid, I. A., Jaakkola, H. and Kangassalo, H.) IOS Press, pp. 41-56.

12. Johannesson P. and Perjons E. (2000) Design principles for application integration. Pro-

ceedings of the 12th International Conference of Advanced Information Systems Engineer-

ing, CAiSE 2000, LNCS 1789. Eds. B. Wangler & L. Bergman. Springer.

13. Kumar, K. and Welke, R.J. (1992). Method Engineering, A Proposal for Situation-specific

Methodology Construction. In Systems Analysis and Design: A Research Agenda, Cotter-

man and Senn (eds), Wiley, pp.257-268.

14. Kühn H. and Murzek, M. (2005) Interoperability in Metamodelling Platforms. In: Konstan-

tas, D.; Bourrières, J.-P.; Léonard, M.; Boudjlida, N. (Eds.): Interoperability of Enterprise

Software and Applications. Springer-Verlag, pp. 215-226.

15. Mak K-T. and Ramaprasad A. (2001) An Interpretation of the Changing IS/IT-Standard

Game, Circa 2001. Knowledge, Technology & Policy (14) pp. 20-30.

16. Mirbel I. and Ralyté J. (2006) Situational Method Engineering: Combining Assembly-

Based and Roadmap-Driven Approaches, Requirements Engineering, 11(1), pp. 58–78.

17. Ottoson A. (2005) An Analysis of a Content of a Method Chunk Repository concerning

Interoperability Problems. Master Thesis HS-EA-DVA-2005-001, University of Skövde.

18. Rahm E. and Bernstein P. A. (2001) A survey of approaches to automatic schema match-

ing. The VLDB Journal, 10, pp. 334-350.

19. Ralyté J. (1999) Reusing Scenario Based Approaches in Requirement Engineering Meth-

ods: CREWS Method Base. 10th Int. Workshop on Database and Expert Systems Applica-

tions (DEXA'99), IEEE Computer Society, p. 305-309.

20. Ralyté J. and Rolland C. (2001). An Approach for Method Reengineering. Proceedings of

the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,

Springer-Verlag, pp.471-484.

21. Ralyté J. and Rolland C. (2001). An Assembly Process Model for Method Engineering.

Proceedings of the 13th Conference on Advanced Information Systems Engineering

(CAISE’01), LNCS 2068, Springer-Verlag, pp. 267-283.

22. Schulz K., et al. (2003) A Gap Analysis; Required Activities in Research, Technology and

Standardisation to close the RTS Gap; Roadmaps and Recommendations on RTS activities.

Deliverables D 3.4, D 3.5, D 3.6. IDEAS Thematic Network - No.: IST-2001-37368.

23. Xu X.W. and Newman S.T. (2006) Making CNC machine tools more open, interoperable

and intelligent—a review of the technologies. Computers in Industry. 57 (2), pp.141-152.

24. Wainwright D. and Waring T. (2004) Three domains for implementing integrated informa-

tion systems: redressing the balance between technology, strategic and organisational analy-

sis. International Journal of Information Management, 24 (2004) pp. 329–346.

25. van Wendel de Joode R. and Tineke E.M. (2004) Handling variety: the tension between

adaptability and interoperability of open source software. Computer Standards and Inter-

faces (28), pp. 109-121.

26. Troux Technologies (2006) http://www.troux.com/products/metis/, Metis by Troux. Online.

March 30, 2006.

27. BOC Information Technologies Consulting (2006) http://www.boc-eu.com/, Adonis by

BOC Online. March 30, 2006.

28. ConceptBase Team (2006) http://conceptbase.cc, ConceptBase Online. March 30, 2006.

