This is a postprint. The original paper appeared in Proc. 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C 2019), Workshop MULTI 2019, Munich, Germany, © 2019 IEEE, DOI 10.1109/MODELS-C.2019.00019.

DeepTelos Demonstration

Manfred Jeusfeld
School of Informatics
University of Skovde
Skovde, Sweden
ORCID 0000-0002-9421-8566

Abstract—DeepTelos is defined as a set of rules and constraints
that enable multi-level modeling for the Telos metamodeling lan-
guage. In its ConceptBase implementation, rules and constraints
are realized by Datalog clauses. We start with demonstrating first
the core functions of Telos, use of simple rules and constraints,
then the meta-level rules and constraints defining DeepTelos. A
couple of examples show how the DeepTelos rules and constraints
are compiled to simple rules and constraints and then realize the
desired multi-level modeling environment. The main example is
taken from the Galileo satellite domain.

Keywords-multi-level modeling, ConceptBase, Telos, DeepTelos,
Datalog

I. INTRODUCTION

DeepTelos [1] is a simple yet powerful extension to the
Telos [2] language to enable a simple form of multi-level mod-
eling. The purpose of this demonstration is to show how this
extension was facilitated by the rule and constraint language
of Telos, as implemented in ConceptBase [3]. Multi-level
modeling (MLM) [4], [5] comprises the following building
blocks:

e« MLM allows to represent information at more than two
abstraction levels, i.e. objects, classes, meta classes, meta-
meta classes, etc.

« Classes are objects, too. They can have properties like any
other object. Such classes are sometimes called clabjects.

e« MLM minimizes the accidental redundancy by defining
properties at the right class level and use them for all
instances of that class.

There are many proposals for MLM that may exceed the
DeepTelos functionality. This paper does not attempt to com-
pare DeepTelos to them. Instead, we focus on the particular
strength of DeepTelos, namely that it is a straightforward
extension of the Telos language that has been used for meta-
modeling since the late 1980-ties.

Subsequently, we first shortly introduce the main ideas
behind Telos in its ConceptBase implementation. Then, we
introduce the rules and constraints that realize DeepTelos as
a MLM language. We then demonstrate a number of smaller
multi-level modeling examples and show how the DeepTelos
rules and constraints are compiled to ordinary two-level Dat-
alog [6] rules. All examples are made available via the web

This research has been supported in part by the EU ISF Project
A431.678/2016 ELVIRA (Threat modeling and resilience of critical infras-
tructures), coordinated by Polismyndigheten/Sweden, and by KK Stiftelsen
Synergy project: Knowledge-driven decision support via optimization.

page http://conceptbase.cc/deeptelos2. The examples carry a
”Creative Commons Attribution-ShareAlike 4.0 International”
license.

II. TELOS AND CONCEPTBASE

Telos essentially is a metamodeling language that has
only a single quadruple fact called proposition”, denoted
as P(o,x,n,y). The component x is called the source of the
proposition, n is the name, y is the destination, and o is the
identifier of the proposition. So, one can say that it is like
RDF triples where each triple has its own identifier. For exam-
ple, P(ol,0l,bill,ol), P(02,02,mary,02,P(03,01,likes1,02) de-
fined two individual” objects bill and mary by self-referential
propositions and links the two by a relation. The same propo-
sition data structure is used to define class-level statements
such as P(04,04,Person,04), P(05,04,likes,04), which defines
an object Person with a cyclic relation "likes”. Objects are their
classes are linked by instantiation propositions, for example
P(06,01,in,04), P(07,02,in,04), P(08,03,in,05). Here the first
two propositions express that bill and mary are instances
of Person. The third proposition expresses that the “likesl”
link of bill is an instance of the “likes” link of Person. The
object identifiers are system-generated and not meant to be
human-interpreted. ConceptBase and Telos thus use a frame-
like language to define objects, e.g.

Person with
attribute likes:

end

bill in Person with
likes likesl: mary

end
mary in Person end

Person

A particular predefined object in Telos is “Proposition”.
Each proposition is an instance of “Proposition”. It defines
basic relations such as “attribute”:

Proposition with
attribute

attribute:
end

Proposition; comment: String

Since any object is an instance of Proposition, the object
Person can use the definition of “attribute” to define the
likes relation. In the same manner, each object may have
a comment. Note that attributes in Telos are objects, too.
They can have no, one or any number of instances. Thus, the
comment attribute does not have to be used by all instances
of Proposition. Telos defines predicates for instantiation (x in

http://dx.doi.org/10.1109/MODELS-C.2019.00019
http://conceptbase.cc/deeptelos2

¢), specialization (c isA d), and attribution/relations (x m/n y).
In the above example, the predicates (bill in Person), (Person
in Proposition), (bill likes/likes1 mary) would be true among
others. Note that the attribution predicate in Telos has two
labels, one from the class level, and one from the instance
level.

ConceptBase supports a rule and constraint language on
top of the predicates that have their initial extension from the
proposition facts. Consider the following expression:

forall x,y/Person (x likes y) ==> (y likes x)

It can either be interpreted as a constraint (the likes relation
must be symmetric) or as a rule (the likes relation is made
symmetric by deriving missing facts). ConceptBase allows to
formulate generic (=multi-level) rules such as
forall c/Proposition M, n, x,y/VAR

(c symmetric/M c) and

(x in ¢) and y in c¢) and (x M/n y) ==> (y M x)

Such rules range over multiple instantiation levels (Propo-
sition, ¢, x) and are characterized by variable arguments in
the class position of the instantiation predicate (x in c). The
formula compiler maps such rules and constraints to a set of
formulas that range over two instantiation levels. This is the
very basis of defining DeepTelos.

III. DEEPTELOS

DeepTelos is defined by five rules and one constraint in
ConceptBase. Since they are compiled internally to a set of
two-level formulas and then mapped to Datalog, they can
be evaluated by the Datalog engine of ConceptBase. The
complete definition is as follows:

Proposition with
attribute

ISA: Proposition; IN: Proposition

end

forall m,x,c/Proposition (x in c) and (1)
(m IN c¢) and not (x isA m) ==> (x ISA m);

forall x,c,d/Proposition (c ISA d) and (2)
(x in c) ==> (x in d);

forall c¢,d,m,n/Proposition (m IN c) and (3)
(n IN d) and (c ISA d) ==> (m ISA n);

forall m,x,c/Proposition (m IN c) and (4)
(x isA m) ==> (x in c);

forall m,mx,x,c/Proposition (m IN c) and (5)
:(x 1sA mx): and (mx ISA m) ==> (x 1in c);

forall x,m,c/Proposition (m IN c¢) and (6)
(x in c) ==> not (x in m)

Only the last formula is a constraint since it cannot derive
new facts. The first rule is the most important one: if there is
an object x that is an instance of a class ¢ for which a most
general instance (m IN c) is defined, then (x ISA m) is true,
provided that (x isA m) is not true. The relation ISA is for
derived specializations, whereas the relation isA is the original
Telos specialization. Note that all rules and constraints are
reagning over more than two instantiation level. Hence, they
are subject to be compiled to a set of two-level constraints by
ConceptBase.

Formula (1) is the most interesting from the viewpoint of
multi-level modeling: The object m in the predicate (m IN c)
is the “most-general instance” of the class c¢. The most-general
instance of a class subsumes (is super-class of) all instances
of class c. In DeepTelos, a class has at most one most-general
instance as the name suggests. If a class would have two most-
general instances, then both would have the same extension (=
set of instances).

The predicate (c ISA d) has the classical interpretation of
a sub-class relation. One might argue that it is redudant to
the Telos predicate (c isA d). We only introduce (c ISA d)
here, because ConceptBase disallows the predicate (c isA d)
in user-defined rules for historic reasons. The colons in :(x iSA
mx): means that only explicit (= non-derived) are considered.

The above six rules and constraints on DeepTelos are a
variant of the definitions in [1]. They better integrate the Telos
predicate (c isA d) into DeepTelos. In particular, user-defined
sub-classes of a most-general instance m are also an instance
of the class of m.

IV. DEMONSTRATION

We sketch here the script of the live demonstration of
DeepTelos. All steps can be demonstrated directly from this
paper by clicking on the hyperlinks. You need to configure
your computer to start the ConceptBase tool CBGraph for file-
types *.gel, see also the documentation in http://conceptbase.
sourceforge.net/CB-Mime.html. You can download and in-
stall the free ConceptBase system from http://conceptbase.
sourceforge.net/CB-Download.html.

A. Step 1: The original Telos language

We showcase the object “Proposition”, which is the most
general object in Telos. It defines instantiation, specialization
and attribution/relations:

Fig. 1. The object Proposition in Telos.

The central object is "Proposition”. On top is the definition
of (Proposition attribute/attribute Proposition). The broken line
from “attribute” to Proposition expresses that “attribute” is a
derived instance of “Proposition”. It is also a derived instance
of itself. The link on the left is the definition of specialization
(Proposition isA Proposition), which also is an instance of
Proposition and of itself. In the right is the definition of
(Proposition in Proposition), i.e. of instantiation. This link is

http://conceptbase.sourceforge.net/CB-Mime.html
http://conceptbase.sourceforge.net/CB-Mime.html
http://conceptbase.sourceforge.net/CB-Download.html
http://conceptbase.sourceforge.net/CB-Download.html
http://conceptbase.sourceforge.net/deeptelos2/telos.gel

again an instance of “Proposition” and of itself. Finally, there
is a predefined object for node-like objects (Individual). These
are the core objects of Telos: the so-called omega classes
of Telos. The link in the caption of Figure 1 directly starts
ConceptBase with the view of “Proposition”.

B. Step 2: DeepTelos definition

In step 2, we define the two relations IN and ISA and the
6 formulas defining DeepTelos. We also define some suitable
graphical shapes for the two new relations.

ISA

Fig. 2. The definition of DeepTelos.

C. Step 3: The Product Hierarchy example

This is our first example (figure 3) of using DeepTelos for
multi-level modeling. There are two DeepTelos hierarchies
here. First, (Product IN ProductModel), (ProductModel IN
ProductCategory). You should see these three objects as a
unity defining three abstract levels of the concept Product. We
define that products can have an owner. As a second DeepTelos
hierarchy, we define (Car IN CarModel) where (CarModel in
ProductCategory). Car models have a number of doors.

ProductCategory
7R

IN

. e ProductModel
[nteger} ot {camodal = B
A

A ' R
R o
\ ' 0 an A)
' Y car S ' '
! . <. 0
E}, d Porscheoll|
A
[maryscar————— - ——fman]
Fig. 3. DeepTelos definition of products and cars.

The specialization links, e.g. between “Porsche911” and
“Product” are all derived via the DeepTelos rules discussed in
the previous chapter. The multiple levels are defined just by
the relation (m IN c¢). A potency-based approach would have
a single concept Product and define the owner relation to have
a potency of 2. In DeepTelos, this is achieved by defining the
“owner” relation at the "Product” level. Hence, regard the three
objects “ProductCategory”, "ProductModel”, and “Product” as
the DeepTelos counterpart of a single object “Product” in
potency-based MLM approaches. In DeepTelos, the potency
is selected by picking the right level in the hierarchy (here
”Product” for the “owner” relation).

As mentioned earlier, ConceptBase compiles the multi-level
rules of DeepTelos to a set of two-level rules (Figure 4):

‘sforall m,x, c/Proposition (xin c) ... | |$f0rall %, ¢, d/Proposition (c1SA d) ... |

|$f0rall x/CarModel (not (Isalx,Ca... ‘ |$fora|l x/Car {xin Product) $|

‘sforall x/ProductCategory (not (l... ‘ |$fora|l x/CarModel {xin ProductM ... |

| % forall x/ProductModel (not (Isaf... | | $ forall x/GalaxyS3 (x in Product) $|

| % forall x’Porsche91l ({xin Car) $|

‘ % forall xyPhoneModel ({xin Produc... |

|$fora|l wPorsche9ll (xin Product) $|

|$fora|l m,x, ¢/Proposition (mIN c) ... | |$fora|l m,mx,x, ¢/Proposition (mIN ... ‘

| 4 forall x/Proposition (Isa(xCar) ... | ‘ ¢ forall x,mx/Proposition (Isa_e(x... |

‘ % forall x/Proposition (Isalx,Prod ... ‘ ‘ % forall x, mx/Proposition (Isa_e(x... |

| % forall x/Proposition (Isalx,Prod... | ‘ % forall x, m/Proposition (Isa_e(x... |

Fig. 4. Compiling DeepTelos to two-level rules.

The first DeepTelos rule leads for the product example to
three two-level rules, since we have three facts matching (m
IN ¢). The second DeepTelos rule has six instances. The third
DeepTelos rule has no instances since we dont use it in the
products example. Finally, rules 4 and 5 of DeepTelos lead to
three compiled two-level rules each.

The combination of the compile rules carries all the seman-
tics of DeepTelos for the product model. Hence, we could
export the product model just with these compiled rules and
they would behave as expected.

D. Step 4: Entities and Values

The next example shows how DeepTelos can enrich the
classical metamodeling of modeling languages, such as Entity-
Relationship Diagrams. The classic definition only covers the
constructs of entity types, relationship types and entity proper-
ties (=attributes). DeepTelos allows the definition of (Entity IN
EntityType) and (Value IN Domain). As a consequence, one
can query entities and values without using schema constructs
such as Projects with a budget. For example, return all entities
that are suing the value 1.5 regardless of the schema.

S
’,ﬁ T T T N -‘
‘"IN N N

’ [

+ \
r‘ '
1
" [y i ———>a] |
v [

\ s
\

.
~ Y
b Project
A
P
P
.
p346

Fig. 5.

Entities and values.

The demonstration shall show that the budget attribute is a
subclass of the value attribute derived by the first DeepTelos
rule. The project p346 is an instance of Entity and 1.5 is an
instance of Value, both via the second DeepTelos rule.

http://conceptbase.sourceforge.net/deeptelos2/deeptelos.gel
http://conceptbase.sourceforge.net/deeptelos2/products.gel
http://conceptbase.sourceforge.net/deeptelos2twolevelrules.gel
http://conceptbase.sourceforge.net/deeptelos2/entitiesvalues.gel

E. Step 5: Multi-level model for Satellites

This example is the most complex in terms of number of
levels. We take the Galileo satellite family as an example.
This family has several Galileo satellite models, some of them
have only one (physical) satellite as instance. The physical
satellite has physical components as parts. They are connected
by interfaces, e.g. USB interfaces for certain communication
connections. The physical satellite must fulfill exactly the de-
sign of its model in terms of component models and interface
models. For example, the gyroscopic device of a physical
satellite must be the model prescribed in the satellite model
of the satellite. Satellite models are then grouped into satellite
types. For example, the Galileo family forms one satellite type
which has common properties such as the orbit, for which they
are designed.

ComponentCategory
IN
ComponentType
F m 1
IN IN
ComponentModel
SatelliteModel f
IN »r
IN IN

Fig. 6. Multilevel hierarchies for the satellite case.

The component hierarchy in figure 6 is the main trunk. The
lowest level (Component) is used to represent actual compo-
nents (having certain serial numbers). The component model is
prescribing which parts a certain component model may have,
e.g. a certain Galileo satellite model. Component types are for
example used to specify that there are navigational satellite
like Galileo satellites.

ComponentCategory
. f .
-7 N

=" - - ComponentType - S
T e N
£ " r
IN IN

ComponentModel |
------- £ T,
satelliteModel [~ 4 -|InterfaceModel
7 '~ 7
IN IN
satellite[~"7" '

Fig. 7. Adding derived specializations.

Component categories stand for the whole variety of com-
ponent types used in this example, for example satellite type
and interface type. These two example component categories
get their own hierarchies in order to be able to define
properties like orbit to the right level. Figure 7 shows the
(explicit) instantiation of ”SatelliteType” and “InterfaceType”
to ”"ComponentCategory”. All specialization links are derived
in figure 7 are derived by DeepTelos rules. For example, the

fourth DeepTelos rule derives that SatelliteModel (being a spec
ialization of itself) is also an instance of “ComponentType”.
Then, it must be a specialization of “ComponentModel” as
well via the second DeepTelos rule. DeepTelos has no explicit
level numbers and no potencies for attributes and relations.
Yet, if the multilevel hierarchies are connected by special-
ization links such as in figure 7, the level numbers can be
calculated: instances of “Component” (and also of ”Satellite”
and ”Interface) have level 0, instances of ”ComponentModel”
(and also of “SatelliteModel” and “InterfaceModel) have level
1, instances of "ComponentType” have level 2, and instance
of ”ComponentCategory” have level 3.

ComponentCategory

- IN
- | ComponentType
SatelliteType [-===='="=""'"""" T
Navigationsatellite |- - - - - - >l
T IN
IN
— ComponentModel
i ity [- = satelliteModel |~ T
GalileoFamily e
b T N
. .
' N)
; . _|satellite o[companent]

T

GalileoSatellite
'
'
Galileo_GIOVE Al
P“
N

Fig. 8. Adding derived specializations.

The example in figure 8 shows the instance I1 of the Galileo
Giove Al satellite model. The solid specialization links are
explicit (user-defined) specializations. So, a navigation satellite
is a satellite type and the Galileo family is a specialization
of it (inherits all properties). Giove Al is an instance of the
Galileo family of satellites. Via DeepTelos rules, it becomes
also an instance of satellite model (and thus can use the
properties that are defined there). Giove Al is also an explicit
specialization of GalileoSatellite (an instance of GalileoFam-
ily). The instance I1 of the Giove Al is then also an instance
of GalileoSatellite and satellite. The derived instantiations are
needed for being able to instantiate the multi-level attributes
as discussed in figure 9.

In figure 9, navigation satellites have a property transmitter-
Watt (for sending the GPS signal). All satellite models have
a specified start mass and a planned orbit. The GIOVE Al
satellite uses the first two attributes. All Galileo satellites are
designed for the same orbit (3612). The instance 11 of GIOVE
Al happens to fly on the planned orbit (though it could also
fly on another orbit due to a malfunction in the rocket or the
gyroscopic control).

Figure 10 shows the use of the multi-level satellite model to
design the configuration of satellites. The satellite model Giove
Al has 1 gyroscopic device (product model GyroMasterV17)
and three identical reaction wheels (model ReaFastV45). The
instance I1 instantiates these parts according to the satellite
model Giove Al. The Galileo family of satellites has among

http://conceptbase.sourceforge.net/deeptelos2/multisat1.gel
http://conceptbase.sourceforge.net/deeptelos2/multisat2.gel
http://conceptbase.sourceforge.net/deeptelos2/multisat3.gel

satelliteType
transmitterWatt NavigationsSatellite T
IN
K

: startmasske
H A satelliteModel ;
LV plannedorbit ___,
; 7 A /

L)
'

T) e —
3)
H A\ hasPart

R BN

Gyrosubsystem |4— part1 - GalileoF amily e
: ’ N A part2 =——%ReactionWheel N
A) 3 P
' \ | L} A

: ' : I :
\ ' I fn ' ComponentModel
\ H | l’ | 1 hasPart
! : o | o
: N
N

| \

GyroMasterv17 !
A .
' partll N

hasPart
-7

‘
,

gm_123456 |<— part11i Galileo_GIOVE_A1_I1]:_ua}tm"'—p rw_7891
partzzi

partz3i

Fig. 10. Configuration of satellites.

others a gyro sub system and reaction wheels (possibly more
than one). On the right hand side, you see the “hasPart”
relation for component types. The two part types of Galile-
oFamily are instances of the “hasPart” relation of “Compo-
nentType”. By using the DeepTelos construct (m IN ¢) for
this relation, we can inherit the ”hasPart” relation downwards
to ”ComponentModel” and ”Component”. The generated rules
of DeepTelos make sure that the lower level hasPart” relations
are instantiated via these rules. Thus, one can check use
the “hasPart” relation of “Component” to list all parts of a
component like Galileo_ GIOVE_A1_I1.

The final step of the demonstration is to show the two-level
rules generated from the 5 DeepTelos rules. The following
query shall compute it:

GeneratedRules in QueryClass isA Class with
computed_attribute genrule : MSFOLrule
constraint cl : $ (this rule genrule)

exists mlrule/MSFOLrule
(DeepTelosRules rule mlrule)
and :(genrule isA mlrule): $

and

end

It turns out that the satellite example leads to about 100
such generated rules.

V. SUMMARY

We demonstrated the use of DeepTelos for multi-level
modeling. DeepTelos is defined by just 5 multi-level rules
plus one constraint. The key idea is the use of a special
construct (m IN c) that related a class ¢ to its “most-general
instance” m. Instead of numbers as potencies, DeepTelos uses
actual names for the levels such as “Component” (level 1),
”ComponentModel” (level 2), and so on. The multi-level
attributes are then defined at the right level of such a hierarchy
of levels. Several levels can co-exist and be related to each
other. We also note that cross-level relations are supported such
as the planned versus actual orbits of satellite models/satellites.

The demonstration can be easily replayed by installing
ConceptBase (see link at the beginning) of the paper and
then opening the links to the graph files below the figures
in this paper. We did not compare DeepTelos in this paper to
other multi-level modeling tools. We plan however to represent
the multi-level challenge models (bicycle, process models) in
DeepTelos to facilitate a comparison. DeepTelos does have its
limitations. If a model has a deep specialization hierarchy,
then a large number of formulas are generated from the
DeepTelos formulas. This slows down the compilation but
also the runtime performance, e.g. for adding an instance to
some class. It should be noted that all levels can be updated
incrementally, which can be a costly operation when many
instances already exist.

VI. ACKNOWLEDGEMENTS

Special thanks to Bernd Neumayr, who co-developed
DeepTelos. Further thanks to Philipp Martin Fischer, with
whom I attended the Dagstuhl Seminar 17492 and who in-
spired the satellite example used in this demonstration. Finally,
many thanks to René Soiron, who helped implement the
compiler for multi-level rules in the early 1990-ties.

REFERENCES
[1] M. A. Jeusfeld and B. Neumayr, “DeepTelos: Multi-level modeling

with most general instances,” in Conceptual Modeling - 35th
International Conference, ER 2016, Gifu, Japan, November 14-
17, 2016, Proceedings, 2016, pp. 198-211. [Online]. Available:

https://doi.org/10.1007/978-3-319-46397-1_15

[2] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos:
Representing knowledge about information systems,” ACM Trans.
Inf. Syst., vol. 8, no. 4, pp. 325-362, 1990. [Online]. Available:
http://doi.acm.org/10.1145/102675.102676

[3] M. Jarke, R. Gallersdorfer, M. A. Jeusfeld, M. Staudt, and S. Eherer,
“ConceptBase - a deductive object base for meta data management,” J.
Intell. Inf. Syst., vol. 4, no. 2, pp. 167-192, 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF00961873

[4] C. Atkinson and T. Kiihne, “The essence of multilevel metamodeling,”
in UML 2001 - The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 4th International Conference, Toronto, Canada,
October 1-5, 2001, Proceedings, 2001, pp. 19-33. [Online]. Available:
https://doi.org/10.1007/3-540-45441-1_3

[S] J. P. A. Almeida, U. Frank, and T. Kiihne, “Multi-level modelling
(dagstuhl seminar 17492),” Dagstuhl Reports, vol. 7, no. 12, pp. 18-49,
2017. [Online]. Available: https://doi.org/10.4230/DagRep.7.12.18

[6] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about Datalog (and never dared to ask),” IEEE Trans. Knowl.
Data Eng., vol. 1, no. 1, pp. 146-166, 1989. [Online]. Available:
https://doi.org/10.1109/69.43410

http://conceptbase.sourceforge.net/deeptelos2/multisat4.gel
http://conceptbase.sourceforge.net/deeptelos2/multisat5.gel
https://doi.org/10.1007/978-3-319-46397-1_15
http://doi.acm.org/10.1145/102675.102676
http://dx.doi.org/10.1007/BF00961873
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.4230/DagRep.7.12.18
https://doi.org/10.1109/69.43410

	I Introduction
	II Telos and ConceptBase
	III DeepTelos
	IV Demonstration
	IV-A Step 1: The original Telos language
	IV-B Step 2: DeepTelos definition
	IV-C Step 3: The Product Hierarchy example
	IV-D Step 4: Entities and Values
	IV-E Step 5: Multi-level model for Satellites

	V Summary
	VI Acknowledgements
	References

