
pos
tpr

int

This is a postprint. The original paper appeared in Proc. 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C 2019), Workshop MULTI 2019, Munich, Germany, © 2019 IEEE, DOI 10.1109/MODELS-C.2019.00016.

DeepTelos for ConceptBase: A contribution to the
MULTI process challenge

Manfred A. Jeusfeld
School of Informatics
University of Skövde

Skövde, Sweden
ORCID 0000-0002-9421-8566

Abstract—DeepTelos is a straightforward extension of the Telos
modeling language to allow some form of multi-level modeling.
A variant of Telos has been implemented in the ConceptBase
system on top of a Datalog engine. Telos defines the concepts of
instantiation, specialization and attribution/relations by means
of axioms. In addition, the user can define new constructs by
deductive rules, integrity constraints, and so-called query classes.
In this paper, we tackle the process challenge formulated for the
MULTI 2019 workshop to see to which extent DeepTelos is able
to represent the requirements of this challenge.

Keywords-multi-level modeling, Telos, process model, Concept-
Base, Datalog

I. INTRODUCTION

DeepTelos [1] was originally defined by just three deductive
rules extending the existing Telos [2] constructs attribution,
instantiation, and specialization. These 3 rules were later
extended to five rules and one constraint to better integrate
the derived specializations of DeepTelos and the existing Telos
specialization axioms. The core idea of DeepTelos is to exploit
the powertype pattern [3] via a rule: if a class c has a most
general instance m, then any instance of c is a subclass of m.
The most general instance m serves as a proxy for class c at
one instantiation level lower. It has all instances of instances
of c as its instances. The class m itself can have another most
general instance m1, which serves as a proxy for m at even
one instantiation level lower. So, the lattice of most general
instance relations, denoted as (m IN c), spans a family of
modeling levels. ConceptBase [4] is a multi-user database
system for managing all kinds of models and metamodels. It
implements its logical component (rules, constraints, queries)
via a Datalog-neg engine. It also features a graphical user
interface.

A. Multi-level rules and constraints

We shall use the latest revision 2 of DeepTelos for answer-
ing to the MULTI process challenge. This revision provides
a better interplay of the DeepTelos rules with the built-in
axioms for specialization, attribution/relations, and instantia-
tion. Before listing the DeepTelos constructs and axioms, we

This research has been supported in part by the EU ISF Project
A431.678/2016 ELVIRA (Threat modeling and resilience of critical infras-
tructures), coordinated by Polismyndigheten/Sweden, and by KK Stiftelsen
Synergy project: Knowledge-driven decision support via optimization.

need to introduce a mechanism of ConceptBase that allows
to partially evaluate logical expressions that span of more
than two instantiation levels. As an example, consider the
following formula that expresses that a relation p is necessary
(= multiplicity 1...*):

forall c,d/Proposition p/Proposition!necessary
x,m/VAR P(p,c,m,d) and (x in c) ==>

exists y/VAR (y in d) and (x m y)

The proposition predicate P(p,c,m,d) expresses that there is
a relation identified by p with label m between the objects c
and d. The variables c and d stand for any instance of the
class ”Proposition”, which is the most general class in Telos
(also called the omega-level of Telos). The proposition p is
an instance of Proposition!necessary (the necessary relation
of ”Proposition”). Then, if there is any instance x of c, it must
provide a value y for the relation m: (x m y). While the details
of the formula are not of great interest here, you note that
the variable x and y are instances of classes c and d which
themselves are variables (being instances of ”Proposition”).
This shows that the formula ranges over three levels: first,
the level of ”Proposition”, second, the level of c and d, and
third, the level of x and y. We call such formulas multi-level
formulas. They are partially evaluated in ConceptBase for two
reasons:

1) A formula with many such variables is costly to evaluate
since some of the predicates match many facts in the
database. For example (x in c) matches any instantiation
fact.

2) Without partial evaluation, it is almost impossible to find
stratifications of predicates in the presence of recursive
rules with negation.

The partial evaluation picks a so-called binding path that
provides values for the variables at class positions, here
c and d. In this case, a possible binding path is (p in
Proposition!necessary) and P(p,c,m,d). Any solution of this
conjunction provides fillers for the variables p, c, m, and d.
Assume, we have a definition of a class like

Employee with
necessary, attribute

name: String
end

Then, the following facts are true:

http://dx.doi.org/10.1109/MODELS-C.2019.00016
https://www.wi-inf.uni-duisburg-essen.de/MULTI2019/wp-content/uploads/2019/05/MULTI_Process_Modeling_Challenge.pdf


pos
tpr

int

P(id123,Employee,name,String) and (id123 in
Proposition!necessary). By matching these facts with
the binding path, we can partially evaluate the multi-level
formula to

forall x/Employee exists y/String (x name y)

Multi-level rules and constraints are heavily used in
DeepTelos. Note that there may be more than one binding
path and the selection of the best candidate is in general not a
trivial task. The partial evaluation maps a multi-level formula
to a set of formulas, one for each solution of the binding path
expression. Since the set of solutions can grow and shrink as
the database is updated, ConceptBase needs to maintain the
set of partially evaluated formulas.

A related approach to handle multi-level formulas is the
Diagram Predicate Framework (DPF) [5]. Telos/ConceptBase
adopt the minimal-model Datalog semantics while DPF is
based on an algebraic specification of semantics over nodes
and links of a multi-level graph. It should be noted that
the Telos ”Proposition” object is subsuming nodes, attributes,
relations, instantiations, and specializations. It allows to add
for example attributes to an instantiation link.

B. DeepTelos Revision 2

DeepTelos Revision 2 is defined by 5 deductive rules
and one constraint. The rules are defined in terms of two
new constructs IN and ISA defined for any proposition (see
appendix)

The first rule is the main rule: If there is a most general
instance m of c (m IN c) and instance x of c and (x is not
already derivable to be a (Telos) specialization of m, then (x
ISA m) is derived, i.e. all such instances become (DeepTelos)
specializations of the most general instance m. Note that the
symbol arrow in the formula stands for the logical implication.

forall m,x,c/Proposition (mrule1)
(x in c) and (m IN c) and not (x isA m)
==> (x ISA m)

The full definition of DeepTelos can be found at http:
//conceptbase.cc/deeptelos and can directly be used with the
ConceptBase system available at http://conceptbase.cc. All
sources of the DeepTelos solution for the MULTI 2019
”Process” Challenge can be found at http://conceptbase.cc/
multi2019challenge. Note that all figures in this paper followed
by web links allow to directly upstart the model with the Con-
ceptBase graph editor. Those figures are in fact screendumps
of the ConceptBase graph editor. Instructions or provided on
the above web page.

C. DeepTelos Car Example

To motivate the use of DeepTelos, consider the following
simple scenario. A car has a model number and a mileage.
In potency based approaches to multi-level modeling [6]–[9],
one would have a meta class ”CarModel” (M2 level) with two
attributes. The attribute model number would be applicable to
instances of ”Car”, i.e. classes at M1 level (potency 1). The
attribute mileage would be applicable to instances of instances

of ”Car” (Mo level, potency 2). In DeepTelos, the potency
levels are replaced by most general instances:

Fig. 1. DeepTelos solution for the car example.

The object ”CarModel” is a meta class with the most general
instance ”Car”. The model number is applicable to instances
of ”CarModel”, whereas the mileage is applicable to instances
of ”Car”. In the above example, ”ACMECar” is defined as
explicit (Telos) subclass of ”Car”. By DeepTelos rule ”mrule4”
(see appendix), it is then also an instance of ”CarModel” and
thus may use the ”modelnr” attribute. The object ”mycar1”
is then an instance of ”ACMECar” (and thus of ”Car”) and
can instantiate the mileage attribute. The concepts ”Car” and
”CarModel” shall be regarded as one aggregated concept. The
purpose of the most-general instance ”Car” is to be able to
define attributes like mileage that are applicable to all cars.

For supporting model reuse, we employ the module system
of ConceptBase to organize the model definitions and sepa-
rate variants of models. The module system in ConceptBase
supports tree-like sub-module hierarchies where a sub-module
”sees” all definitions made in the super-module but not the def-
initions in sibling modules. There are two predefined modules
in ConceptBase: the root module ”System” contains all built-
in objects of Telos and ConceptBase, in particular the omega
class ”Proposition”. The ”System” module has a submodule
”oHome”, which contains the definitions made by a user of
ConceptBase.

We shall use the ”oHome” module for the definition of some
useful formulas such as the necessary constraint discussed
earlier. Inside, the ”oHome” module, we define the module
DeepTelos, which includes the 5 rules and the one constraint
discussed above plus some graphical types for a nicer vi-
sualization of DeepTelos most-general instance hierarchies.
Then, the DeepTelos module contains a submodule ”Process-
Models” which contains the solution for the requirements
P1-P19 of the challenge. Then, the submodule ”CodingPro-
cess” of ”ProcessModels” contains the example process type
of the MULTI ”Process” challenge. Finally, the submodules
”Process1”, ”Process2”, and ”Process3” of ”CodingProcess”
contain example processes of the process type defined in
”CodingProcess”. The car example of figure 1 is stored in
another sub-module of DeepTelos, thus sharing the definitions
of DeepTelos, ”oHome” and ”System” but not of ”Process-
Models” and its submodules.

http://conceptbase.cc/deeptelos
http://conceptbase.cc/deeptelos
http://conceptbase.cc
http://conceptbase.cc/multi2019challenge
http://conceptbase.cc/multi2019challenge
http://conceptbase.sourceforge.net/multi2019challenge/carexample.gel


pos
tpr

int

II. ANALYSIS OF THE MULTI PROCESS CHALLENGE

The challenge defines three main concepts. There are tasks
and task types. Task types are used to define process models
(roughly M1 level). The process models can be instantiated
and deliver processes (M0 level). Thus, a process is the trace
of the execution of a process model for a given case (e.g.
to develop a software system). The second main concept is
the actor type, resp. actor. Actors types are related to task
types, e.g. to define the required competence of an actor to
execute a task type. Thirdly, there are artifacts and artifact
types. They define the inputs and outputs of task types (M1
level) and of their instances (M0 level). At the M1 level, one
defines the types of inputs and outputs whereas the M0 level
defines which actual input and output artifacts were used in a
specific execution of the process. Some attributes and relations
link objects at the same instantiation level, while others links
objects at different abstraction levels. For example, one can
authorize a single actor like AnnSmith (M0) to the sole person
allowed to execute a given ask type such as ”CodingInCobol”.
A particular such cross-level attribute is the language attribute
to define the label of a concept in multiple languages. Our
solution will allow to do so for any concept at any instantiation
level!

While DeepTelos does not have predefined levels such as
M0, M1, M2, M3 and so forth, it is still useful to roughly
identify objects that a OMG-educated modeler would assign
objects to.

M0: Here we find objects like ”AnnSmith”, task instances
such as coding1 as instance of ”CodingInCobol”, which is
started at a given date and ends at another date. You also find
artifact instances such as ”cobolprogram1”. It should be noted
that such artifacts can contain objects at a higher instantiation
level. For example, a design document can contain a whole
UML class diagram (M1) level. We have discussed this phe-
nomenon earlier in the context of process-data diagrams. The
solution there did however not use DeepTelos, but declared
certain objects to be both instance and specialization of meta
class.

M1: This level contains the specification of a process type
such as the ACME coding process type of the challenge.
This level roughly corresponds to a BPMN process model. In
contrast to BPMN, our solution (and the challenge) also covers
the execution of the process model at M0. In our solution, the
concepts ”Task”, ”Artifact”, ”Actor”, and ”Process” are all at
M1 level.

M2: The M2 level defines constructs such as ”ArtifactType”
(having the most general instance ”Artifact”), ”TaskType”
(most general instance ”Task”), ”ActorType” (most general
instance ”Actor”), and ”ProcessType” (most general instance
”Process”). Certain subclasses of these classes are also defined
at this level such as ”CriticalTaskType”. We re-use the defi-
nition of a core BPMN language at the M2 level and pull it
from the ConceptBase Forum. This simplifies the solution to
the challenge since there is no need to re-invent the wheel.

M3: The M3 level contains the meta-meta classes ”Node”,

”NodeOrLink” and the link object (label ”connectedTo”). We
re-use these definitions since the core BPMN language was
defined with these meta-meta classes. Omega: We make heavy
use of the omega-class ”Proposition” as discussed in the
introduction to define DeepTelos and to solve the ”language”
attribute. The omega level also contains the implementations
of multiplicity constraints such as ”necessary” (1..*) and single
(0..1), see also the sources in the appendix.

The challenge demands a peculiar property of task types,
namely the planned duration. In our solution, we shall allow
to compare the planned duration (task type) with the actual
duration of a task instance (derived from start and finish date).
Function definitions are used for that purpose. We also define
a handful of queries to analyze process models and their
execution.

III. MODEL PRESENTATION: THE CONSTRUCTS

This chapter introduces the solution of the MULTI process
challenge by DeepTelos and ConceptBase. Most figures are
accompanied with links that lead to the executable graph files
to be processed by the ConceptBase graph editor.

A. The levels

Figure 2 shows the levels used for the solution. On the
top left is the object Proposition defining the two DeepTe-
los relations IN (for relation a most general instance to its
class) and ISA (for derived specialization relations). These
two relations extend the Omega-level of Telos. All explicit
objects in this diagram including all nodes and links are
instances of ”Proposition”. The next level is established by
the objects ”Node”, ”NodeOrLink” and the ”connectedTo” link
of ”NodeOrLink”. In traditional metamodeling, these objects
would be dedicated as metameta classes, i.e. members of the
M3 level. It is used to define modeling languages such as
BPMN. In the figure, the object ”BPMN Element” is the
superclass of all constructs of a core BPMN metamodel that
we utilize in this solution1. Since this metamodel does not
cater for all constructs needed for the challenge, we also
define a meta class ”ProcessElementType”, which subsumes
all required constructs including the core BPMN constructs.

Fig. 2. The DeepTelos levels for the MULTI process challenge.

http://conceptbase.sourceforge.net/multi2019challenge/levels.gel


pos
tpr

int

All subclasses of ”ProcessElementType” plus the class
”ProcessType” would be regarded as M2 level in an UML
environment. The next levels is formed by the most general
instances ”Actor” (of ”ActorType”), ”Task” (of ”TaskType”),
”Artifact” (of ”ArtifactType”), ”ProcessElement” (of ”Proces-
sElementType”) and ”Process” (of ”ProcessType”). Hence,
”Task” is a simple class (regared as M1 level in UML) and has
all instances of instances of ”TaskType” as instance, as derived
via the DeepTelos rules. The instances of the displayed most-
general instances for the M0 level. We will see such instances
in the section for the example processes. In summary, the
solution features 4 UML-ish abstraction levels plus the omega
level.

B. Requirements P1-P3

Figure 3 shows the solution to requirements P1-P4. ”Pro-
cessType” is modeled as a container for ”ProcessElement-
Type” which subsumes all required constructs (including
gateways, start/end elements and task types). The ordering
of the process element types is done by the next relation
of ”BPMN Element”. The two subclasses ”PlaceLike” and
”TransitionLike” are used to embed BPMN into a petri net
semantics, which we do not use in this solution but can be
inspected from the link given in the footnote. The figure
also shows the object ”Process” as most general instance
of ”ProcessType”. It also has a contains relation, which is
the most general instance of the contains relation of ”Pro-
cessType”. Hence, the use of the contains relation at the M2
level propagates to the M1 level. Just as we define process
models as containers of process element types, we define
process as containers of process elements.

Fig. 3. Requirements P1-P3.

Note that the above link starts of the graph editor from
which the source code can be inspected. The source code is
also available via the link provided in the introduction.

C. Requirements P4-P6

These requirements introduce the first cross-level relations
between ”Actor” (M1) and ”TaskType” (M2).

The relation ”creator” links a task type to the actor, who
created it. Figure 5 also shows an instance of this relation. The
second cross-level relation is ”executorset”, which is used to
address require P6 (”task type may alternatively be assigned

Fig. 4. Requirements P4-P6.

to a particular set of actors”). Note that all relations in Telos
are by default set-valued. The relation ”executortype” links
”TaskType” and ”ActorType” (requirement P5).

D. Requirements P7-P9

Task types use and produce artifact types. This is also
propagated to tasks (which use and produce artifacts).

Fig. 5. Requirements P7-P9.

Critical task types and validation task types are modeled
as subclasses of task type. The query class ”CriticalButNot-
ValidatedM1” checks requirement P9. This query returns all
critical task types that are not checked by a validation task
type. A similar query ”CriticalButNotValidatedM0” is defined
for the most general instance ”CriticalTask”. The code for both
query classes in in the appendix.

The latter query operates at the M0 level, i.e. checks
actual executions of the process rather than the process type.
In addition constraints (see class ”CriticalTaskType” in the
appendix) are used to address the actor requirements of P9.

Finally, figure 5 shows the planned duration (requirement
P8) and the actual duration (property of Task). The latter is
not demanded by the challenge but we found it useful to later
check whether a task is delayed.

Requirement P10 (Each process type may be enacted multi-
ple times.) is automatically fulfilled by Telos since any process

http://conceptbase.sourceforge.net/multi2019challenge/p1-p3.gel
http://conceptbase.sourceforge.net/multi2019challenge/p4-p6.gel
http://conceptbase.sourceforge.net/multi2019challenge/p7-p9.gel


pos
tpr

int

type (instance of ”ProcessType”) may itself have any number
of instances. We shall later provide to instances of the ACME
example process type. Requirement P11 is fulfilled by the
”contains” relation of ”Process”, see figure 4. ”Task” is a
subclass of ”ProcessElement”. For requirement P13 (Tasks
are associated with artifacts used and produced, along with
performing actors.), we also refer to figure 4.

Requirement P12 (begin and end of a task) is implemented
by two attributes ”begindate” and ”enddate” of ”Task”:
Task in Class with IN class: TaskType
attribute
uses : Artifact; produces : Artifact;
begindate : Integer; enddate : Integer;
duration : Integer; executor : Actor

end

The full definition is in the appendix. It calculates the
actual duration of a task by a deductive rule based on the
function ”taskDuration”. Since the task type of a task has a
”plannedduration”, we can retrieve delayed tasks by a query
class ”DelayedTask” (see appendix).

This approach also allows to define an derived attribute
avgduration of TaskType, which is the average of all durations
of its instances (not implemented here). This supports the idea
of a datawarehouse-like aggregation of class-level attributes
from instance-level attributes.

Requirement P14 is realized by the query class ”Un-
matchedTask” (see appendix).

Requirements P15 and P16 is also fulfilled by Telos since
each object may have multiple classes. Hence, any actor
can have multiple actor types. A similar argument holds for
requirement P16. The processes ”Process1” to ”Process3” have
examples for such objects that have multiple classes.

E. Requirements P17-P18

The requirement demands that each actor who performs
(=executes) a task must be authorized to do so. The require-
ment is related to the executortype and executorset relations
of ”TaskType”.

We have no complete solution to this requirement since
there are some default rules (when authorizations are not
defined).

Fig. 6. Requirements P17.

Figure 6 shows the relevant defined relations. The authoriza-
tion is then expressed by a Telos constraint ”isAuthorized” of
class ”Actor” (see appendix).

Note that the query class ”AuthorizedTask” skips those tasks
that have no authorization declared. The solution is only about

half of what should be expected by a proper authorization
schema. So, this solution is incomplete. We argue that it could
be extended but foresee a rather complicated specification by
Telos rules and constraints involving negated predicated to
model defaults.

Requirement P18 (Actor types may specialize other actor
types, in whichcase, all the rules that apply to instances of
the specialized actor type must apply to instances of the
specializing actor type.) is again easily fulfilled by Telos.
All instances of subclasses are also instances of superclasses
in Telos. Consequently, rules and constraints applicable to
instances of the superclasses also apply to instances of the
subclasses.

F. Requirements P19

This requirement demands that artifacts, actors, tasks and
their types can have alternative names in international lan-
guages. We solve this by allowing any object to have such
alternative names in any number of languages:
Proposition with

attribute altname : String
end

So, we can for example specify:
Coding with
altname
de: "Programmierung"; se: "programmering";
es: "programacion"; en: "coding"

end

The object ”Proposition” is at the omega level. A builtin
axiom of Telos instantiates all explicit objects to ”Proposition”.
So, we can apply the ”altname” construct to virtually any
model element, regardless of the instantiation level. This
discussion completes the first set of requirements P1-P19 of
the MULTI process challenge. Subsequently, we present the
software engineering process (an instance of ”ProcessType”)
and the related requirements S1-S13.

IV. MODEL PRESENTATION: EXAMPLE PROCESS

The example ACME software engineering process of the
challenge is modelled using the capabilities of the core BPMN
language implemented by a Telos metamodel:

Fig. 7. The ACME process type in our solution.

he representation of the sequencing between the start el-
ement, the task types, the gateways, and the end element is
done by using the next relation of BPMN Element (see figure

http://conceptbase.sourceforge.net/multi2019challenge/p17.gel
http://conceptbase.sourceforge.net/multi2019challenge/acme-process.gel


pos
tpr

int

3). The task type ”CodingInCobol” is defined as a subclass of
”Coding”. This is used for a variant of the process type. Figure
3 uses BPMN-style graphical shapes where appropriate.

A. Requirements S1-S4

These requirements read as:
• S1: A requirements analysis is performed by an analyst

and produces a requirements specification.
• S2: A test case design is performed by a developer or

test designer and produces test cases.
• S3: An occurrence of coding is performed by a developer

and produces code. It must furthermore reference one or
more programming languages employed.

• S4: Code must reference the programming language(s) in
which it was written.

Fig. 8. Requirements S1-S4.

The upper part of figure 8 shows the constructs for ”Task-
Type”, ”ActorType” and ”ArtifactType” (M2 level) . The ex-
ecutor of the task is assigned using the ”executortype” relation
of ”TaskType”. The produced artifact type, e.g. ”TestCaseDoc-
ument” (M1 level) uses the ”produces” relation of ”TaskType”.
The artifact type ”ProgramCode” has a ”language” attribute.
A similar attribute is defined for the ”Coding” task type.

To understand the instantians derived by Telos, consider
the object ”DeveloperOrTestDesigner”. It is defined as an
(explicit) instance of ”NormalActorType”, which is an explicit
specialization of ”ActorType”. Via DeepTelos rule mrule4
(appendix) it is then also in instance of ”ActorType”. This
instantiation then allows to use the ”executortype” relation for
linking TestCaseDesign to its executor ”DeveloperOrTestDe-
signer”. Note that the figure does not show all instantiations
to keep it readable.

B. Requirements S5-S7

These requirements demand that the task type ”CodingIn-
Cobol” always produces Cobol code and that Cobol is the
languages used in this task type. Moreover Ann Smith is a
developer and the only person authorized to execute this task
type.

Fig. 9. Requirements S5-S7.

In the DeepTelos solution, the ”Coding” process produces
”ProgramCode” (relation artifact1). This is specialized to
”CobolCode” for ”CodingInCobol”. Ann Smith is the actor
developer, who can execute ”CodingInCobol”. The language
Cobol is prescribed to ”CodingInCobol” by a constraint:
CodingInCobol in BPMN_Activity isA Coding with

constraint
useCobol : $ forall cic/CodingInCobol

(cic useslanguage Cobol) $
executorset singlecoder : AnnSmith
produces artifact1 : CobolCode

end

C. Requirements S8-S10

The Testing task type shall be performed by a ”Tester” and
it shall produce a ”TestReport” as artifact. A test report is
associated to other software engineering artifacts produced by
other tasks.

Fig. 10. Requirements S8-S9.

In the DeepTelos solution, ”SWEngineeringArtifact” is the
superclass of all artifact types produces by the ACME process.
It is a subclass of ”Document”, which is an instance of ”Ar-
tifactType”. The DeepTelos rules then derive that ”SWEngi-
neeringArtifact” is also an instance of ”ArtifactType”.

Fig. 11. Requirements S10.

Figure 11 shows the solution to requirement S10: Software
engineering artifacts have a responsible actor and a version

http://conceptbase.sourceforge.net/multi2019challenge/s1-s4.gel
http://conceptbase.sourceforge.net/multi2019challenge/s5-s7.gel
http://conceptbase.sourceforge.net/multi2019challenge/s8-s9.gel
http://conceptbase.sourceforge.net/multi2019challenge/s10.gel


pos
tpr

int

number. The latter is defined to be necessary (1..*) and
single-valued (0..1). These two cardinilities are defined by
appropriate multi-level formulas in the oHome module as
discussed in the introduction.

D. Requirements S11-S12

The actor Bob Brown is a tester and analyst. He is also the
creator of all ACME task types. Furthermore, the expected
duration of testing is 9 days.

Fig. 12. Requirements S11-S12.

Again, the DeepTelos rules take care of the necessary de-
rived instantiations and specializations: ”Analyst” and ”Tester”
are both instances of ”NormalActorType”, which is a special-
ization of ”ActorType”. Then, both ”Analyst” and ”Tester”
are derived instances of ”ActorType”, and consequently ”An-
alyst” and ”Tester” are derived specializations of ”Actor”.
Then, ”BobBrown” becomes an instance of ”Actor” as well
and can instantiate the ”createdby” attribute of ”TaskType”.
”BobBrown” is associated as creater of all ACME task types.

E. Requirements S13

The requirement reads as: ”Designing test cases is a critical
task which must be performed by a senior analyst. Test cases
must be validated by a test design review.”

Fig. 13. Requirements S13.

The test case document is produced by ”TestCaseDesign”
(a critical task) and used by ”TestDesignReview” (a validation
task). The requirement that the executor must be a senior
analyst is addressed by a constraint of class ”TestCaseDesign”:

forall tcd/Task a/Actor (tcd in TestCaseDesign)
and (tcd executor a) ==> (a in SeniorAnalyst)

The complete definition of ”TestCaseDesign” is in the
appendix. This completes the discussion of the ACME case
requirements. Note that the definitions are mostly at the M1
level (simple classes). Actual executions of the ACME process
type deliver instances of the tasks, i.e. objects at the M0
level. We provide three submodules ”Process1”, ”Process2”,
and ”Process3” for such examples. The first is an example
of the standard ACME process, the second uses the variant
with ”CodingInCobol”, and the third adds contents to the
software engineering artifacts such as actual lines of code
to the instances ”CobolCode”. The third submodule ”Pro-
cess3” shows how to trace dependencies between artifacts
including dependencies between individual model elements,
e.g. between specific lines of code and specific requirements.

V. EXAMPLE PROCESS TRACES

Instances of tasks form traces of the executions of process
types such as the ACME process. Actual instances of tasks
have a begin date, a finish date, and are performed by
suitable actors. They also produce and use instances of the
artifact types specified in the ACME process type. The process
instances are at the lowest abstraction level (M0), though
artifacts may actually contain models (compare [10]) such as a
UML class diagram. The links below point to the ConceptBase
graphs for the three example process traces:

• http://conceptbase.sourceforge.net/multi2019challenge/
process1.gel is an instance of ”ACMEPlainProcess”. The
example violates the ”CriticalBut-NotValidatedM0” test.

• http://conceptbase.sourceforge.net/multi2019challenge/
process2.gel is an instance of ”ACMECobolProcess”.
This trace passes the ”CriticalBut-NotValidatedM0” test.

• http://conceptbase.sourceforge.net/multi2019challenge/
process3.gel shows how transitive dependencies between
artifacts and their contents are managed.

VI. DISCUSSION

DeepTelos is a straightforward extension of Telos and
defined by just 5 first-order rules interpreted by a Datalog
engine.

A. Basic modeling constructs

The basic modeling constructs of Telos are instantiation (x
in c), specialization (c isA d), and attribution/relations (x m
y). DeepTelos adds two more basic constructs:

(m IN c) : This constructs declared the object m as
most-general instance of the class c. Any instance of c shall
then be a subclass of m, and vice versa.

http://conceptbase.sourceforge.net/multi2019challenge/s11-s12.gel
http://conceptbase.sourceforge.net/multi2019challenge/s13.gel
http://conceptbase.sourceforge.net/multi2019challenge/process1.gel
http://conceptbase.sourceforge.net/multi2019challenge/process1.gel
http://conceptbase.sourceforge.net/multi2019challenge/process2.gel
http://conceptbase.sourceforge.net/multi2019challenge/process2.gel
http://conceptbase.sourceforge.net/multi2019challenge/process3.gel
http://conceptbase.sourceforge.net/multi2019challenge/process3.gel


pos
tpr

int

(c ISA d) : This is a second construct to declare c as
specialization of d. We technically need this construct because
the ConceptBase implementation of (c isA d) forbids deriving
specializations by a rule.

The two constructs and the five associated multi-level rules
and one constraint realize a simple multi-level modeling envi-
ronment. Basic modeling constructs are defined as attributes
of the omega class ”Proposition” in Telos/ConceptBase. Since
this class can be extended by a user of ConceptBase, any
user can add new modeling constructs. In the case of this
challenge, we defined an attribute ”altname” for ”Proposition”.
This allows to assign alternative names to any Telos object,
not just the objects used in this solution.

B. Employed levels

DeepTelos has no level numbers and no potencies. Instead,
levels are introduced by declaring a relation like (Task IN
TaskType). So, the instances of ”TaskType” form one level
and the instances of ”Task” employe another level below
”TaskType”. The main levels of this solution are shown in
figure 2. As discussed earlier, one can identify the 4 UML-
ish levels M0 to M3 in our solution plus the omega level
(”Proposition”). In this solution, we had no chain of most-
general instances such as (m1 IN m2), (m2 in m3). This
indicates that there are only potencies 1 and 2 used for
attributes in our solution. We might have used ”Node” as a
level on top of ”ProcessElementType” to have such a chain.
However, it was not needed to solve the challenge, so we kept
it out. DeepTelos spans levels by the (m IN c) predicate, but
they are existing in parallel and have no static level number.
As shown in http://conceptbase.cc/deeptelos, one can define
objects: (M0Object IN M1Object), (M1Object IN M2Object),
(M2Object IN M3Object) to force objects into UML-ish levels.
There is however no apparent advantage to do so. On the
contrary, one may run into problems to define cross-level
relations.

C. Cross-level relationships and cross-level constraints

Such relationships were always possible in Telos. DeepTelos
makes this feature even more useful, since such relations can
be defined between objects that stand in most-general instance
relation. For example, the object ”TaskType” has a relation
”createdBy” to ”Actor”. ”Actor” is a most-general instance
of ”ActorType” and is related to ”TaskType” by other (same-
level) relations. As written earlier, we have formally no static
level numbers. Instead, we (intuitively) derive the numeric
level of an objects by the chain of instantiations.

For example, ”BobBrown” has no instance but is instance
of ”Actor”, ”Actor” is (most-general) instance of ”ActorType”,
which is an instance of ”Node”. Hence, we would associate
”BobBrown” to level M0, ”Actor” to M1, ”ActorType” to
M2, and ”Node” to M3. In general such a calculation is
not delivering unique level numbers in DeepTelos. But the
intuition is still useful. Parallel to all these level is the omega
level: objects of any level are also instances of ”Proposition”.

Cross-level constraints are also used in our solution, e.g. to
define the ”authorizedFor” relation:

Actor in Class with
constraint isAuthorized :
$ forall a/Actor t/Task T/AuthorizedTaskType

(t in T) and (t executor a)
==> (a authorizedFor T) $ end

The variable a ranges over the ”Actor” level (M1) and T
over the ”TaskType” level (M2). The relation ”authorizedFor”
is also a cross-level relationship. Since Telos regard all explicit
information as objects, such constraints are technically not
different from other constraints.

D. Integrity mechanism

Integrity constraints are specified as shown avove as first-
order formulas, which are compiled to Datalog rules using the
Lloyd-Topor algorithm. The semantics of Datalog (”perfect
model semantics”) computes the minimal Hernrand model of
a Datalog program via a fixpoint engine. ConceptBase includes
such an engine. Technically, the integrity constraints are for-
mally negated to derive the violation of the constraint (”denial
form”). If the violation can be derived, the corresponding
update to the database (i.e. Telos models) is rejected. The
Datalog engine uses the closed-world assumption for handling
negated predicates. This yields a fast implementation but is not
equivalent to classical negation. However, the advantage of the
CWA is that is naturally computes the transitive closure of
relations. Rules defining transitive closures play an important
role in (software) modeling.

For example, dependencies between artifacts can be traced
via a transitive closure. In this solution we also used queries to
formulate constraints, see ”CriticalBut-NotValidatedM0/M1”
in section 2. Queries cannot be violiated but can be used
to return violators as their answer. This is in many cases
the preferred way in ConceptBase to define constraints. It
allows to work with incomplete models that technically violate
some constraints while being completed. A formal integrity
constraint would forbid such models. A query can be called
at any time and the modeler can then change the models to
reduce the number of violators.

Multiplicity constraints are defined via the ”necessary”,
”single” categories (compare figure 11). The constraints are
maintained by ConceptBase. A violation leads to the rollback
of the model update that first introduced the violation. Note
that multiplicity constraints can be formulated at any ab-
straction level since ConcepBase represents all explicit model
elements as objects. For example, classes and metaclasses are
all objects (instances of ”Proposition”).

E. Abstraction

The solution is organized in modules. The upper-level mod-
ules have more abstract definitions than the lower level models.
For example, the DeepTelos module defines the DeepTelos
constructs. They can be used in any multi-level modeling
project (e.g. the ”CarExample”). This is a highly re-usable
module and not domain-dependent. The ”ProcessModels”

http://conceptbase.cc/deeptelos


pos
tpr

int

module contains the definitiond of processes (tasks, actors,
artifacts, ..). This can be re-used to the extent to which this
conceptualization of processes is deemed generic enough. In
our solution, we integrated the BPMN meta model into this
module to save some time. This is certainly not the only possi-
ble process modeling language, but it is a defacto standard. In
the original BPMN meta model, a Petri net like semantics was
inherited by the BPMN meta model: tasks could be triggered
and that led to a token flow to the next task. We used an active
rule (ECA) to implement the token flow semantics. However,
this is disabled in this solution because the processes of the
challenge have a more of a ”colored petri net” semantics. The
task instances (M1) could be produced by triggering an active
rule that realizes the semantics of the corresponding task type
(setting dates, input/output artifacts, executor, ...). Since this
cannot be automated due to missing data, we abstained from
realizing such dynamic semantics. Still, the ”ProcessModels”
module is abstract enough to be re-used on process modeling
domains. The module ”CodingProcess” defines the ACME
process example. This is apparently not very re-usable in other
domains.

F. Deep characterization

Consider as example the two levels (Task IN TaskType).
The two levels are closely related via the DeepTelos rules. In
particular each instance of ”TaskType” becomes a subclass of
”Task”. As written earlier, DeepTelos replaces potencies by
most-general instances. So, a property such as ”duration” is
defined at the object ”Task”, not ”TaskType”. One could see
the pair ”Task+TaskType” as a single abtract entity. Then, the
attribute ”duration” is indeed defined at an abstract level and
characterizes objects at the UML-ish M0 level.

Another aspect of deep characterization are the multi-level
rules used in this solution. They range over three or more
instantiation levels and are partially evaluated to sets of rules
ranging over just two levels. For example, the ”necessary”
construct defined the ”1..*” multiplicity by a single formula.
It characterizes all uses of the necessary construct.

Note that DeepTelos itself is defined by multi-level rules.
They are also partially evaluated into many two-level rules.
Still, they are only defined once and then used many times.

G. Reuse

This aspect was already discussed in the previous para-
graphs. The re-use is supported by the module structure. The
sources code of the modules (Telos sources) is shared at
http://conceptbase.cc/multi2019challenge/SOURCES.

A module source can be directly inserted into a Concept-
Base database and then be used. The sources are compiled to
a set of facts/objects plus a set of (executable) rules. So, one
can regard them as logical theories. Like with logical theories,
one can just add them to one another. Of course, integrity
constraints need to be regarded. In the case of this challenge,
we also re-used existing Telos sources (BPMN) and integrated
them into the DeepTelos concepts.

H. Semantics

ConceptBase uses a Datalog-neg engine to evaluate rules
and constraints. The axioms for the basic constructs for
specialization (c isA d), attribution/relations (x m y), and
instantiation (x in c) are also expressed as rules and constraints.
The semantics of a model in ConceptBase is the minimal
fixpoint interpretation (=extension) for the logical predicates
occuring in rules and constraints, as computed by the Datalog
engine. The DeepTelos rules (R1) to (R5) are subject to the
Datalog engine as well, providing in particular solutions to the
DeepTelos specialization (c ISA d) and the instantiation predi-
cate (x in c). Domain-specific rules and constraints are treated
in the same way as any rule or constraint in ConceptBase. For
example, there are rules for the predicate (a authorizedFor t).
The extension specifies which actor is authorized for which
task, which is evaluated at the M0 level (here: process traces).
The extension is computed by ConceptBase.

The Telos specialization relationship (c isA d) is axioma-
tized in [11]. One of the axioms realizes the Nixon diamond
pattern for attributes and relations: for any combination of
an object x and a class attribute/relation label m, the class c
that defines the most specific m is unique. This axiomatizaton
supports substitutability: wherever an instance of the super-
class d is allowed, an instance of the subclass is also allowed.
Note however that Telos does not support class methods.
Substituability is limited to rules, constraints, and queries. The
DeepTelos specialization (c ISA d) shall mostly behave like
the Telos specialization, hough we did not yet transcribe all
axioms for (c isA d) to (c ISA d). The only reason to introduce
the DeepTelos specialization was an implementation limitation
for the Telos specialization in ConceptBase: it does not sup-
port user-defined rules for the Telos specialization predicate.
The Telos multiple specialization and multiple classification
requires extra effort to map it to UML.

I. Incremental updates

ConceptBase supports incremental updates at any instan-
tiation level at any time. The Telos axioms as implemented
by ConceptBase [12] assign at least the builtin-class ”Propo-
sition” to any object. Hence, any object does have at least
the class ”Proposition” and can use the features of ”Propo-
sition” to assign attributes, relations, sub/superclasses, and
classes/instances at any time. In principle, one could start to
define objects at the UML M0 level first and attach its M1-
level classes subsequently. Similarily, the M2-level of M1-level
ovjects could be defined when the M1-level objects are already
defined (as instances of Proposition).

In practice, the modeling of the different abstraction levels
usually starts with the more abstract levels. But, the more
abstract levels can be extended and modified as long as
the builitin axioms and user-defined integrity constraints are
fulfilled. Rules, constraints and queries can also be defined at
any time. They can also be deleted and then be replaced by
revisions at any time.

http://conceptbase.cc/multi2019challenge/SOURCES


pos
tpr

int

J. Lessons learned

One challenge with using ConceptBase was that recursive
rules needed to be evaluated while an update to a model was
processed. ConceptBase used to disable tabling (=cache of the
extension of derived predicates) of the Datalog-engine during
updates. That could lead to infinite loops since tabling is
essential to avoid infinitite loops for recursive predicates. We
addressed this loophole by temporarily re-activating tabling
during updates. Another lesson learned was that the formula
compiler of ConceptBase ignored the specialization facts de-
rived by DeepTelos to check the typing of predicates. This
forced us initially to some awkward definitions for some
queries and redundant specialization facts. This weakness is
now removed. The more most-general instances are defined,
the more rules and constraints are generated by the partial
evaluator. Hence, it may be more efficient not to partially
evaluate the DeepTelos rules for very large models.

K. Further aspects

The partial evaluator generated about 150 two-level rules
from the 6 multi-level rules. The number of generated rules
depends on the number of instances and sub-classes associated
to objects matching the predicate (m IN c). Still, one could
use the two-level rules instread of the DeepTelos rules to carve
out sub-sets of the modules, e.g. just the CodingProcess plus
its sub-module.

Some additional features were added to the process model,
in particular to check delayed tasks. This uses the ability of
ConceptBase to evaluate arithmetic and function expressions.

ConceptBase was orginally developed as design reposi-
tory for data-intensive applications, project DAIDA [13]. The
metameta model of the design repository had the concepts
”DesignDecision” (=”Task”), ”DesignObject” (=”Artifact”),
and ”DesignTool” (roughly ”Actor”). It did also feature all
abstraction levels used in the challenge. The main drawback
was the missing multi-level modeling aspect. This led to
many instantiations of the produces/uses relations, while in our
solution, we only need to define it for ”TaskType” and ”Task”.
The DAIDA project also pioneered the fine-grain traceability
of reequirements to code lines. An updated version of this
feature is available at [12].

VII. CONCLUSIONS

We provided a solution for the MULTI process challenge.
Except for the authorization constraint (P17), all requirements
were met. We also provided an example process execution to
highlight how the ACME process can be traced and monitored.

During the development of the solution, some weaknesses
of the multi-level partial evaluator of ConceptBase became
apparent. While ConceptBase allows to change objects at any
abstraction level at any time (including deleting them), this has
put the partial evaluator to its limits. It maintains a dependency
graph between code that is generated from the formulas to
maintain the executable rules. This graph can become cyclic
and then prone to let the evaluator run into a loop. This can
be avoided by defining the most-general instance relations at

the beginning and then not change them afterwards. Still, it
was an unpleasant experience. The partial evaluator is also a
bit time consuming. It can take a few seconds to compile all
modules. Once compiled, the execution is fast.

The solution does has some elegancy with it, e.g. directly
using the terms actor, actor types etc. in solution. We find it
still not obvious that we saved a lot of coding by the DeepTelos
multi-level modeling approach. The advantage seems to be
more in reuse rather than avoiding accidential complexity.

A key advantage of ConceptBase was that it naturally
supports any number of instantiation levels. Another advantage
is that the object ”Proposition” is fully accessible to users
of ConceptBase to add new abstract constructs extending the
attribution, instantiation and specialization constructs. Further,
the Datalog compilation of rules is robust and delivers fast
code.

REFERENCES

[1] M. A. Jeusfeld and B. Neumayr, “DeepTelos: Multi-level modeling
with most general instances,” in Conceptual Modeling - 35th
International Conference, ER 2016, Gifu, Japan, November 14-
17, 2016, Proceedings, 2016, pp. 198–211. [Online]. Available:
https://doi.org/10.1007/978-3-319-46397-1 15

[2] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos:
Representing knowledge about information systems,” ACM Trans.
Inf. Syst., vol. 8, no. 4, pp. 325–362, 1990. [Online]. Available:
http://doi.acm.org/10.1145/102675.102676

[3] J. J. Odell, Advanced object-oriented analysis and design using UML.
Cambridge University Press, 1998, ch. Power types, pp. 23–32.

[4] M. Jarke, R. Gallersdörfer, M. A. Jeusfeld, M. Staudt, and S. Eherer,
“ConceptBase - a deductive object base for meta data management,” J.
Intell. Inf. Syst., vol. 4, no. 2, pp. 167–192, 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF00961873

[5] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter, “A formal approach
to the specification and transformation of constraints in MDE,” J.
Log. Algebr. Program., vol. 81, no. 4, pp. 422–457, 2012. [Online].
Available: https://doi.org/10.1016/j.jlap.2012.03.006

[6] C. Atkinson and T. Kühne, “The essence of multilevel metamodeling,”
in UML 2001 - The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 4th International Conference, Toronto, Canada,
October 1-5, 2001, Proceedings, 2001, pp. 19–33. [Online]. Available:
https://doi.org/10.1007/3-540-45441-1 3

[7] J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena, “Extending
deep meta-modelling for practical model-driven engineering,” Comput.
J., vol. 57, no. 1, pp. 36–58, 2014. [Online]. Available: http:
//dx.doi.org/10.1093/comjnl/bxs144

[8] C. Atkinson, M. Gutheil, and B. Kennel, “A flexible infrastructure
for multilevel language engineering,” IEEE Trans. Software Eng.,
vol. 35, no. 6, pp. 742–755, 2009. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/TSE.2009.31

[9] U. Frank, “Multilevel modeling - toward a new paradigm of conceptual
modeling and information systems design,” Business & Information
Systems Engineering, vol. 6, no. 6, pp. 319–337, 2014. [Online].
Available: https://doi.org/10.1007/s12599-014-0350-4

[10] M. A. Jeusfeld, “A deductive view on process-data diagrams,” in 4th
IFIP WG 8.1 Working Conference on Method Engineering, ME 2011,
Paris, France, April 20-22, 2011. Proceedings, 2011, pp. 123–137.
[Online]. Available: https://doi.org/10.1007/978-3-642-19997-4 13

[11] ——, “Complete list of O-Telos axioms,” 2005, online:
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/
O-Telos-Axioms.pdf.

[12] ——, “Metamodeling and method engineering with ConceptBase,” in
Metamodeling for Method Engineering, M. A. Jeusfeld, M. Jarke, and
J. Mylopoulos, Eds. MIT Press, 2009, pp. 89–168.

[13] M. Jarke, Ed., Database Application Engineering with DAIDA, ser.
Research Reports ESPRIT. Springer, 1993.

https://doi.org/10.1007/978-3-319-46397-1_15
http://doi.acm.org/10.1145/102675.102676
http://dx.doi.org/10.1007/BF00961873
https://doi.org/10.1016/j.jlap.2012.03.006
https://doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1093/comjnl/bxs144
http://dx.doi.org/10.1093/comjnl/bxs144
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.31
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.31
https://doi.org/10.1007/s12599-014-0350-4
https://doi.org/10.1007/978-3-642-19997-4_13
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf


pos
tpr

int

APPENDIX: SOURCE CODE

The appendix shows some excerpts of the source code. The
complete source code (about 3000 lines of code) is available
at http://conceptbase.cc/multi2019challenge/SOURCES.

{* excerpt from module oHome: *}

Proposition with
attribute
necessary: Proposition;

{* multiplicity 1..* *}
single: Proposition;

{* multiplicity 0..1 *}
reflexive: Proposition;

{* any object is related to itself *}
transitive: Proposition;

{* relation is closed under transitivity *}
symmetric: Proposition;

{* if x rel y then also y rel x *}
antisymmetric: Proposition;

{* if x rel y and (y rel x) then x=y *}
asymmetric: Proposition

{* if x rel y then not y rel x *}
end

RelationSemantics in Class with
constraint
singleConstraint : $ forall c,d/Proposition

p/Proposition!single x,m/VAR
P(p,c,m,d) and (x in c) ==>
(
forall a1,a2/VAR

(a1 in p) and (a2 in p) and Ai(x,m,a1)
and Ai(x,m,a2) ==> (a1=a2)

) $;
necConstraint : $ forall c,d/Proposition

p/Proposition!necessary x,m/VAR
P(p,c,m,d) and (x in c) ==>
exists y/VAR (y in d) and (x m y) $;

asym_IC: $ forall AC/Proposition!asymmetric
C/Proposition x,y/VAR M/VAR
P(AC,C,M,C) and (x in C) and (y in C) and
(x M y) ==> not (y M x) $;

antis_IC:
$ forall AC/Proposition!antisymmetric
C/Proposition x,y/VAR M/VAR
P(AC,C,M,C) and (x in C) and (y in C) and
(x M y) and (y M x) ==> (x = y) $

rule
trans_R: $ forall x,z,y,M/VAR

AC/Proposition!transitive C/Proposition
P(AC,C,M,C) and (x in C) and
(y in C) and (z in C) and
A_e(x,M,y) and (y M z) ==> (x M z) $;

refl_R: $ forall x,M/VAR
AC/Proposition!reflexive C/Proposition
P(AC,C,M,C) and (x in C)
==> (x M x) $;

symm_R: $ forall x,y,M/VAR
AC/Proposition!symmetric C/Proposition
P(AC,C,M,C) and (x in C) and (y in C) and
A_e(x,M,y) ==> (y M x) $

end

{* DeepTelos definition *}
Proposition with

attribute
ISA : Proposition;
IN : Proposition

end

DeepTelosRules in Class with
rule
mrule1 : $ forall m,x,c/Proposition

(x in c) and (m IN c) and
not (x isA m)
==> (x ISA m) $;

mrule2 : $ forall x,c,d/Proposition
(c ISA d) and (x in c)
==> (x in d) $;

mrule3 : $ forall c,d,m,n/Proposition
(m IN c) and (n IN d) and (c ISA d)
==> (m ISA n) $;

mrule4 : $ forall m,x,c/Proposition
(m IN c) and (x isA m) and
not (x in QueryClass)
==> (x in c) $;

mrule5 : $ forall m,mx,x,c/Proposition
(m IN c) and :(x isA mx):
and (mx ISA m)
and not (x in QueryClass)
==> (x in c) $

constraint
mconstr1 : $ forall x,m,c/Proposition

(m IN c) and (x in c)
==> not (x in m) $

end

{* M3-like level *}

NodeOrLink with
attribute
connectedTo : NodeOrLink

end

Node isA NodeOrLink end

NodeOrLink!connectedTo isA NodeOrLink end

ModelType isA Node with
attribute
contains : NodeOrLink

end

ModelType!contains isA NodeOrLink!connectedTo end

{* Queries, rules and constraints for
the challenge (excerpt) *}

CriticalButNotValidatedM1 in QueryClass
isA CriticalTaskType with
constraint
c3 : $ exists x/ArtifactType

(this produces x) and
not (exists vt/ValidationTaskType

(vt uses x)) $
end

CriticalButNotValidatedM0 in QueryClass
isA CriticalTask with
constraint
c3 : $ exists x/Artifact

(this produces x) and
not (exists vt/ValidationTask

(vt uses x)) $
end

CriticalTaskType in Node,Class isA TaskType with
constraint
c1 : $ forall t/CriticalTaskType at/ActorType

(t executortype at) ==> (at in SeniorActorType) $;
c2 : $ forall t/CriticalTaskType a/Actor

http://conceptbase.cc/multi2019challenge/SOURCES


pos
tpr

int

(t executorset a) ==> (a in SeniorActor) $
end

UnmatchedTask in QueryClass isA ProperTask with
computed_attribute
T : ProperTaskType;
PT : ProperProcessType;
P : ProperProcess

constraint
cm : $

(P contains this) and
:(this in T): and (P in PT) and
(PT <> Process) and (T <> Task) and
not (PT contains T) $

end

taskDuration in Function isA Integer with
parameter
t : Task

constraint
cdur : $ exists d1,d2/Integer

(t begindate d1) and (t enddate d2) and
(this = d2-d1) $

end

Task in Class with
IN
class : TaskType

attribute
uses : Artifact;
produces : Artifact;
begindate : Integer;
enddate : Integer;
duration : Integer;
executor : Actor
rule
durrule : $ forall t/Task d/Integer
(d = taskDuration(t)) ==> (t duration d) $;

end

DelayedTask in QueryClass isA Task with
constraint
isDelayed : $ exists T/TaskType pd,d/Integer

(this in T) and
(T plannedduration pd) and
(this duration d) and (d > pd) $

end

{* P17 *}
AuthorizedTaskType in QueryClass
isA TaskType with
constraint
catt : $ exists a/Actor (a authorizedFor this) $

end

Actor in Class with
constraint
isAuthorized :

$ forall a/Actor t/Task T/AuthorizedTaskType
(t in T) and (t executor a)
==> (a authorizedFor T) $

end

{* S13 *}
TestCaseDesign in CriticalTaskType with

altname
de : "Testszenarioentwurf"

next
n1 : TestDesignReview

executortype
testcasedesigner : DeveloperOrTestDesigner

produces
artifact1 : TestCaseDocument

creator
createdBy : BobBrown

constraint
s13a : $ forall tcd/Task a/Actor

(tcd in TestCaseDesign) and
(tcd executor a) ==> (a in SeniorAnalyst) $

end


	I Introduction
	I-A Multi-level rules and constraints
	I-B DeepTelos Revision 2
	I-C DeepTelos Car Example

	II Analysis of the Multi process challenge
	III Model presentation: The constructs
	III-A The levels
	III-B Requirements P1-P3
	III-C Requirements P4-P6
	III-D Requirements P7-P9
	III-E Requirements P17-P18
	III-F Requirements P19

	IV Model presentation: example process
	IV-A Requirements S1-S4
	IV-B Requirements S5-S7
	IV-C Requirements S8-S10
	IV-D Requirements S11-S12
	IV-E Requirements S13

	V Example process traces
	VI Discussion
	VI-A Basic modeling constructs
	VI-B Employed levels
	VI-C Cross-level relationships and cross-level constraints 
	VI-D Integrity mechanism
	VI-E Abstraction
	VI-F Deep characterization
	VI-G Reuse
	VI-H Semantics
	VI-I Incremental updates
	VI-J Lessons learned
	VI-K Further aspects

	VII Conclusions
	References

