

Classifying Interoperability Problems for a Method
Chunk Repository

Manfred A. Jeusfeld1, Per Backlund2, Jolita Ralyté3

1 Tilburg University, CRISM/Infolab, 5000 LE Tilburg, The Netherlands
Manfred.Jeusfeld@uvt.nl

2 University of Skövde, P.O. Box 408, SE 541 28 Skövde, Sweden
Per.Backlund@his.se

3 CUI, University of Geneva, Rue de Général Dufour, 24, CH-1211 Genève 4,
Switzerland
Jolita.Ralyte@cui.unige.ch

Keywords: interoperability problem classification, method chunk, method chunk
repository

1 Introduction

The Software Engineering Body of Knowledge (Swebok, 2004), notably a book
with 200 pages mentions the word interoperability just twice, once as an example
for a system requirement and the second time as the title of a standard for library
data models. This stands in contrast to the challenges of globalizing economy that
demands solutions for an exploding number of interoperability problems (Interop,
2006). So, is interoperability just a sort of user requirement that will emerge from
the system implementation if the system developers are just careful in
implementing them? We claim that this is not true because interoperability is not
just achieved by a technical implementation but by addressing interoperability
problems at all stages of the interaction between multiple partners, i.e. both in the
business domain and in the ICT domain.

As part of the INTEROP initiative (Interop, 2006), we aim at designing a
repository that stores solution descriptions for interoperability problems. In earlier
papers (Ralyté et al., 2006; (Backlund et al., 2006), we have reported on how to
describe solutions. We proposed the concept of method chunks originally
developed for situational method engineering. In this paper, we focus on how to

This is a postprint of the paper Jeusfeld, M.A., P. Backlund, and J. Ralyté (2007): Classifying Interoperability Problems for a Method Chunk Repository.
Proceedings of the 3rd International Conference Interoperability for Enterprise Software and Applications, Funchal, Portugal, March 28-30, 2007. Originally
published by Springer, DOI: 10.1007/978-1-84628-858-6_35

2 Manfred A. Jeusfeld, Per Backlund, Jolita Ralyté

represent interoperability problems as exposed by application cases, i.e. situations
in which interoperability problems occur.

The vast array of interoperability problems calls for a domain-dependent
knowledge management approach, which takes technical as well as business and
organisational matters into account. Successful solutions to interoperability
problems may then be stored in the form of method chunks as proposed in
Situational Method Engineering (Kumar and Welke; 1992). Project-specific
methods may then be created by selecting and assembling method chunks (Ralyté
and Rolland, 2001b; Mirbel and Ralyté, 2006) stored in a method repository
(Brinkkemper et al, 1998; Firesmith and Henderson-Sellers, 2001; Mirbel and
Ralyté, 2006). The knowledge base provided by the repository is useful when
dealing with problems pertaining to the interoperability domain. In particular, we
find it useful in the early stages of a project. Instead of providing one universal
method our approach aims to provide a knowledge base of reusable method
chunks, which can be composed to form a project specific method.

In the remainder, we first introduce the concept of a method chunk repository
(MCR) and a meta-case tool for situational method engineering for interoperability
(MCTI). A meta-model is developed that links method chunks to application cases
via the explicit concept of interoperability problem. This meta-model represents
the structure of the method chunk repository. Afterwards, we derive from example
cases the classifiers for interoperability problems. A problem classifier is a kind of
descriptor that relates an interoperability problem to the context in which it occurs,
e.g. the life cycle phase in which it occurred. In the last section we provide
guidelines for applying this classifier in characterising method chunks and
identifying interoperability problems in application cases.

2 Method Chunk Repository for Interoperability

The problem of enterprise interoperability is very complex. It not only concerns
software and technologies but also enterprise knowledge and business references
that must be shared. In order to achieve meaningful interoperation between
enterprises, interoperability must be achieved on all layers of an enterprise which
means that a multitude of interoperability problems and opportunities have to be
resolved and designed. We claim that it is impossible to create one universal
method supporting all possible interoperability issues. Moreover, we are convinced
that the future of Systems Engineering will not see just one approach but a
multitude of approaches depending on the type of system and the degree of reuse
of solutions. Future systems will range from global data collection, analysis and
presentation to dynamic systems for mass-customised product design. We therefore
propose to adopt the ideas of Situational Method Engineering (Kumar and Welke,
1992) which promotes the notion of reusable method component also called
method fragment (Brinkkemper et al., 1998) or method chunk (Ralyté and Rolland,
2001a, Mirbel and Ralyté, 2006) and the selection and assembly of these
components according to the situation of the project at hand (Brinkkemper et al.,
1998; Ralyté and Rolland, 2001b).

 Classifying Interoperability Problems for a Method Chunk Repository 3

In this work we propose situational method engineering as a means for
encoding situated knowledge about achieving interoperability in the form of
method chunks each of them addressing one or more specific interoperability
problems. A repository-based tool has to be defined in order to support method
chunks storage, indexation and retrieval. We call this tool the Method Chunk
Repository (MCR). The MCR becomes really useful if it is included into a
collaborative meta-case tool providing services for method chunks engineering as
well as for the selected method chunks enactment in a specific interoperability
case. In the following sub-sections we present these three notions namely method
chunk, MCR and collaborative meta-case tool for interoperability.

2.1 Method Chunk

We use the definition of a method chunk provided in (Ralyté & Rolland, 2001;
Mirbel & Ralyté, 2006) and adapted to the interoperability domain in (Ralyté et al.,
2006). This latest method chunk metamodel allows to link best practices for
achieving interoperability to specific interoperability problems. It covers best
practices from the business domain (e.g. aligning the business processes of
enterprises) as well as from the ICT domain (e.g. integrating heterogeneous
product catalogues). The main role of a method chunk is to provide guidelines to
the system engineer for realising some specific system development activity (i.e
business modelling, requirements specification, design, etc.) as well as to provide
definitions of concepts to be used in this activity. These two kinds of method
knowledge, namely method process and product parts, are captured in the method
chunk body. For example, the method chunk providing guidelines for integrating
two business process models will also define the meta-model that the integrated
business process model should correspond.

The descriptor part of a method chunk includes a set of attributes allowing to
characterise the situation in which this method chunk is meaningful. A detailed
classification of these criteria related to the information systems development in
general, named Reuse Frame, is proposed in (Mirbel & Ralyté, 2006). This
classification framework provides criteria related to the critical information
systems development aspects such as organisational (i.e. contingency factors,
project management aspects, system engineering activities), human (i.e. required
expertise, level of involvement) and application domain (i.e. application type, level
of legacy reuse, technology). But it does not explicitly include criteria specific to
the enterprise interoperability domain. In our work we extend the Reuse Frame
with our interoperability problems classifier presented in section 3 of this paper.
That allows us to relate explicitly each method chunk to one or several
interoperability problems.

 The concept of a method chunk forms a complementary approach to using
patterns as proposed in (Chen, 2005). Patterns may be stored in a method chunk
repository. One advantage of using a ME approach is that patterns will be related
to each other as well as to the type of interoperability problems they solve, which
will facilitate their use.

4 Manfred A. Jeusfeld, Per Backlund, Jolita Ralyté

2.2 Method Chunk Repository

The prerequisite for situational method engineering is a method repository
containing a large collection of method chunks. Different propositions for method
repositories are given in (Saeki et al., 1993; Van Slooten and Brinkkemper, 1993;
Plihon et al., 1998; Ralyté, 1999; Firesmith and Henderson-Sellers 2001; Mirbel
and Ralyté, 2006). All these works focus their attention on the structure,
representation and storage of method chunks but do not really consider their
evaluation and their suitability in different application cases.

In our MCR, besides method chunks, we aim to capitalise knowledge related to
the experience and best practices of method chunks application in specific
industrial cases. Therefore, as shown in Fig. 1, the MCR stores two kinds of
knowledge: the reusable method chunks and the descriptions of their application
cases including experience reports and evaluation how method chunks and method
chunk assemblies fit in these cases. The application cases should also be
characterised by using the interoperability classification framework. The
contribution of such a practical method chunks applicability evaluation is multiple.
It helps:

• To improve method chunks characterisation and to specify the situation in
which the method chunk applicable more precisely;

• To rank method chunks providing solution to the same or similar problems;
• To extract new method chunks from experience reports
• To identify the most applicable method chunk assemblies and to store them

in the MCR as new aggregate method chunks.

Interoperability
Problem

- Problem_Id
- Description

Interoperability
Problem

- Problem_Id
- Description

Method Chunk

- MCH_Id
- Name
- Objective
- …

Method Chunk

- MCH_Id
- Name
- Objective
- …

1..*

1..*- is addressed by

- addresses
Application Case

- Case_Id
- Description

Application Case

- Case_Id
- Description

1..*

1..*- features

- occurs in

Evaluation Report

- Report_Id
- Description

Evaluation Report

- Report_Id
- Description

1
1

1..*1..*

1..*

1 - concerns

- evaluated in

- evaluated in - experience

- concerns
- concerns

Fig. 1. The method chunk repository relates method chunks to their application cases via
applicability evaluation repports.

By collecting method chunks in a MCR our approach provides accessibility for
method users. This is an important feature of any knowledge repository (such as a
method chunk repository or a pattern repository). A flexible classification scheme,
such as we propose, addresses a number of issues concerning: tool support for
creating method chunks and patterns, providing reliable techniques for access,
storage, search and retrieval of knowledge as well as traceability. In particular, the
evaluation reports and application cases provide information of successful

 Classifying Interoperability Problems for a Method Chunk Repository 5

application of method chunks. Hence our approach forms a complement to the
pattern approach proposed in (Chen, 2005) which omits connections between
patterns.

2.3 Meta-case Tool for Interoperability

Situational method construction process asks for a specific software support named
Computer Aided Method Engineering Tools (CAME). According to Harmsen et
al., (1994) a CAME tool should provide support for the following method
engineering activities: determination and valuation of contingency factors, storage
of method chunks in a method base, retrieval and assembly of method chunks,
validation and verification of the obtained situational method.

While there is now consensus on the functionality that a CAME tool should
provide, considerable work has still to be done to achieve implementation meeting
this functionality. A number of meta-CAISE products and prototypes such as
Decamerone (Harmsen, 1995), MetaEdit+ (Kelly et al., 1996) and MViews
(Grundy and Vanable, 1996) and Mentor (Si-said et al., 1996) have been developed
which implements this functionality partially.

In this work we design a Meta-Case Tool for situational method engineering in
the Interoperability domain (MCTI) including required method engineering
features as well as method enactment and evaluation functionality as shown in Fig.
2 illustrating the boundary model of this tool.

MC* construction
and characterisation

Method Chunk
Engineer

Situated Method
Engineer

Method
User

Classification
Manager

Classification
construction
and evolution

MetaMeta--CASE Tool for InteroperabilityCASE Tool for Interoperability

MC* enactment
and evaluation

MC* selection,
assembly

and validation

Situational Method
Engineering Services

Situated Method
Application Services

* MC: Method Chunk, ** MCR: Method Chunk Repository

MCR**

Method Chunks

Application Cases

Interoperability
Problem
Classifier

Interoperability
Problem
Classifier

DataData

MC* construction
and characterisation

Method Chunk
Engineer

Method Chunk
Engineer

Situated Method
Engineer

Situated Method
Engineer

Method
User

Method
User

Classification
Manager

Classification
Manager

Classification
construction
and evolution

MetaMeta--CASE Tool for InteroperabilityCASE Tool for Interoperability

MC* enactment
and evaluation

MC* selection,
assembly

and validation

Situational Method
Engineering Services

Situated Method
Application Services

* MC: Method Chunk, ** MCR: Method Chunk Repository

MCR**

Method Chunks

Application Cases

MCR**

Method Chunks

Application Cases

Interoperability
Problem
Classifier

Interoperability
Problem
Classifier

DataData

Fig. 2. Boundary model of the Meta-CASE Tool for Interoperability (MCTI)

As show in Fig. 2, we identify four main actors of the MCTI named method
chunk engineer, situated method engineer, classification manager and method user.
The first three actors use the MCTI for method engineering purpose while the last
one is an application engineer which applies the method created for a particular
application case. Table 1 summarises the goals of each actor.

6 Manfred A. Jeusfeld, Per Backlund, Jolita Ralyté

Table 1. MCTI actors and their goals

Actor Goal
Method chunk
engineer

The goal of the method chunk engineer is to capture knowledge to specific
interoperability problems as reusable method chunks that can be used in different
application cases and to characterise method chunks following the classification
scheme.

Situated method
engineer

The goal of the situated method engineer is to find a set of method chunks that can
be assembled into a coherent method that addressing a particular (interoperability)
development/analysis need in a particular application case.

Classification
manager

The goal of the classification manager is to develop and evolve interoperability
classification schemes for classifying method chunks so that they are easy to search
and navigate.

Method user The goal of the method user is to be able easily and efficiently test/analyse/apply
method chunks to specific cases, as well as describe experience of using these
method chunks in his/her specific case.

The main use cases identified in the boundary model (Fig. 2) help us to identify
services that the meta-case tool has to provide to the end-users. Besides, they also
serve as a starting point for more detailed scenario descriptions of human-computer
interaction and working environment of the end-users.

One potential way to achieve the desired functionalities is to extend
commercially available modeling tools to also cover the needs for situational
method engineering. This can be achieved by creating an extension of the tool that
enables the representation of methods and method chunks in terms of meta-models.
Several of the major modeling tools already have some form of repository support
built in and many more tools can be integrated using technologies such as e.g.
Netbeans (Netbeans, 2006).

3 Classifying Interoperability Problems

The classification framework has the purpose to associate method chunks as well
as application cases to re-occurring interoperability problems. By tagging the
method chunks with suitable instances of interoperability problems, we index the
chunks much like books and articles are indexed in a library: the indexing is
supporting the search for method chunks that address a certain interoperability
problem. In the same way, actual cases are described in terms of the
interoperability problems that are occurring in them. The challenge is to index
problems and solutions in such a way that a match between the two is made
possible.

3.1 Ontological Dimensions for Classifying Interoperability Problems

Interoperability problems are occurring in a certain situation within a project
concerned with the interaction of multiple organizations and their information
systems, hence covering both the business/organizational domain and the ICT
domain. The following questions guide the definition of the classification
framework:

 Classifying Interoperability Problems for a Method Chunk Repository 7

1. From which knowledge domain can we draw expertise to understand the
interoperability problem?

2. During which lifecycle stage does the problem occur?
3. Which types of products are involved in the observed interoperability

problem?
4. Which types of processes were active when the problem occurred?
5. Which types of human or automated producers are involved in the

problem?

The five questions are translated into five classification dimensions as follows.

Knowledge dimension. Iivari et al. (2004) propose five ontological domains (Type
KnowledgeDomain in Fig. 3), which are based on a review of the state of the art in
current IS research. These five domains cover the area of Information Systems
well. The organisational domain refers to the knowledge about social contexts and
processes in which the information system is used. The application domain refers
to the knowledge about the application domain for which the information system is
intended. The IT application domain refers to the knowledge about typical IT
applications and their use in a certain application domain. The technical domain
covers the hardware and software of an information system. In the technical and IT
application domains we find issues of data management and software management,
hence relating the IS field closely to the field of software engineering. Finally, the
development process knowledge refers to the methods and tools used in systems
development.

Lifecycle dimension. The lifecycle dimension characterises the phase in which
some situation is observed or some activity can take place. At the highest level of
granularity, we distinguish the four phases: (1) business-strategic – the phase of a
project in which strategic business decisions are made, (2) business-operational –
the phase in which business activities are executed, (3) ict-development – the phase
in which some ICT solution is developed, and (4) ict-execution – the time when
some ICT system is performing operations. This level can be further decomposed,
for example the phase ict-development.analysis is the phase in which the
specification of an ICT systems is analysed.

Product dimension. The product dimension specifies types of products that are
relevant in some observed situation or that are involved in some activity. Possible
values are: model-type – the involved products have the nature of models,
document-type, notation, and language. Like before, specializations are formed
like model-type.data-model or model-type.source-code.java-program. For
documents, we suggest to form specialisations according to the structure of the
document, e.g. document-type.contract.sla for a service-level agreement.

Process dimension. The process dimension has to be distinguished from the
lifecycle phase. It is defined as the processes that are active in some observable
situation. At the highest level, we distinguish three kinds of processes: human-
process, automated-process, and human-computer-interaction. At deeper levels,

8 Manfred A. Jeusfeld, Per Backlund, Jolita Ralyté

processes like human-process.meeting.group-modeling-session are expressed.
Another example is automated-process.data-exchange.

Producer dimension. Producers are human or automated actors hat are capable of
creating and processing some products. For the purpose of interoperability problem
classification, we distinguish role characterising the responsibilities of a human
actor (e.g. role.system-analyst), team (e.g. team.development-team), and system
(e.g. system.tool.diagram-editor or system.enterprise-system.crm-system). Note
that producers are observable at any lifecycle stage.

The last four dimensions are adapted from the Open Process Framework
(Henderson-Sellers, 2003).

3.2 Meta-model for Interoperability Problems Classification

Fig. 3 shows the addition of the problem classifier concept to the MCR meta-
model. An interoperability problem is identified and described in terms of its
symptom, for example "the systems of partner 1 and partner 2 cannot exchange
data". Each interoperability problem can have multiple problem classifiers linking
it into the business and ICT context, i.e. the universe of terms that stakeholders use
when talking about interoperations of systems. The problem classifier (Fig. 3)
provides a finer-grained scheme than the one utilized in (Chen et al., 2006).
Therefore we expect the problem classifier to be of use when assessing
interoperability problems.

Problem
Classifier

Process Type Producer Type

Product TypeLifecycle Value

Knowledge Domain
Interoperability

Problem

- Problem_Id
- Description

1

1

1..*

0..*

0..* 0..*

* *

* *

1..*

process producer

phase product

- belongs to

*domain

- classifies

Method Chunk

- MCH_Id
- Name
- Objective
- …

1..*

1..*

- is addressed by

- addresses

Application Case

- Case_Id
- Description

1..*

1..*

- features

- occurs in

Problem
Classifier

Process Type Producer Type

Product TypeLifecycle Value

Knowledge Domain
Interoperability

Problem

- Problem_Id
- Description

Interoperability
Problem

- Problem_Id
- Description

1

1

1..*

0..*

0..* 0..*

* *

* *

1..*

process producer

phase product

- belongs to

*domain

- classifies

Method Chunk

- MCH_Id
- Name
- Objective
- …

Method Chunk

- MCH_Id
- Name
- Objective
- …

1..*

1..*

- is addressed by

- addresses

Application Case

- Case_Id
- Description

Application Case

- Case_Id
- Description

1..*

1..*

- features

- occurs in

Fig. 3. Meta-model for interoperability problems classification

The problem classifiers assiciated to interoperability problems are standardised
statements about the situation in which the interoperability problem has been
observed or can be observed. The allowed tags are from a controlled ontology of
keywords for interoperability (see section 3.1). Each individual problem classifier

 Classifying Interoperability Problems for a Method Chunk Repository 9

is thus a viewpoint on the problem. The combination of all classifiers associated to
the same interoperability problem characterises the problem in a comprehensive
way. The restricted vocabulary for the five dimensions supports keyword-based
search for method chunks and application cases but goes beyond it. The user can
supply keywords from the five dimensions and the MCR shall respond by those
interoperability problems whose problem classifiers match the supplied keywords.
Since a problem classifier is a statement about an observation, it can be checked
inhowfar it is true in the context of the user.

For example, an interoperability problem may have occurred in an application
case where a cross-organisational team negotiated a contract about a cooperation
involving linking the IT systems of the organization. Then, one problem classifier
is given by the 5 values: process type=human-process.negotiation, product
type=document-type.contract, knowledge domain=organisational-domain, lifecycle
value=business-strategic, producer type=team.interorganisational-team. The users
current situation could be that there is a problem with producing a contract
between multiple partners. The match with the list of existing problems classifiers
returns all situation in which the product type is a contract and the process type is
negotiation. The user may then decide whether or not the returned problem
classifier is true in her situation as well. The fact that multiple values are combined
to a single expression is exactly the difference to simple keyword-based
approaches where any combination of keywords may be expressed regardless
whether they make sense or not. In contrast, our problem classifiers are true
statements about interoperabilty problems as experienced in application cases and
as successfully solved by method chunks.

4 Applying Interoperability Problems Classification

4.1 Characterising Method Chunks

Tagging of method chunks by interoperability problems is the responsibility of the
author of the chunk, i.e. method chunk engineer. For standard chunks such as the
reverse engineering of a conceptual data model out of a database schema, the
author can create a suitable entry in the list of interoperability problems, e.g.
‘understand legacy databases’. In many cases, a method chunk will be the
generalization of successful solution of a case problem. Then, the interoperability
problem will have been stored in the MCR as result of classifying a case.

4.2 Assessing Case Situation

A case in the context of the MCR is a situation of a user (or group of users) that
includes an interoperability problem that requires to be addressed in a structured
way. The classification of the case problem is a manual process and is the first step
of the method chunk selection and assembly service of the MCTI in order to
conctruct a case-specific method. The classification limits the search space of
applicable solutions, i.e. method chunks, as well as the type of change to be

10 Manfred A. Jeusfeld, Per Backlund, Jolita Ralyté

expected from the solution. We suggest the following approach for the
classification of the case problems:

1. Determine the IS domain of the case problem: The IS domain is
characterising the type of knowledge that is necessary to understand the
case problem. For example, dealing with heterogenous data structures
belongs to the IS domain ‘development-process’. Here, the Swebok (2004)
knowledge base can be used to characterise the field.

2. Determine the lifecycle stage: Possible values are ‘business-strategic’
(specifying that the interoperability problem encountered is about the
business domain and about a strategic decision to be taken by the business
partners), ‘business-operational’, ‘ict-development’ and ‘ict-execution’.
For example, resolving heterogenous data structures would require
analysis, modelling and implementation activities in the ‘ict-development’
stage according to method chunks, possibly stemming from an established
software engineering methodology, in accordance with its specifics.

3. Determine the involved product types (if applicable). The example will
involve implementaion on a specific platform in a specific language. The
method chunks associated to the current problem will contain existing
solutions previously classified to suit the situation.

4. Determine the involved process types (if applicable). A method chunk may
be classified on the process dimension with respect to the to the human
process of analysing the semantics of the current data stuctures in order to
make them possible to match.

5. Determine the producer type (if applicable): stakeholders, involved
organizations, team composition, tools used for production.

6. Determine the interoperability problem: The set of problems is build upon
experience, i.e. whenever a case problem occurs one looks up whether a
similar problem is already stored in the method chunk repository. The
interoperability problems are the most specific abstractions of past case
problems. Only the interoperability problems shall be associated to method
chunks, i.e. their potential solutions.

This stepwise approach focuses the situated method engineer towards the most
relevant interoperability issue for the case problem to be classified. The closer
he/she describes the case problem along the five categories, the easier is the
classification process. Furthermore, we associate experience reports of applying
the chunks, which will provide the case classifier information. It will help in
assessing the suitability of the method chunk in question.

5 Conclusion

The proposed approach will enhance knowledge management by means of using a
method chunk repository to store reusable method chunks. The collection and
storage of method chunks is supported by MCTI services for the creation,
management, execution and evaluation of method chunks. In order to make

 Classifying Interoperability Problems for a Method Chunk Repository 11

knowledge retrievable the method chunks have to be classified. This is done by
classifying the interoperability problems by using the proposed problem classifier.
The advantages of using the classifier are:

• It allows for more efficient retrieval of stored knowledge. This is an
important feature for user services of a knowledge repository.

• It provides the possibility to use multiple classifiers makes it possible to
provide a richer characterisation of method chunks

• The problem classifier is useful irrespective of how knowledge is stored,
i.e. in the form of patterns or method chunks.

• A problem classifier is a meaningful statement about a situation, i.e. it is
not just a combination of keywords but an expression about a past or
future observation.

• The problem classifier augmends the characterisation of patters in terms
of conceptual, technical and business barriers as proposed by (Chen et al.,
2006).

The strength of the proposed scheme is the incorporation of organisational as

well as business and technology aspects of interoperability. It also associates
interoperability to existing bodies of knowledge within the information systems
and software engineering domains. The proposed meta model can directly serve as
the schema for an interoperability-aware method chunk repository. Prototypes
based on the schema have been developed within the InterOp task group on
method engineering and are currently evaluated.

References

Backlund P., Ralyté J., Jeusfeld M.A., Kühn H., Arni-Bloch N., Goossenaerts J.B.M. and
Lillehagen F. (2006, in press) An Interoperability Classification Framework for Method
Chunk Repositories. In the Proceedings of the 15th International Conference on
Information Systems Development (ISD 2006), Springer, pp. 697-710.

Brinkkemper S., Saeki, M. and Harmsen, F. (1998) Assembly Techniques for Method
Engineering. Proceedigns of the 10th Conference on Advanced Information Systems
Engineering, CAiSE’98. Springer, LNCS 1413, pp.381-400.

Chen D. (Ed.) (2005) Practices, principles and patterns for interoperability. Deliverable
D6.1 Interop Network of Excellence IST – 508011. http://interop-noe.org/deliv/d6.1/
Accessed 2006-11-19.

Chen D., Dassisti M, and Elvesaeter B. (Ed.) (2006) Interoperability knowledge corpus
Intermediate Report, Deliverable DI1, Interop Network of Excellence IST – 508011.
http://interop-noe.org/deliv/DI1/ Accessed 2006-11-19.

Firesmith D. and Henderson-Sellers B. (2001) The OPEN Process Framework. An
Introduction. Addison-Wesley.

Grundy J.C. and Venable J.R. (1996) Towards an Integrated Environment for Method
Engineering. In Chelenges and Strategies for Research in Systems Development. W.W.
Cotterman and J.A. Senn (Eds.), John Wiley & Sons. Chichester, pp.45-62.

Harmsen A.F., Brinkkemper S. and Oei H. (1994) Situational Method Engineering for
Information System Projects. In Olle T.W. and A.A. Verrijn Stuart (Eds.), Mathods and

12 Manfred A. Jeusfeld, Per Backlund, Jolita Ralyté

Associated Tools for the Information Systems Life Cycle, Proceedings of the IFIP
WG8.1 Working Conference CRIS’94, pp. 169-194, North-Holland, Amsterdam.

Harmsen A.F. and Brinkkemper S. (1995) Design and implementation of a method base
management system for situational CASE environment. Proceedings of 2nd APSEC
Conference, IEEE Computer Society Press, pp 430-438.

Henderson-Sellers B. (2003) Method engineering for OO systems development. CACM
46(10), pp. 73-78.

Iivari J., Hirschheim R. and Klein H.K. (2004) Towards a distinctive body of knowledge for
Information Systems experts: coding ISD process knowledge in two IS journals.
Information Systems Journal (14) pp. 313-342.

INTEROP (2006) Interop Network of Excellence IST – 508011 Presentation of the Project.
http://interop-noe.org/INTEROP/presentation Accessed 2006-11-18

Kelly S., Lyyttinen K. and Rossi M. (1996). Meta Edit+: A fully configurable, multi-user
and multi-tool CASE and CAME environment. Proceedings of the CAiSE’96
Conference, Heraklion, LNCS 1080, Springer Verlag, Crete, Greece.

Kumar K. and Welke R.J. (1992) Method Engineering, A Proposal for Situation-specific
Methodology Construction. In Systems Analysis and Design: A Research Agenda,
Cotterman and Senn (eds), Wiley, pp.257-268.

Mirbel I. and Ralyté J. (2006) Situational Method Engineering: Combining Assembly-Based
and Roadmap-Driven Approaches. Requirements Engineering, 11(1), pp. 58–78.

Netbeans (2006) Netbeans Metadata repository. [On-line]. Available at
http://mdr.netbeans.org/ Accessed 2006-02-22.

Plihon V., Ralyté J., Benjamen A., Maiden N.A.M., Sutcliffe A., Dubois E., Heymans P.
(1998) A Reuse-Oriented Approach for the Construction of Scenario Based Methods.
5th International Conference on Software Process (ICSP’98), Chicago, Illinois, USA.

Ralyté J. (1999) Reusing Scenario Based Approaches in Requirement Engineering Methods:
CREWS Method Base. Proc. of the 10th Int. Workshop on Database and Expert Systems
Applications (DEXA'99), 1st Int. REP’99 Workshop, Florence, Italy.

Ralyté J., Backlund P., Kühn H. and Jeusfeld M. A. (2006) Method Chunks for
Interoperability. Proceedings of 25th International Conference on Conceptual Modeling
(ER2006). LNCS 4215, Springer, pp. 339-353.

Ralyté J. and Rolland C. (2001a). An Approach for Method Reengineering. Proceedings of
the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,
Springer-Verlag, pp.471-484.

Ralyté J. and Rolland C. (2001b) An Assembly Process Model for Method Engineering.
Proceedings of the 13th Conference on Advanced Information Systems Engineering
(CAISE’01), LNCS 2068, Springer-Verlag, pp. 267-283.

Saeki M., Iguchi K., Wen-yin K., Shinohara M. (1993) A meta-model for representing
software specification & design methods. Proceedings of the IFIP¨WG8.1 Conference
on Information Systems Development Process, Elsevier Science Publishers B.V. (North-
Holand), pp 149-166.

Si-said S., Grosz G. and Rolland C. (1996) Mentor, A computer aided Requirements
Engineering Environment. Proceedings of the 8th International Conference on
Advanced Information Systems Engineering (CAISE’96), LNCS 1080, Springer .

van Slooten K. and Brinkkemper S. (1993) A Method Engineering Approach to Information
Systems Development. Proceedings of the IFIP¨WG8.1 Conference on Information
Systems Development Process, Elsevier Science Publishers B.V. (North-Holand), pp.
167 – 186.

SWEBOK (2004) Guide to the Software Engineering Body of Knowledge - 2004 Version.
Available at http://www.swebok.org/. Accessed 2006-11-16.

