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Abstract. Meta modeling is a well-established technique to describe the 
structure modeling languages. Method engineering environments utilize the 
technique to provide a flexible environment for defining and adapting 
modeling environments. We show that basing meta modeling strictly on first-
order logic provides not only clean semantics but also the ability to define 
high-level constructs such as transitivity at the meta model, or even meta meta 
model level and to efficiently map the constructs to lower levels by partial 
evaluation. We show that it applies both to universally and existentially 
quantified expressions. Examples are included to demonstrate the usefulness. 
A full implementation is available in the ConceptBase meta modeling 
environment. 

1 Introduction 

A model is a structured representation of statements about some world, be it real 
or imagined. A meta model is a model about models, i.e. it contains some statements 
about some set of models, in particular models that conform to the same modeling 
language.  

Typically, meta models are denoted in a style similar to models. Graphical 
notations are dominant providing rather few features to encode the desired meaning 
of constructs in the meta model. In this paper, we are concerned about extending the 
usefulness of meta models by enriching them with first -order logical expressions. 
Such expressions can both be used for defining some syntax rules and for defining 
the logic-based semantics of the use of the constructs in models conforming to the 
meta models.  

This paper shall first recap the use of models and meta models as inspired by the 
model-driven architecture. The analogy of instantiation to variable substitution 
allows for a simple partial evaluation technique borrowed from deductive databases 
that translates high-level logical expressions, i.e. expressions ranging over objects at 
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more than two meta modeling layers, to lower-level expressions down to simple 
expressions that relate just two meta modeling layers. 

We demonstrate some generic examples to show its applicability to various meta 
modeling scenarios, e.g. the definition of required attributes and transitivity of 
attributes, which can be used to specify the semantics of the PartOf concept as well 
as the IsA concept. Throughout the paper, we assume Herbrand interpretations of the 
logical formulas. Even more, we restrict ourselves to those first order formulas that 
can be translated to Datalog with negation, i.e. to logical theories that have a unique 
minimal Herbrand interpretation. The technique has been implemented in the 
ConceptBase system (Jarke et al., 1995). 

We claim that the incorporation of a sound meta modeling component is essential 
for method engineering, in particular in cases where dedicated modeling languages 
have to be constructed.   

2 Meta Modeling Layers 
 
The OMG meta object facility MOF [OMG 2006] organizes expressions in 

models with respect to their abstraction level. The lowest level M0 contains 
expressions that are such concrete that they do not have examples. They are 
representations of examples or example objects. The next level M1 contains 
expressions that classify or constrain the expressions at the M0 level. Expressions at 
the M1 level are also called classes. The M2 level organizes the classes of the M1 
level into so-called meta classes. Meta classes are used to make statements about 
classes and we associate the term meta model to this level. Finally, the M3 level 
classifies meta classes into meta meta classes (or meta models). From a formal 
language point of view, the M2 level contains definitions of modeling languages, and 
the M3 level contains facilities to define modeling languages. The layer hierarchy 
can in principle continue to M4, M5 etc. but these levels are rarely used in the 
literature. Apparently four abstraction levels are regarded as sufficient by most 
authors. 
 

Figure 1 motivates the 
four MOF layers. The 
triangular display symbolizes 
the expectation that the 
number of concepts 
decreases with the layer 
index. Intuitively, an M1 
model (e.g. an entity-
relationship diagram) has 
less elements than a M0 
object model that conforms 
to it (e.g. the tuples of a 
database). This numerical 
relation continues with the 
other layers. Since each layer 
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Figure 1: An interpretation of the MOF abstraction levels
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constrains the subsequent layer, the scope of an expression increases with the layer at 
which it is defined. For example, if we define the meaning of ERD cardinality 
constraints at the M2 layer, then it will range in principal over all databases that are 
conforming to some ERD model at the M1 layer. 

Our goal is to allow for the efficient management of logical expressions at any 
MOF abstraction layer. The higher the degree of abstraction, the higher will be the 
degree of reuse of the expression and ultimately the more efficient will be the design 
of new modeling languages. 

3 Models and Logic 
 
The higher a concept is located in the MOF abstraction layers, the more abstract 

is also its meaning. For reasons of simplicity, we will interpret all objects at any 
abstraction level by itself, i.e. we assume a Herbrand interpretation where each 
object as shown in figure 1 is a constant being its own interpretation. 

Rather than defining a predicate c(x) to denote that object x is an instance of 
concept c, we introduce a binary predicate In(x,c) . In figure 1, the instantiations are 
displayed in green color. They correspond to the following facts being a possible 
Herbrand interpretation of the predicate In: 

{In(anne,Employee), 
In(mary,Employee), In(1000,Integer), 
In(Employee,EntityType), 
In(Integer,Domain), In(EntityType,Concept),...} 
 
We introduce two further predicates Isa(c,d) for declaring c as specialization of d, 

and AL(x,m,n,y) for declaring an attribution link (x has an attribute labelled n to y 
and this attribute has the category m). Applied to the example of figure 1, we would 
get the following Herbrand interpretation of these two predicates 

{Isa(Employee,Person), 
AL(bill,salary,sal1,1000), 
AL(Employee,e_attr,salary,Integer), 
AL(EntityType,attribute,e_attr,Domain)} 

 
The three predicates are capable to represent concepts at any abstraction layer 

and are the basis for defining the meaning of abstract features such as inheritance, 
transitivity of partOf, cardinality constraints, and so forth.  

To represent the meaning of concepts, we need to refer to attributes as being 
concepts. This is also called reification. If x is concept and n is the label of some 
attribute of x, then x!n is the constant denoting the attribute as a concept. In our 
running example, we have the attribute concepts bill!sal1, 
Employee!salary, EntityType!ent_attr. Like any other concept, 
attribute concepts can occur in the In, Isa, and AL predicates.  For example 
In(bill!sal1,Employee!salary) states that the sal1 attribute of bill is an 
instance of the salary attribute of Employee. If o is an attribute, then the predicate 
P(o,x,l,y) returns the source x, the label l and the destination y of the attribute o. The 
following examples are true: 
P(Employee!salary,Employee,salary,Integer) 
P(bill!sal1,bill,sal1,1000) 
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Let us recall some implications of basing the semantics on Herbrand models. We 
demand that any model is finite we also have a finite number of constants. This is an 
important restriction. While finiteness for M1, M2 and M3 models is intuitive, the 
M0 layer might be regarded as infinite, e.g. containing all possible database states. 
For our purpose however, we strictly demand finiteness. It implies that any Herbrand 
interpretation of the three base predicates is also finite.  

First order logic can be used to provide additional information about the concepts 
in a model. They are statements over the three base predicates. For example, we can 
express that each employee must have a salary: 

 
[Formula 1] ∀ e In(e,Employee) ⇒ ∃ s,n In(s,Integer) ∧ 
AL(e,salary,n,s) 

 
At the M2 level, we can demand that any entity type has at least one entity 

attribute: 
 

[Formula 2] ∀ et In(et,EntityType) ⇒ ∃ t,n In(t,Domain) ∧ 
AL(et,e_attr,n,t) 

 
The first formula contains constants from the M1 level and the variables are 

substitutable by constants from the M0 layer. The second formula contains constants 
from the M2 layer and the variable range over constants from the M1 layer. We call 
such formulas type 1 formulas since they relate two neighbouring abstractions layers. 
Apparently, both formulas have the same structure. Instead of copying the same 
formula code, we aim for a facility were we only code a meta formula once and re-
use it wherever required. There more of such formulas are defined, the richer is the 
meta modeling environment since the meaning of modeling constructs can be 
recombined from the meta formulas. 

 
Definition 1: A variable occurrence x1 in a predicate P is called a meta variable iff  
P=In(x,x1), or  P=AL(x,x1,n,y). A meta formula is a first order formula with at least 
one meta variable. 
 

There are plenty of examples for meta formulas. We use the following example 
for discussing the method (meta variables are c,d and m): 

 
[Formula 3] ∀ x,a,c,m,d In(a,required) ∧ P(a,c,m,d) ∧ In(x,c) ⇒ ∃ y,n 
In(y,d) ∧ AL(x,m,n,y) 
 

4 Partial Evaluation of Meta Formulas 
 
A meta formula has no peculiar property except that it has constants and 

variables ranging over more than 2 abstraction layers. To understand this, we show 
how a meta formula can be compiled to a type 1 formula by means of partial 
evaluation.  There are a few reasons why partial evaluation is useful for meta 
modeling: 
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1. By translating a meta formula to a type 1 formula, one can understand its 
meaning in terms of the context in which it is used.  For example, the 
formulas 1 and 2 are partially evaluated from formula 3. They are more 
understandable than formula 3 because they use constants from the 
appropriate abstraction layer. 

2. The partially evaluated formulas have less variables than the corresponding 
meta formula. Since the computational complexity grows exponentially in the 
number of variables, the partially evaluated formulas are more efficient to 
evaluate. 

3. View maintenance on the basis of meta formulas is virtually intractable since 
the predicate occurrences In(x,c) will match facts of any model base update. 
An important example of view maintenance is integrity checking. 

 
The last reason is the most relevant one: if we want to efficiently check the 

integrity of a set of models in an incremental way, then we have to restrict to type 1 
formulas. 

 
Our partial evaluation technique is inspired by the ’simplification’ method for 

deductive integrity checking. The simplification method generates from an update 
and a formula that matches some facts in the update a new formula. The matching 
binds variables to constants. In our case, the new formula is not just evaluated 
against the database but it becomes part of the logical theory that represents our 
model base. Assume that MF is a meta formula and C is the list of some meta 
variables in MF. 

 
Step 1: Rearrange MF into one of the two possible normalized forms (called 
input formula subsequently) 
   ∀ C E(C) ⇒ F(C) 
   ∃ C E(C) ∧ F(C) 
where E(C) is a predicate and F(C) is the rest of the formula. It is allowed to 
define auxiliary deductive rules for E(C) in order to match one of the two forms.  
 
The normalized forms are ensuring that the meta variables in C are restricted to 

those values V for which E(V) is in the interpretation of the E-predicate. The 
syntactic form is now as ’range-restricted’ or ’domain-independent’ in deductive 
database literature (Nicolas, 1979; Bry, 1989). To continue the example, step 1 
rearranges formula 3 to 

 
[Formula 4] ∃ c,d E1(c,d) ⇒ (∀ x In(x,c) ⇒ ∃ y,n In(y,d) ∧ 
AL(x,m,n,y)) 

 

with the auxiliary deductive rule 
 

∀ a,c,m,d In(a,required) ∧ P(a,c,m,d) ⇒ E1(c,d,m) 

 
In the next step, we compute the interpretation of the E-predicate (also called the 

extension). The goal is to replace the E-predicate by its extension. 
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Step 2: Compute the Herbrand interpretation for the E-predicate, say 
IE={E(V1),E(V2),..,E(VK)} and replace the predicate E(C) in the normalized meta 
formula by the disjunction  ((C=V1) ∨ (C=V2) ∨ ... ∨  (C=VK)). 

 
The Herbrand interpretation shall be finite because the base predicates are finite. 

If C has more than one variable, then C=V is a the pairwise equality of variables in C 
with values in V, i.e. ( (c1=v1) ∧ (c2=v2) ∧ ...). 

 
Example: Assume that In(EntityType!e_attr,required) is true. 

Then, E1(EntityType,Domain,e_attr) becomes derivable via the auxiliary 
deductive rule. As a consequence, the partially evaluated formula is: 

 
[Formula 5] ∀ c,d ((c=EntityType ∧ (d=Domain) ∧ (m=e_attr) ⇒ ∀ x 
(In(x,c) ⇒ ∃ y,n In(y,d) ∧ AL(x,m,n,y)) 

 

If the meta formula is universally quantified, then each entry (C=V) in the value 
disjunction leads to a substituted subformula F(C)[V/C], i.e. the formula F(C) where 
all occurences of variables of C are replaces by the corresponding values of V.  

 
Lemma 1: If the input formula is a universally quantified meta formula, then the 
conjunction F(C)[V1/C] ∧ F(C)[V2/C] ∧ ... ∧ F(C)[VK/C] of all such substituted 
subformulas is equivalent to it. 

 
Proof: The follows directly from the fact that ∀ x (x=v) ⇒ F(x) is equivalent to 

F(v) and the finiteness assumption. 
 
Example: Let IE1={E1(EntityType, Domain,e_attr), 

E1(Employee, Integer,salary)}. By lemma 1, formula 4 is equivalent to 
the conjunction 

 
[Formula 6] 
∀ x In(x,EntityType) ⇒ ∃ y,n In(y,Domain) ∧ AL(x,e_attr,n,y)) 
∧ 
∀ x In(x,Employee) ⇒ ∃ y,n In(y,Integer) ∧ AL(x,salary,n,y)) 

 
Except variable naming, these two formulas are exactly formulas 1 and 2 of our 

initial example!  
 

Lemma 2: If the input formula is an existentially quantified meta formula, then the 
disjunction F(C)[V1/C] ∨ F(C)[V2/C] ∨ ... ∨ F(C)[VK/C] of all such substituted subformulas 
is equivalent to it. 

 
The proof is analogous to lemma 1. Not any meta formulas can be partially 

evaluated. Some meta formulas can simply not transformed into the normalized form 
of step 1. An example is 

∃ c ∀ x In(x,c) 
 

Step 3: Generate the target formula as specified in Lemma 1 (universal 
quantification) and Lemma 2 (existential quantification). 
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Steps 1 to 3 constitute a term rewriting system where a meta formula MF is 

transformed to a representation with less meta variables. Note that the rewriting is 
also applicable to sub-formulas of a meta formula MF. As noted above, the term 
rewriting system is not complete, i.e. there are meta formulas that can’t be rewritten. 
If a meta formula is range-restricted, then there is always a rewriting to a formula 
without meta variables (proof pending). 

 

5 Complexity Considerations 
 
The above method has been implemented in the ConceptBase system. The crucial 

problem is the transformation in step 1, i.e. the selection of the E-predicate. In 
general, there is more than one candidate. So the question is, which candidate is the 
best one. We realized a strategy where the candidate is chosen that binds the 
maximum number of meta variables.  

A second criterion in the selection is the size of the interpretation IE of the meta 
predicate. The larger the size, the more subformulas F(C)[V/C] will be generated. 
One can easily think of scenarios where the number of generated subformulas grows 
to the size of the model base itself. In such a case, partial evaluation is intractable. 
We have to demand that the abstraction layers of figure 1 are indeed decreasing in 
size, i.e. layer 0 has many more objects than layer 1, layer 1 has many more objects 
than layer 2, etc. Since the concepts become more and more abstract, this is true in 
most meta modeling scenarios, in particular in the scenario of specifying modeling 
languages (layer 2). If one has a large number of concepts in layer 2 (e.g. an 
elaborated ontology of concepts occurring in information systems development), and 
only few concepts in layer 1 and 0, then it makes less sense to apply the technique. It 
would be analogous to run a large set of queries against a tiny database. 

Another issue is the incremental maintenance of the partially generated formulas. 
When an update to the model base changes the extension of some E-predicate, then 
step 3 has to be executed again. If the interpretation IE gets more entries 
{E(VK+1),E(VK+2,...}, then one only has to re-apply incrementally step 3 to the new 
entries. If the interpretation shrinks, then one has to remove the corresponding 
subformulas. ConceptBase attaches triggers to the E-predicate to achieve this type of 
formula maintenance. If the majority of updates to the model base include updates to 
the interpretation of E-predicates, then the partial evaluation method is rather 
expensive. Fortunately, the ’triangular’ nature of layers in figure 1 suggests that this 
is not the case in ’normal’ applications of meta modeling. 

 

6 Application to Meta Modeling Cases 
 
The benefit of meta formulas is that they encode the meaning of abstract concepts 

such as the concept of ’required’ attributes encoded in formula 3. It was possible to 
partially evaluate this formula to a conjunction of type 1 formulas by a single E-
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predicate. We call such a meta formula a type 2 formula. If the meta formula has 
predicate occurrences In(x,c),In(c,mc) where c and mc are meta variables, 
one has to apply the partial evaluation method successively until the result is a type 1 
formula. The first iteration eliminates mc as a variable, and subsequently c is 
eliminated. Such a meta formula is called a type 3 formula. If we have a predicates 
like In(x,c), In(c,mc), and In(mc,mmc) with all c, mc, mmc being meta 
variables, then we speak of a level 4 formula. A type 4 formulas has variables 
ranging over 4 different abstraction levels. 

6.1 Meta level instantiation and attribution 

 
It is useful to define some formulas that describe the relative instantiation 

between layers: 
 

[Formula 7] ∀ x,c,mc In(mc,Concept) ∧ In(c,mc) ∧ In(x,c) ⇒ In2(x,mc) 
 
 

There are two meta variables in this example: c and mmc. The E-predicate is 
In(mc,Concept) where Concept is some constant denoting the class of all concepts in 
the model base. The normalized form is 

 
[Formula 8] ∀ mc In(mc,Concept) ==> (∀ x,c In(c,mc) ∧ In(x,c) ⇒ 
In2(x,mc)) 
 
 

Let In(EntityType,Concept) be in the interpretation of the E-predicate. Then, the 
partial evaluation yields 

 
[Formula 9] ∀ x,c In(c,EntityType) ∧ In(x,c) ⇒ In2(x,EntityType)) 

 
Formula 9 happens to be again a meta formula (type 3). The meta variable is c 

and the E-predicate is In(x,c). Let In(Employee,EntityType) be in the 
interpretation. The partial evaluation will then yield 

 
[Formula 10] ∀ x In(x,Employee) ⇒ In2(x,EntityType) 

 
The derived predicate In2(x,mc) has an important contribution to meta 

modeling. It defines the relation of a concept x to its meta class mc. It can be used to 
define the meaning of being an entity or being a value: 

 
[Formulas 11] ∀ x In2(x,EntityType) ⇒ In(x,Entity) 
[Formulas 12] ∀ x In2(x,Domain) ⇒ In(x,Value) 

 
Note that the variable x ranges over concepts at the M0 abstraction layer. Thus, 

formulas 11 and 12 really separate entities from values. It is defined independently 
from the M1 level and works for any M1 model instantiated to the M2 model. One 
can now easily express a condition that an entity may never be a value and vice 
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versa. We leave this exercise to the reader. The In2 predicate can be accompanied by 
a similar predicate AL2 on attribution. 

 
[Formula 13] ∀ c,d,x,m,mm,n,y In(x,c) ∧ In(y,d) ∧ AL(c,mm,m,d) ∧ 
AL(x,m,n,y) ⇒ AL2(x,mm,m,y) 

 
Here AL(c,mm,m,d) can serve as E-predicate. For 

AL(Employee,e_attr,salary,Integer) it is partially evaluated to 
 

[Formula 14] ∀ x,m,n,y In(x,Employee) ∧ In(y,Integer) ∧ 
AL(x,salary,n,y) ⇒ AL2(x,e_attr,salary,y) 

 
With AL2, we can now define a predicate A2 as follows: 
 

[Formula 15] ∀ x,mm,y AL2(x,mm,m,y) ⇒ A2(x,mm,y) 

 
This predicate is using an attribute label from the meta class layer (e.g. M2) while 

x,y are ranging over concepts two levels below (e.g. M0). Applied to our running 
example, A2(x,e_attr,y) subsumes all attribute links between objects x and y 
from the M0 level. Again, the A2 predicate is independent from the middle layer M1. 
If we extend our running example at the M2 level by an attribute ’key’ between 
EntityType and Domain, then the predicate A2(x,key,y) precisely defines the key 
values y for a given entity x. The formula  

 
[Formula 16] ∀ x1,x2,k A2(x1,key,k) ∧ A2(x2,key,k) ⇒ (x1 = x2) 

 
axiomatizes the key property based on the A2 predicate. Figure 2 illustrates this 

application. It implies that A2(bill,key,130606) is true.  
The two predicate In2 and A2 may also be used to query the M0 level from the 

M2 level, i.e. to formulate queries to a database that are independent from the 
database schema. For 
example, one can find 
those entities that are 
identified by a key that 
occurs as normal 
attribute value (e_attr) in 
another entity.  

Analogous to In2 and 
A2, one can define In3 
and A3 predicate that 
relate concepts from the 
M3 layer and the M0 
layer. We do not provide 
their definition but state 
that it allows to express 
properties of concepts 
from the M0 layer that 
are not only independent 

from the M1 layer (e.g. database schema) but also independent from the M2 layer, 

Concept

EntityType

Employee

bill
M0

M1

M3

Domain

e_attr

Integer

empid

130606

billid

M2
key

Figure 2: Formalizing the key property
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i.e. the modeling language. For example, one can define the fact that two concepts 
are linked to each other regardless of the type of the link. 

We have applied meta formulas to provide a complete definition of the ERD 
modeling language including specialization (ISA), key attributes, and cardinalities. 
Apparently data modeling languages with their static semantics are affine to 
predicate logic with Herbrand interpretation. The same is not true for dynamic 
modeling languages like Petri nets1. While the semantics of ERDs can be explained 
in terms of the finite M0 models, dynamic modeling languages are defined on M0 
layers encoding potentially infinitely many states of the execution of the dynamic 
model.  
 

6.2 Relation properties 

 
Some constructs in meta modeling are defined by re-usable patterns. For 

example, both the IsA relation between classes and subclasses and the PartOf 
relation between classes are transitive. However, while the IsA relation is reflexive, 
the partOf relation is anti-symmetric. Meta formulas easily cope with this partial 
semantic overlap of concepts. All that one has to do is to define the appropriate meta 
formulas and then instantiate the modeling constructs to those meta formulas that are 
applicable to them. Let us first define the relation properties by adapting their 
textbook definitions to our base predicates. To do so, we introduce the A predicate in 
terms of the AL predicate. 
 
[Formula 17] ∀ x,m,n,y AL(x,m,n,y) ⇒ A(x,m,y) 
 
There is nothing special about the A predicate. It is simply a projection on AL. 
Analogous to the AL predicate, we regard a variable in A(x,m,y) to be a meta 
variable. 
 
[Formula 18: transitivity] ∀ AC,x,y,z,M,C In(AC,transitive) ∧  
P(AC,C,M,C) ∧ In(x,C) ∧ In(y,C) ∧ In(z,C) ∧ A(x,M,y) ∧ A(y,M,z) ⇒ 
A(x,M,z) 
 
[Formula 19: symmetry] 
∀ AC,x,y,M,C In(AC,symmetric) ∧ P(AC,C,M,C) ∧ In(x,C) ∧ In(y,C) ∧ 
In(z,C) ∧ A(x,M,y) ⇒ A(y,M,x) 
 
[Formula 19: antisymmetry] ∀ AC,x,y,M,C In(AC,antisymmetric) ∧  
P(AC,C,M,C) ∧ In(x,C) ∧ In(y,C) ∧ In(z,C) ∧ A(x,M,y) ∧ A(y,M,x) 
⇒(x = y) 
 
[Formula 20: reflexivity] 
∀ AC,x,M,C In(AC,reflexive) ∧ 
P(AC,C,M,C) ∧ In(x,C) ∧ In(y,C) ∧ In(z,C) ⇒ A(x,M,x) 

 
1 The ConceptBase system is capable to model the dynamic semantics of languages such as 

Petri nets by so-called active rules. They are however of a procedural nature and therefore 
beyond the scope of this paper. 
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Figure 3 shows how the meta formulas are applied to a the IsA and PartOf 
relations of classes. It is sufficient to declare 
 

{In(Class!IsA,transitive), In(Class!IsA,reflexive), 
In(Class!PartOf,transitive), 
In(Class!PartOf,antisymmetric)} 

 
for encoding the desired meaning of the two constructs. Hence, the more meta 
formulas are available, the higher are the chances of re-use for multiple cases.  
 

transitive

Class

IsA

PartOf

reflexive antisymmetric

 
Figure 1: Configuring semantics via instantiation 

 

7 Implementation 
 
The method of partially evaluating meta formulas has been fully implemented in 

ConceptBase since 2003 for universally quantified formulas. The generated formulas 
are incrementally maintained when an update to an E-predicate occurs. This works 
both for additions and deletions. The bulk of the implementation work was not the 
partial evaluator but the code that selects the best E-predicate out of multiple 
candidates.  

Except for pathological cases with large extensions of the E-predicate, there are 
no performance penalties when using meta formulas like the one on transitivity. We 
did tests with large model bases where version I defined transitivity ’by hand’ and the 
version II used the meta formula. Both versions exhibit virtually the same evaluation 
times for queries over the transitive attribute. In the table below, reponse times of 
four queries are reported. Query Q1 is computing the dead ends of a network, i.e. 
those nodes that are connected only to nodes that lead to leave nodes. Query Q2 is an 
incomplete test on cliques and Q3 computes the transitive closure. Finally, Q4 
returns the inverse of the transitive closure, i.e. nodes that are not reachable to each 
other. The size of the network is about 1400 nodes with about 5000 links. The table 
shows that there is no performance penalty to use the partially evaluated meta 
formulas. 

 
Version Q1 Q2 Q3 Q4 
I 0.084 0.812 4.31 1.417 
II 0.083 0.820 4.39 1.418 
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The universally quantified meta formulas are slightly easier to handle since they 
produce conjunctions of subformulas. Hence, each individual subformula can be 
maintained as a separate formula in the (deductive) theory. Existentially quantified 
meta formulas produce disjunctions of subformulas that must remain in one formula. 
ConceptBase currently does not support this case.  

We used the MOF layers to motivate meta models and meta meta models. The 
implementation does not require this view. In fact by abandoning the strict 
association of concepts to MOF layers, one gets a more expressive meta modeling 
framework. Consider the concept ’Concept’ in figure 1. It is located at the M3 layer 
and classifies concepts of the M2 level. ConceptBase allows objects like ’Concept’ to 
have any another concept as instance regardless at which MOF layer we prefer to 
locate it. By this, any feature defined for Concept becomes available to any defined 
concept. For example, transitivity can be applied to the PartOf relation (M2 layer), 
but also to some domain model construct like ’hasAncestor’  (M1 layer). In the first 
case, the partially evaluated formulas allow to compute the transitive closure 
between model elements (M1 layer). In the second case, they operate on the M0 
layer. So, concepts like transitivity should not be assigned to strictly one abstraction 
layer. They constitute a relation between pairs of abstraction layers: M2 to M0, M3 
to M1, M4 to M2, and so forth. Once defined, meta formulas can be used in 
ConceptBase by just making sure that the corresponding E-predicate is populated. 

 
 

8 Related Work 
 
While the partial evaluation technique itself is an adaption of the simplification 

method for deductive datab9ases (Nicolas, 1979), our contribution is to apply it to 
meta modeling. By our technique abstract constructs like transitivity can be defined 
once and forever. While the simplification method generates simplified formulas for 
any predicate occurrence, the partial evaluation method requires determining a single 
so-called E-predicate to compile a meta formula. The flat representation of the model 
base by predicates is inspired by Telos (Mylopoulos et al, 1990). In contrast to Telos, 
we have no predefined axioms to make the approach generally applicable. In 
particular the P predicate has a purely auxiliary function in our approach whereas it 
is central in the Telos axiomatization. 

There are other ways to represent models and meta models by flat facts. The 
approach by (Bezivin, 2006) uses predicate names to encode concept names. As 
pointed out in section 2, such representations are preventing a management of first-
order meta formulas.  

Meta formulas are also treated by ontology management systems, in particular 
Protégé (Protégé, 2006). Protégé has predefined expressions for transitivity, 
symmetry etc. They are however not evaluated against some database as we do.  

In linguistic semantics, so-called generalized quantifiers (Barwise and Cooper, 
1981) have been investigated to descripe higher-order predicates, in particular to 
express properties of properties. Lambda parameters expressions abstract the 
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predicate names from the logical formula. By substituting the parameters by actual 
predicate names, one yields a first order expression. For example,  

lambda.X lambda.Y (X subset Y)(Student)(Person) 
would be reduced to 

Student subset Person. 
We note that our definition of meta formulas is completely embedded into first 

order logic and does not require additional abstractions such as the lambda operator.   
The HiLog logic programming language (Chen et al, 1993) deals with properties 

of properties much in the spirit of generalized quantifiers. Properties like transitive 
closure are expressed in a higher-order syntax of logic. HiLog has a mechanism to 
encode such higher-order expressions to predicate calculus using the apply 
predicate that shifts the higher order predicate symbol like ’transitive’ to an argument 
position. The difference to our approach is that HiLog has a one-to-one encoding, i.e. 
the higher order formula is mapped to a single first order formula. In our approach, 
the meta formula (expressing the same principle of transitive closure) is mapped to 
many first order formulas, each specialized for one element of the extension of the E-
predicate. So, we stick to first-order syntax to express higher order features and we 
provide for an efficient evaluation of the meta formulas via partial evaluation. On the 
other hand, HiLog is not limited by a finiteness assumption. HiLog is a Turing-
complete programming language while our approach is defined for a deductive 
theory with finite perfect model semantics.  

9 Application to Method Engineering 
 
Partial evaluation of meta-level formulas has a somewhat theoretic flavor as it 

deals with highly abstract concepts. The most obvious application of the technique is 
for designing new modeling languages or formally defining existing modeling 
languages. The abstract concepts such as transitivity and multiplicity of relationships 
can be employed directly to define constructs like specialization and part-of in 
modeling languages. The added value of the meta-level formulas is that they only 
have to be defined once. Instantiating them leads to the automatic generation of a 
formula (either a rule or a constraint) specialized for the modeling language. In 
essence, the meta level formulas are the building blocks for the semantics of 
formally defined modeling languages. 

The modeling languages are the product side of a method to be engineered. There 
is also a production side, namely the guidelines or processes that create and 
manipulate the products. The two sides are dependent on each other leading to 
amalgamated model such as process-data diagrams (Weerd et al., 2006) or software 
process models (Jarke et al, 1990).  The amalgamated model constitutes a method 
fragment subject to be incorporated in complex methods. Such models also conform 
to some schema, i.e. there is a meta model in the sense of MOF that describes how 
the product side and the production side may be linked to each other. The link types 
themselves are elements of a modeling language, namely the language to describe 
the connection between a process and its products. This language has a meaning that 
should be reflected in the defininition of its constructs. Not surprisingly, the abstract 
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concepts like transitivity are applicable to define the desired semantics. As an 
example, we focus on the traceability of products, i.e. of models and their elements. 
Traceability is has been a hot topic in the requirements engineering community. It 
allows following the development of the products of a development process. Each 
product (and each element of a product) depends on other products (and their 
elements). This is essentially the transitivity concept. All we would need to do would 
be to define a predicate A(p1,dependsOn,p2) in the meta model of the 
amalgamated process/product diagrams and to declare that dependsOn is transitive, 
i.e. In(Product!dependsOn,transitive). 

As a second example consider the versioning of product models as described in 
(Saeki, 2006). A product model is versioned by applying change operations on it. 
Let’s assume that the version relation is represented by a predicate 
A(p1,versionedTo,p2) where p1 and p2 are product models. Then, one would 
define the versionedTo relation to be transitive and assymetric (a product model 
cannot be versioned to itself). The newest version of a given product model p can 
then be retrieved simply by querying 

A(p,versionedTo,pv) ∧ ¬ ∃ px (pv,versionedTo,px) 
 
 

10 Conclusions 
 
We presented an approach to manage first order formulas defining the meaning 

of modeling constructs at the meta and meta meta class levels. It turned out that it is 
sufficient to demand range-restrictedness in order to partially evaluate the meta 
formulas into conjunctions or disjunctions of non-meta formulas that are more 
efficient to evaluate.  

The flat representation of the model base with predicate facts is powerful enough 
to capture the MOF abstraction layers. Since instantiation is stated explicitly, our 
method is more general by allowing models that link concepts of different 
abstraction layers. To apply the partial evaluation approach, one simply has to 
encode that one concept is an instance of another concept rather than by specifying 
to which MOF layer a concept belongs. It is perfectly possible to define a meta class 
(or even a meta meta class) that has an attribute link to a concept that one would 
regard as M0 concept. For example, a meta class can have an attribute ’createdBy’ 
that links it to its creator.  This phenomenon systematically occurs when one 
superimposes a product meta model (e.g. ERD) with a process meta model, i.e. a 
specification of operations that manipulate instances of the product meta model. This 
is the common case in method engineering as it links process models (the procedural 
steps of the method) with product models (the input and output of the steps). 

The greatest benefit of our method arises when meta formulas are defined at the 
most generic layer. Then, the semantics of modeling language constructs is generated 
by instantiating them to the meta formulas. This level of re-use of meta formulas 
makes meta modeling itself a more productive activity: instead of coding formulas 
one simply declares a construct as an instance of the abstract concepts defined by the 
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meta formulas. As an additional bonus, the generated formulas are materialized and 
can be attached to the meta model describing the modeling language.  

As mentioned earlier, semantics of dynamic modeling languages are not covered 
by our technique because they require to reason about infinite extensions. We plan to 
investigate whether certain principles like state transitions can be defined as an 
abstract concept, i.e. independently from the specific modeling language, and then be 
instantiated to a specific modeling language by an analogous approach. That 
capability would further enrich the toolbox for engineering modeling languages from 
pre-fabricated building blocks. For example, languages like event-process chains 
should be definable from building blocks that can also be used to define petri nets. 

The partial evaluation technique described in this paper is fully implemented in 
the ConceptBase system and has been used in various meta modeling scenarios. 
Some details are on the web page http://conceptbase.cc. 
 

Acknowledgements: We cordially thank René Soiron for implementing a major part of 
the meta formula compiler in ConceptBase. 

 

References 
 

Barwise, J. and Cooper, R., 1981. Generalized quantifiers and natural language. Linguistics 
and Philosophy 4: 159-219. 

Bezivin, J., 2006. On the Unification Power of Models. Software and System Modeling 
(SoSym) 4(2):171--188. 

Bry, F., 1989. Logical rewritings for improving the evaluation of quantified queries. Proc. 2nd 
Intl. Symposium on Mathematical Fundamentals of Database Systems, Visegrád, 
Hungary, 1989, Springer-Verlag,  LNCS 364. 

Chen, W., Kifer, M., Warren, D.S., 1993. HiLog: A foundation for higher-order logic 
programming. Journal of Logic Programming 15(3):187-230. 

OMG, 2006. Meta Object Facility. Online http://www.omg.org/mof/, June 2006. 
Protégé, 2006. The Protégé ontology editor and knowledge acquisition system. Online 

http://protege.stanford.edu/, June 2006. 
Jarke, M., R. Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S, 1995.: ConceptBase - a 

deductive object base for meta data management. Journal of Intelligent Information 
Systems, 4, 2, 1995, pp. 167-192. 

Jarke, M., Jeusfeld, M.A., Rose, T., 1990: A software process data model for knowledge 
engineering in information systems. In Information Systems, 15, 1, 1990, pp. 85-116. 

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., 1990. Telos - a language for 
representing knowledge about information systems. In  ACM Trans. Information Systems, 
8, 4, 1990, pp. 325-362. 

Nicolas, J.-M., 1979. Logical formulas and integrity constraints: the range restricted property 
and a simplification method. Technical report T-R CERT-LBD/79-1, Toulouse, France. 

Saeki, M., 2006: Configuration management in a method engineering context. Proceedings 
CAiSE 2006, Springer-Verlag, LNCS 4001/2006, pp. 384-398. 

Weerd, I. van de, Versendaal, J., Brinkkemper, S., 2006. A product software knowledge 
infrastructure for situational scpability maturation: vision and case studies in product 
management, Technical Report UU-CS-2006-008, Utrecht University, The Netherlands. 
 


