
Metamodelling with Datalog and Classes:       
ConceptBase at the Age of 21 

Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

RWTH Aachen University & Fraunhofer FIT, Ahornstr. 55, 52074 Aachen, Germany 
Tilburg University, The Netherlands 

Cologne University of Applied Sciences, Germany 
Munich University of Applied Sciences, Germany 

jarke@cs.rwth-aachen.de 

Abstract. ConceptBase is a deductive object-oriented database system intended 
for the management of metadata. A distinguishing feature of the Telos language 
underlying ConceptBase is the ability to manage rules and constraints across 
multiple levels of instantiation in so-called meta formulas, thus offering 
uniform consistency management across heterogeneous notations or ontologies. 
Originally developed in the context of model-driven database design in the late 
1980’s, ConceptBase has been used in several thousand installations all over the 
world for numerous applications in areas such as requirements engineering, 
engineering information management, model management, eLearning, cultural 
information systems, and data warehousing. The internal representation is based 
on a quadruple object structure, combined with advanced Datalog engines, such 
that many optimization techniques in ConceptBase have pioneered ideas later 
pursued in the implementation of XML databases and ontology-based reasoning 
and data management engines. 
 

1 Introduction 

The large number of different modeling formalisms used in information systems 
engineering, semi-automated development techniques such as Model-Driven Design, 
but also the increasing richness of media handled by such systems beyond the 
traditional structured data, has renewed the interest in so-called metadata repositories 
and model management systems since at least the end-1990’s. In standards such as the 
Information Resource Dictionary Standard IRDS [11] or OMG’s meta object facility 
MOF [31], but also in many experimental and commercial systems such as, e.g., 
MetaEdit+ [20], Clio [10] or Rondo [24]. A shared feature of these standards is that 
not just data and their schema or other metadata are stored but also the metaschemas 
for these metadata and their relationships. In the typical heterogeneous environments, 
further metalevels may be necessary to manage the relationships between different 
metaschemas or modeling languages, such that a multi-level hierarchy of instance-
class relationships ensues. It is surprising to see that, despite this obvious and 



2 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

increasing need, after more than 20 years, our ConceptBase system is apparently still 
the only one that offers full support for the syntax and semantics of such multi-level 
hierarchies with heterogeneity at all levels. This paper reviews some of the features of 
ConceptBase that made this possible as well as some of the many applications in 
research, teaching, and practice the system has enjoyed and continues to enjoy. 

The development of ConceptBase was motivated by work in the European DAIDA 
project [15], in which an early version of what would now be called model-driven 
information systems development was developed, using a mapping from semi-formal 
requirements modeling languages [8] via the design language Taxis [25] to database 
programming languages. A repository was needed to document and maintain the 
developed artefacts as well as their relationships from a product, process, and design 
tool perspective, ensuring traceability and incremental design within and across 
multiple design versions. A version of the Telos information systems modeling 
language [26] formed the formal starting point for the ConceptBase development but 
the final version of Telos itself was also heavily influenced by the application domain 
of metadata repository management. 

We started the development of ConceptBase in mid-1987, the first version became 
operational in late 1988 [16]. About a year later, a stable client-server version existed 
which was already used in 1989 as perhaps the first Internet-based knowledge base 
management system in a project on requirements traceability modeling across the 
Atlantic ocean, four years before the advent of the World Wide Web. Using 
innovative storage models similar to the ones nowadays used in XML stores, and 
extending optimization techniques for query and integrity processing in deductive 
databases for our case of a deductive object-oriented metadata manager, the 
performance of ConceptBase improved rapidly, leading to a stable and externally 
usable prototype by about 1993 [12]. In the rest of the 1990’s, about 250 applications 
in various domains of research, teaching, and even industrial practice became known 
to us, some of them with our participation but many also completely independently.  

In the new century, the user community of ConceptBase increased further, 
probably due to the broadened interest in model management and metadata 
management for multimedia data where our experiments were also brought into some 
of the multimedia metadata standardization committees. Dissemination was also 
helped by new system features and many further performance improvements, plus a 
robustness of the system that is now competitive with many commercial systems. At 
present, we know of over 1000 registered installations, probably a number of 
unregistered ones exist as well.  

In [18], detailed descriptions of the meta modeling context, the ConceptBase 
systems, and some of the more influential applications are described, and a current 
version of the system is made available with many examples. In this short overview 
paper, we first review the most important language features of ConceptBase and then 
give an overview of the application domains and the impact experiments with 
ConceptBase have achieved in these domains. We end with some indications of 
ongoing work. 

 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  3 

2 Language Features of ConceptBase 

ConceptBase is an implementation of the object model O-Telos [17], a Datalog-based 
variant of Telos [26]; for simplicity, we use the name Telos in the sequel. We first 
give a general introduction to the Telos language features in general and then 
highlight some features that distinguish ConceptBase from similar systems or have 
been added to the system rather recently. 

2.1 Basic Concepts 

As in all deductive database models, Telos databases consist of an explicit and an 
implicit part. All explicit information is reified in the form of objects with object 
identity. This holds for regular objects (instance level), for classes, meta classes etc., 
but also for non-derived instantiation, specialization and attribution links. For 
example, any explicit attribute is also an object and can have attributes itself. 

To make this very general object concept possible, the basic object is a proposition 
P(o,x,l,y) in a kind of semantic network link labeled l with o is an object 
identifier (oid), x as the source oid and y as a target oid. Such a proposition has the 
dual role as a fact in the sense of deductive databases, and as an identifiable object in 
an object-oriented database, thus forming the elementary bridge within the deductive 
object-oriented approach of ConceptBase. It also allows ConceptBase to offer a 
textual syntax as well as an equivalent graphical syntax to the user. Both of them hide 
the object identifiers to the user and only work with the labels. 

Note that this approach can be seen as a precursor to the very similar triple storage 
approach for XML or RDF [27], except that those do not work with object identifiers 
and thus offer a bit less flexibility. Among other things, this similarity implies that 
many of the storage and query optimization techniques developed for ConceptBase 
over the years can be evaluated for their applicability to semi-structured databases. 

As special subkinds of propositions, Telos supports instantiation (instances, 
classes, meta classes, meta meta classes, etc.), specialization, and attribution. In the 
graphical syntax supported by the ConceptBase graph editor, these three kinds of 
links are typically indicated by graphical symbols, as shown, for example, in fig. 1. 
As shown in sec. 2.2, the user can extend the collection of such subkinds by meta-
objects which are given semantics through meta-formulas.  

Deductive rules and integrity constraints can be defined for objects at any 
abstraction level.  In the textual syntax of deduction rules and constraints (see sec. 2.2 
for examples), standard labels are used in literals for instantiation (x in C) and 
specialization (C1 isA C2) whereas, due to the greater variability of attribution link 
types, we offer the form (x m/l y) where x is the label of the source object, y is the 
label of the target object, l is the label of the link itself, and m is the label of the class 
of links to which the link belongs (also called the attribute category). 



4 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

 
 

Fig. 1. A simple Telos knowledge base graph in five meta-levels: dashed lines indicate 
instantiation, bold lines isA, normal lines attribution; both nodes and links are objects in Telos 

 
 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  5 

The external textual syntax of Telos is a frame syntax that groups a large number 
of propositions into a coherent and more easily understandable frame. It defines, for a 
given object, its classes (multiple instantiation is possible), its generalizations (not 
allowed for instances), and its attributes grouped by  attribute categories. As a simple 
example, some of the objects in fig. 1 can be described in frame syntax as follows: 

Bill in Employee, Pilot with 
 salary 
  earns : 10000 
 colleague 
  col1 : Mary 
  col2 : Jim 
end 
 
Employee in EntityType with 
 feature 
  salary : Integer; 
  colleague : employee 
 
Manager in EntityType isA Employee end 

A collection of basic axioms comprising a number of facts, rules, and constraints 
defines the semantics of Telos used in ConceptBase. For example, the isA 
relationship between Manager and Employee means that instances of Manager 
can also have the features salary and colleague by inheritance. We refer to 
[JJM09, ch. 3] for more details. 

The example also illustrates the perhaps most distinguishing feature of Concept-
Βase which will be elaborated in more detail in the next subsection: an in principle 
infinite hierarchy of instantiation relationships allows ConceptBase as a repository 
system of design knowledge to manage a complete hierarchy of example 
objects/scenarios, their classes, their meta classes, their meta meta classes, etc. in a 
uniform framework governed by a well-defined syntax of a deductive database. 

Of course, such a uniform framework is only useful if it can be efficiently 
processed. This was achieved by the important result in Manfred Jeusfeld’s thesis [17] 
that the collection of Telos axioms for Telos enforces a deductive database which can 
be mapped to Datalog with dynamically stratified negation, and thus processed with 
high efficiency by any good Datalog engine. Indeed, while the early ConceptBase 
versions were implemented on top of Prolog systems linked to data stores, recent 
versions since 2002 rely on dedicated Datalog engines, thus leading to very 
competitive performance and to by now commercial-level stability of the whole 
system with large data sets. For readers interested in deductive databases, it should be 
pointed out that achieving the dynamic stratification was by no means easy given the 
fact that we have essentially only one single stored relation (of Propositions) in 
ConceptBase. One of the key solution ideas was to replace the generic in relationship 
for instantiation by specialized in.C relationships to class C using partial evaluation 
– the same trick we shall use in sec. 2.2 below for handling meta formulas efficiently. 



6 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

In two further doctoral theses, supported by several master theses (too many to be 
mentioned here in detail), important practice-oriented extensions of the basic syntax 
and semantics of the language were achieved. Hans Nissen demonstrated that it is 
possible with just a few additional axioms and limited implementation effort, to add a 
module concept to ConceptBase. It allows, among other things, the team development 
and delayed consistency checking of large complex models [28]. With the concept of 
Query Classes, Martin Staudt invented a very flexible view mechanism which – like 
in SQL or (long after ConceptBase) XQuery -- to ensure closure in  deductive 
repositories by making the results of queries ConceptBase objects; implementation of 
these objects nevertheless can adapt and extend all the ideas for efficient deductive 
query optimization, view maintenance, and integrity checking from the literature [34, 
35]. An interesting application was our idea of externally materialized views in which 
a query class is materialized outside control of the system itself but incrementally 
informed about necessary changes to the view. Such algorithms could, e.g., be used to 
maintain materialized views on mobile devices with uncertain linkage to their data 
sources. We shall give examples of query classes below. 

2.2 Meta-Formulas 

In this subsection, we elaborate more how we accomplished the most distinguishing 
feature of ConceptBase – its handling of multiple instantiation levels as a pre-
requisite for many model management applications in heterogeneous systems. 

A deductive rule or integrity constraint typically ranges over exactly one 
abstraction level, i.e. it is defined at a certain level (e.g. the class level) and the 
variables range over objects at the next lower level (e.g. instance level).  For example, 
a class Employee can have an attribute salary and a constraint that demands that 
the salary of an employee must be smaller than the salary of the Manager of his 
department. Another example is an integrity constraint that demands that instance of 
EntityType must have at least one attribute. Here, EntityType is a meta class 
and its instances are classes. 

Meta-level formulas are formulas that range over objects from more than one 
abstraction level. For example, the key constraint in the relational data model is a 
formula expressed at the meta class level (the concept Relation is a meta class) but is 
evaluated against the database instance (instance level). The class level (database 
schema) is referred to by variables. Meta-level formulas are particularly useful for 
meta modeling, i.e. the specification of constructs of modeling languages. 

As an illustrative example, consider a very simple process language, in which tasks 
have successor tasks. A task with more than one successor task is a 'predicate task' 
(condition). A task without successor is an end statement. A task that is not the 
successor of another task is a start statement. All other tasks are procedural tasks. 
Besides, tasks are executed by agents. We demand that there is a unique start 
statement and a unique end statement. We are interested in detecting loops. Moreover, 
we want to check whether there are agents who are executing two tasks t1 and t2, 
where t2 indirectly follows t1 but there is at least one task in between that is executed 
by another agent (execution split). 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  7 

The structural part of this simple process language is defined in the Telos frame 
syntax as follows: 

 
Task with 
  attribute 
     successor: Task 
end 
Agent with 
   attribute 
     executes: Task 
end 

 
To deal with the integrity constraints and the analysis queries, we need to be able 

to follow the successor link transitively. Since transitivity is frequently used, we 
specify it as a general construct with a meta-level formula: 

Proposition in Class with 
  attribute 
    transitive: Proposition 
  rule 
    trans_R: $ forall x,y,z,R/VAR 
                AC/Proposition!transitive C/Proposition 
                  P(AC,C,R,C) and (x in C) and (y in C)  
          and (z in C) and 
                   A(x,R,y) and A(y,R,z) ==> A(x,R,z) $ 
end 

Note that the relation R is a variable in the formula. It is the label of any attribute 
AC that is required to be transitive. In our class definition of Task, we now simply 
make the successor attribute transitive via 

Task with 
  attribute,transitive 
     successor: Task 
end 

Some subclasses of Task do not require transitivity, e.g. 

StartStatement in QueryClass isA Task with 
  constraint 
    c1: $ not exists link/Task!successor To(link,this)$ 
end 
 
PredicateTask in QueryClass isA Task with 
  constraint 
    c1: $ exists s1,s2/Task A_e(this,successor,s1) and 
          A_e(this,successor,s2) and (s1 \= s2) $ 
end 



8 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

In a similar way, we can define end statements and join statements (more than one 
direct predecessor). The predicate A_e(x,successor,y) operates on explicit 
successor facts, whereas A(x,successor,y) also operates on facts derived via 
the transitivity rule 

LoopTask in GenericQueryClass isA Task with 
  parameter 
    rep: Task  
  constraint 
    c: $  A(this,successor, rep) and  
     A(rep,successor,this) and 
         (exists s/Task A_e(rep,successor,s) and  
              A(s,successor,rep)) $ 
end 

Hence, a task like this is a loop task for the loop represented by 'rep' if rep can be 
transitively reached from 'this' and rep can be reached from itself via at least one 
intermediate task s. 

The execution split query is also exploiting the transitivity: 

AgentWithSplitResponsibility in QueryClass isA Agent 
with 
   constraint 
     c1: $ exists t1,t2,t/Task A(this,executes,t1) and  
     A(this,executes,t2) and A(t1,successor,t) and  
     A(t,successor,t2) and not A(this,executes,t) $ 
end 

Figure 2 shows a graphical representation of the analysis of an example workflow 
defined by the query classes above. The queries are displayed as ovals. The answer to 
a query is the set of instances that fulfill the membership constraint of the query class. 
This derived instantiation is denoted by dotted links. Thus, InsuranceAgent is a 
derived instance of  AgentWithSplit-Responsibility. A loop is detected as 
well featuring four loop tasks. The loop tasks checkPolicy and 
proposePayment are additionally classified as predicate tasks.  

Note that the above query class definitions are sufficient to provide this 
functionality. Just by storing them in ConceptBase you get the desired analysis 
capability. 

 
 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  9 

 
Fig. 2. Graphical analysis of a workflow model 

Meta-formulas are made for re-use. For example, we can define the concept of an 
organizational unit 

OrgUnit with 
   attribute, transitive, asymmetric  
     subunit: OrgUnit 
end 

where asymmetry is defined as follows: 

Proposition in Class with 
  attribute 
    asymmetric: Proposition 
  constraint 
    asym_IC: $ forall AC/Proposition!asymmetric  
        C/Proposition x,y,R/VAR 
              P(AC,C,R,C) and (x in C) and (y in C) and 
                     A(x,R,y)  ==> not A(y,R,x) $ 
end 



10 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

ConceptBase comes with a library of pre-defined meta formulas (multivalued 
attributes, transitivity, symmetry, etc.) that can be extended and modified, as meta 
formulas are objects in ConceptBase that can be inserted to and deleted at any time. 
Other researchers have used this to investigate proposals for new basic abstraction 
mechanisms in information systems engineering such as materialization [4]. 

2.3 Active Rules 

Active rules (also called event-condition-action or ECA rules) are triggered by an 
event (e.g. an update), check a condition, and then execute the action part for all 
variable instantiations of the condition part. They can be used for multiple purposes, 
e.g. to set initial attribute values whenever an object is created for the first time, or to 
call an external program upon certain database updates. ConceptBase has a full 
implementation of active rules. We demonstrate here that it allows to define the 
execution semantics of Petri nets. Petri nets have places and transitions connected by 
directed links. Places have a positive number of tokens. A transition is enabled if all 
input places have at least one token. Firing a transition means to remove tokens from 
the input places of a transition and to add them to all output places of the transition. 
The structural part of the Petri net language is expressed in ConceptBase as follows: 

Place with 
  attribute 
    sendsToken: Transition 
  single 
    tokenFill: Integer  
end 
Transition with  
  attribute 
     producesToken : Place 
end 

The tokenFill attribute is used to define the state of the Petri net. For 
convenience, we define a function to return the token number of a given place. The 
function is then used to define the concept of an enabled transition 

TokenNr in Function isA Integer with 
  parameter 
   place: Place 
  constraint 
    c1: $ (place tokenFill this) $ 
end 
EnabledTransition in QueryClass isA Transition with 
  constraint 
    c1: $ forall pl/Place (pl sendsToken this)  
                 ==> (TokenNr(pl) > 0)  $ 
end 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  11 

A single ECA rule is sufficient to model the execution semantics of Petri nets. We 
omit here the obvious definitions of auxiliary concepts such as Connected-Place 
and NetEffectOfTransition: 

ECArule UpdateConnectedPlaces with 
  mode m: Deferred 
  ecarule 
        er: $fire/FireTransition tr/Transition pl/Place  
                n,n1/Integer 
        ON Tell (fire transition tr)  
        IF (tr in EnabledTransition) and 
         (pl in ConnectedPlace[tr]) and 
         (n1 =     
 TokenFill(pl)+NetEffectOfTransition(pl,tr)) 
        DO Retell (pl tokenFill n1)$ 
End 

Figure 4 shows a Petri net visualized in the ConceptBase graph editor. The graph 
editor has been configured to display enabled transitions with a green color. Places 
with a token are visualized by circles with a corresponding number of black dots. 

 

Fig. 3. . Graphical display of a Petri net with ConceptBase 



12 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

2.4 Function Definitions 

The Petri net example illustrates the definition of a simple function TokenNr. 
Functions in ConceptBase are queries that return at most one result per input. As 
ConceptBase fully supports recursive Datalog, we can reuse this capability to support 
the recursive definition of certain simple functions. For example, the Fibonacci 
numbers can be computed by 

fib in Function isA Integer with 
  required,parameter 
    n: Integer 
  constraint 
    cfib: $ (n=0) and (this=0) or 
            (n=1) and (this=1) or 
            (n>1) and (this=fib(n-1)+fib(n-2)) $ 
end 

The definition employs double recursion. A naive evaluation would require 
exponential time to compute the result. As the second call can reuse the result of the 
first call, an optimized algorithm requires only linear time. Due to the bottom-up 
evaluation strategy of Datalog, ConceptBase requires only linear time, i.e. realizes the 
optimal algorithm with its Datalog engine. 

A second example is the computation of the length of the shortest path between 
two nodes in a graph. This function is useful for a whole family of model metrics. In 
ConceptBase, this can be defined by a combination of a function and a query 
definition that call each other recursively: 

sp in Function isA Integer with 
  parameter x: Node; y: Node 
  constraint 
    csp: $ (x=y) and (this=0) or 
           (x nexttrans y) and (x <> y) and 
           (this = MIN(spSet[x,y])+1) $ 
End 
 
spSet in GenericQueryClass isA Integer with 
  parameter x: Node; y: Node 
  constraint 
   csps: $ exists x1/Node (x next x1) and 
                          (this=sp(x1,y)) $ 
End 

So, the length of the shortest path between x,y is 0 iff x=y. Otherwise, it is the 
minimum of the length of all shortest path starting from a successor of x plus 1. The 
function sp can be used to define the concept of a node being on a shortest path 
between two given nodes. In Figure 3, nodes on a shortest path (except the start and 
end node) are displayed in yellow. 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  13 

 
Fig. 4. Graphical representation of nodes on a shortest path 

3 Application Experiences and Impact 

ConceptBase has been used in a wide variety of application domains where meta 
modeling and metadata repository management in heterogeneous environments play a 
role. In most cases, individuals and organizations used ConceptBase to investigate or 
teach certain concepts, or to prototype ideas from which then code was derived – in a 
few cases even automatically generated – for commercial systems. Below, we 
summarize experiences in three broad application areas, namely IS engineering 
environments, requirements analysis, and the more recent multimedia community 
management. Detailed descriptions of several applications can be found in [18]. 

3.1 Repository Management of Heterogeneous Engineering Environments 

The original motivation  for the development of ConceptBase was the integrated 
management of requirements [8], Taxis database design specifications [25], and 
database programs in the European DAIDA project [15]. In a precursor of today’s 
model-driven approaches, semi-automatic tools for the mapping from requirements to 
designs, and for the code generation from design specs were developed. An important 
goal was to make this process incremental such that small requirements changes 
would not lead to a complete repetition of the whole process. This required a meta 
meta model in which the design objects in the different formalisms, the human design 
decisions taken in the semi-automatic process, and the tool applications for automated 



14 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

parts of the process could be documented in a homogeneous manner. This meta meta 
model was defined and tested in early versions of ConceptBase. In an operational 
mode, this meta meta model then served as the basis for a query facility by which 
design tools could store retrieve repository objects under this schema, and by which 
implications of design changes could be roughly analysed. Constraints were used to 
prevent tools from inserting inconsistent or incomplete design objects, or to warn 
against non process-conformant decisions. 

Especially the issue of traceability among design decisions spawned a major 
research initiative in this field which we conducted jointly with researchers in New 
York and later Monterey and Atlanta, in what was perhaps the worldwide first 
Internet-based knowledge base management system operating across the Atlantic. In 
large-scale empirical studies in the US, reference models for different degrees of 
maturity in traceability were developed using ConceptBase [33], and served as 
blueprints for the models underlying market-leading traceability tools by Anderson 
Consulting (now Accenture) and Texas Instrument. Other groups e.g. at the TU 
Munich used ConceptBase to model the structures of commercial software 
development environments such as HP’s FUSION environment. In our cooperations 
with engineering groups at RWTH Aachen University, similar repository meta meta 
models were developed for engineering environments in industrial quality 
management and in chemical engineering design.  

In the European DWQ project on Foundations of Data Warehouse Quality, 
ConceptBase was employed as an active metadata repository linking models of 
sources, integrators, data warehouses, and client data perspectives. The repository was 
used as a semi-shallow documentation mechanism for the inputs and results of 
description logic reasoners [23, 14], and as a basis for generating code from the 
metamodel relationships using both local-as-view and global-as-view algorithms [9, 
22, 32]. 

Since 2001. this early work also fed into research on model management 
conducted at Microsoft Research [1, 2] and influenced our own recent projects on 
generic metamodels for model management in heterogeneous environments [21, 22]. 
Such a more active role of the metadata repository was pioneered in a project for a 
large European software vendor in the mid-1990s where we were able to show that, 
using a notation-oriented meta meta model and related meta-formulas, the reverse 
engineering of complex relational databases into entity-relationship models, could be 
automatically supported to a large percentage with surprisingly little effort [19]. The 
same turned out to be true for the reverse code analysis of a significant part of one of 
the world’s largest switching systems, Ericsson’s AXE system. 

3.2 Multi-perspective requirements engineering 

Requirements elicitation and management (RE) is well known to be one of the most 
important and difficult tasks in information systems engineering. An early external 
example of ConceptBase usage in this field was a requirements analysis tool for 
Telecommunication Services (RATS) developed as a prototype at British Telecom 
[5]. Their meta model was quite elaborate, including aspects such as non-functional 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  15 

quality goals, use cases, and multiple domain models, all coming along with version 
histories. ConceptBase rules and constraints were used to give some guidance to the 
development process. 

In our own work, we pursued a slightly different line of work. Practice experiences 
showed that one of the best ways to elicit requirements in complex systems is their 
capture from many different perspectives – different notations as well as different 
user task perspectives. Capture is interleaved with inconsistency analyses among 
these perspectives to spawn debate, thus clarifying mutual misunderstandings and 
bringing to light hidden assumptions and requirements. This approach which became 
popular as Viewpoint Analysis in the late 1990’s [6, 30], is of course a perfect 
application example for ConceptBase. Together with the German software and 
consulting firm USU, we developed a process analysis meta meta model focusing on 
task interrelationships and media breaks, which was applied successfully in numerous 
business and software requirements analyses [29]. This application was also the 
motivation for adding modules to ConceptBase [28]. 

In the last years, multi-perspective modeling has been extended to the analysis of 
inter-organizational networks and even of Internet communities, with particular 
emphasis on rich models of trust evolution in such networks [7]. 

 

 
Fig. 5. Modeling perspectives on multimedia community metadata management 

 



16 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

3.3 Multimedia Information Engineering 

Since the late 1990’s, the KBS Hyperbook project at TU Hannover [17, ch. 5] 
pioneered the idea to use the metadata management facilities of ConceptBase for the 
structuring of eLearning environments. These experiments also formed a starting 
point for research in the well-known peer-to-peer learning environment Edutella [27]. 

In interdisciplinary cooperation with various kinds of media scientists, we have 
extended such approaches to various approaches to the analysis and support of 
multimedia communities of practice on the Internet in numerous fields of education 
and research, ranging from Judaic studies to movie sciences to general contributions 
to cultural reconstruction in former war areas, to multimedia metadata standards such 
as MPEG-7/21. Goal is supporting the interaction of communities across different 
types of media and under different negotiated cooperation regimes; social network 
analyses are augmented by aspects of media usage and by requirements engineering 
strategies. Fig. 5 illustrates the number of different perspectives to be considered in 
such environments [3]. The closeness of many ConceptBase features to recent XML 
and RDF extensions keeps this work rather directly relevant even for people who are 
not using the system itself. 

4 Summary and Outlook 

With its distinguishing feature of powerful multi-level metamodel handling under the 
well understood and efficiently implemented Datalog semantics, ConceptBase has 
successfully preserved a niche from which some impact could be achieved in many 
application domains. We feel that the potential of meta-formula management for 
multi-language, multi-domain or multi-perspective engineering has still not yet been 
fully utilized. Ongoing work at Tilburg University shows that traceability can be 
defined as an extremely versatile ConceptBase attribute category which can then be 
used to automatically generate inconsistency management analyses across notations, 
ontologies, or tasks, thus automatically generating a surprising number of traceability 
tasks in engineering projects. 

5 References 

1. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex 
models. ACM SIGMOD Record, 29(4):55–63, 2000. 

2. Bernstein, P.A.,. Melnik, S.: Model management 2.0: Manipulating richer mappings. ACM 
SIGMOD Intl. Conf. on Management of Data, pp. 1–12, Beijing, China, 2007. 

3. Cao, Y., Klamma, R., Jarke, M.: Mobile multimedia metadata management for Virtual 
Campfire – The German Excellence Cluster UMIC. Submitted for publication, 2009. 

4. Dahchour, M.: Formalizing materialization using a metaclass approach. In: CAiSE 98, Pisa, 
Springer LNCS 1413, 1998. 



Metamodelling with Datalog and Classes:       ConceptBase at the Age of 21  17 

5. Eberlein, A., Halsall, F.: Telecommunication service development: a design methodology 
and its intelligent support. Engineering Applications of Artificial Intelligence 10, 6:647-663, 
1997. 

6. Feather, M.S., Fickas, S.: Coping with requirements freedoms, Intl. Workshop on the 
Development of Intelligent Information Systems, pp. 42-46, Niagara-on-the-Lake, Ontario, 
Canada, 1991. 

7. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements engineering for 
organization networks: a (dis-)trust-based approach. Requirements Eng. J. 8, 1: 4-22, 2003. 

8. Greenspan, S., Borgida, A, Mylopoulos, J.: A requirements modelling language and its 
logic. Information Systems 11, 1: 9-23, 1986. 

9. Halevy, A.Y.: Answering queries using views: a survey. VLDB Journal 10, 4:270–294, 
2001. 

10. Hernandez, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema 
mapping. ACM SIGMOD Conf., p. 607, Santa Barbara, CA, 2001. 

11. ISO/IEC International Standard, Information Resource Dictionary System (IRDS) – 
Framework, ISO/IEC 10027, 1990. 

12. Jarke, M., Eherer, S., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase – a 
deductive object base for meta data management. J. Intelligent Information Systems 4, 2: 
167-192, 1995. 

13. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and quality in data 
warehouses: an extended repository approach. Information Systems 24, 3: 229-253, 1999. 

14. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. 
Springer, 2nd edn. 2003. 

15. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: DAIDA – an environment for 
evolving information systems. ACM Trans. Information Systems 10, 1: 1-50, 1992. 

16. Jarke, M., Rose, T: Managing knowledge about information systems evolution. ACM 
SIGMOD Conf., Chicago, IL, 303-311, 1988. 

17. Jeusfeld, M.A.: Update Control in Deductive Object Bases, PhD Thesis, University of 
Passau (in German), 1992. 

18. Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds.): Meta Modeling for Method Engineering. 
MIT Press, 2009 (in press) 

19. Jeusfeld, M.A., Johnen, U.: An executable meta model for re-engineering of database 
schemas. Intl. J. Cooperative Information Systems 4, 2-3: 237-258, 1995. 

20. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ -- a fully configurable multi-user and multi-
tool CASE and CAME environment. Proc. CAISE 96, (Heraklion, Greece), pp. 1-21, 
Springer LNCS 1080, 1996. 

21. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe – a generic role based meta model 
for model management. J. Data Semantics VIII: 82-117, 2007. 

22. Kensche, D., Quix, C., Li, X. Li, Y., Jarke, M.: Generic schema mappings for composition 
and query answering. Data & Knowledge Eng. 68, 7:599-621, 2009. 

23. Lenzerini, M.: Data integration: a theoretical perspective. 21st ACM Symp. Principles of 
Database Systems (PODS), pp. 233-246, Madison, Wisconsin, 2002. 

24. Melnik, S., Rahm, E., Bernstein, P.A.:. Rondo: a programming platform for generic model 
management. ACM SIGMOD Intl. Conf. Management of Data, pp. 193–204. San Diego, 
CA, 2003. 



18 Matthias Jarke, Manfred A. Jeusfeld, H.W. Nissen, C. Quix, M. Staudt 

25. Mylopoulos, J., Bernstein, P.A., Wong, H.K.T.: A language facility for designing interactive 
database-intensive applications. ACM Trans. Database Syst. 5, 2: 185-207, 1980. 

26. Mylopoulos, J., Borgida, A.,. Jarke, M., Koubarakis. M.: Telos -- representing knowledge 
about information systems, ACM Transactions on Information Systems 8, 4: 325-362, 1990. 

27. Nejdl, W. et al.: Edutella – a networking infrastructure based on RDF. In: Proc. 11th WWW 
Conf, Honululu, Hw, pp. 604-615, 2002. 

28. Nissen, H.W., Jarke, M.: Repository support for multi-perspective requirements engineering. 
Information Systems 24, 2: 131-158, 1999. 

29. Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G.V., Huber, H.: Managing multiple 
requirements perspectives with metamodels. IEEE Software 13, 2: 37-48, 1996. 

30. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the relationships 
between multiple views in requirements specifications, IEEE Trans. Software Eng. 20, 10: 
760-773, 1994. 

31. Object Management Group: Meta Object Facility /MOF) core specification version 2.0. 
OMG 2006. 

32. Quix, C.: Metadata Management for Quality-Oriented Information Logistics in Data 
Warehouse Systems (in German). Ph.D. Thesis, RWTH Aachen University, Germany, 2003. 

33. Ramesh, B., Jarke, M.: Reference models for requirements traceability. IEEE Trans. 
Software Eng. 27, 1: 58-93, 2001. 

34. Staudt, M., Jarke, M.: Incremental maintenance of externally materialized views. Proc. 
VLDB 1996, Mumbai, India, 75, 86, 1996. 

35. Staudt, M., Jarke, M.: View management support in advanced knowledge base servers. J. 
Intelligent Information Systems 15, 3 (2000): 253-285. 


