

Model Transformations with Reference Models

Willem-Jan van den Heuvel and Manfred Jeusfeld

Department of Information Systems and Management
PO Box 90500, 5000 LE, Tilburg, The Netherlands
wjheuvel@uvt.nl, jeusfeld@uvt.nl

Abstract
In this paper we introduce and explore an extension to the existing paradigm of
model transformation. Specifically, we extend existing model transformation
approaches by considering reference models and human input as important sources
for and during model transformation. To cater for this new type of model
transformation, we develop an approach grounded on a common generic model and
a series of transformation operators, which constitute an non-trivial extension to
the “classical” model management operators.
Keywords: model transformation, model-driven architecture, reference model,
customization

INTRODUCTION

Model transformations have been studied from the 80s, playing in central role in
software development in general, and model-driven software engineering (MDSE)
more in particular [5]. The Model Driven Architecture (MDA) that is promoted by
the OMG, reflects the latest wave of efforts to make the vision of automatic
generation of programming code from models a reality. At heart of this paradigm
lays the notion of a transformation, which allows translating one or more target
models into one or more source models [6].
Unfortunately, before the MDE and its relative, the MDA, become a reality, many
open issues need to be tackled. Firstly, today’s transformation approaches
implicitly assume that a target model may be constructed from scratch, using a new
source model as its input. This assumption is unrealistic given the fact that in many
cases enterprise models are constructed by customizing pre-existing, standard
enterprise models, also referred to reference models. Notably, reference models are
used to configure ERP systems so that they fulfill organization specific
requirements and constraints. Some recent estimates indicate that approximately
70% of all companies are implementing some form of ERP system [16].
Given this situation, it is of critical importance to introduce new types of
transformations, which allow tailoring and/or augmenting ERP systems and

2 Heuvel, WJAM van den and Jeusfeld, M.J.A

underlying reference architectures so that they adhere to business requirements of
specific enterprises.
This paper scrutinizes how pre-existing models, in particular reference models,
may be configured in a semi-automatic manner by using model transformations as
the key mechanism. In the next section, we will firstly consider the application of
transformations for the purpose of customization of reference models in more
detail. Next, we present a running example that will be used throughout the paper
to motivate and exemplify a methodological framework for customization that is
introduced in section 4. This framework combines procedural and declarative
transformation rules and allows a semi-automatic transformation process that is not
only driven by models as input, but also utilizes information from external (human)
resources. Lastly, section 5 concludes this paper summarizing findings and
explicating our future research agenda.

TRANSFORMATION FOR CUSTOMIZATION

Model Transformation

A transformation may be defined as the (automatic) generation of a target model
from a source model, according to a set of transformation rules ([5], [10]).
Abstractly speaking, transformation may be achieved in two orthogonal ways,
adopting a declarative or procedural approach. Procedural transformations are
typically coded in an imperative language, explicitly specifying every
transformation step and their sequencing. Declarative languages on the other hand,
implicitly define model transformations, and are typically more flexible and
powerful. Graph transformations lay at heart of many contemporary declarative
approaches in MDSE practice, defining a transformation rule as a graph-rewriting
rule allowing a LHS “source” graph to be substituted by a RHS “target” graph.
This is basically realized as follows. Once a matching LHS graph is found, a rule is
triggered that swaps the LHS (sub-) graph by a RHS graph. A prominent example
of a transformation language that is based on graph grammar entails GReaT [1].
Some languages, PROGRESS [5], the QVT-Partners approach [11] and MT [12],
constitute a blend of both approaches, combining the precision of declarative and
the comprehensiveness of procedural approaches.

Reference Models

Unless in unusual cases in which software can be developed from scratch,
transformations need to be capable to incorporate pre-existing knowledge that is
captured in several (given) source models. Notably, reference models encapsulate
generic know-how to speed up modeling and to transform generic (ERP) solutions
into into enterprise-specific ones [14]. In particular, reference models capture
generic characteristics and dynamics of a domain in standard process and/or entity
models [8].

 Model Transformation with Reference Models 3

Variability and Parameterization

Genericity in reference models may be basically accommodated in three ways [7],
(1) offering patterns (as offered by IBM’s SanFransico Frameworks), (2) allowing
various similar options using OO-like specializations or aggregations, and, (3) pre-
defining abstract parameters that need to instantiated according to reflect business
conditions. Once tailored to accommodate common domain requirements,
reference models have proven to be valuable in the process of customizing ERP
packages such as SAP’s MySAP and Microsoft’s Axia.
Parameterization plays a pivotal role in customization: the parameterization
process allows setting parameters of reference models given enterprise specific
business processes and policies. For example, the delivery notes can be processed
in the SAP Blueprint without any reference to a preceding order (option 1),
referencing an individual sales order (option 2), referring to a delivery-due list
(option 3), or from a stock transport order (option 4) [2].
In particular, with customization, also referred to as parameterization, we imply
that the parameters/variants of features (processes, functions and/or entities) in a
reference model are set according to customer-specific requirements. In particular,
we may distinguish between the following types of parameters [4]:

• Dimension; feature whose subfeatures all represent a variant
• Dimension with optional features
• Extension point
• Extension point with optional features
• Extension point with OR-features

Rendering Variability

Variability and commonality in software systems has attracted much attention in
the domain of Domain Modeling and Product Line Architectures (PLAs) with
UML [11]. In short, variability refers to the capacity of systems and models to be
changed, tailored or parameterized to enterprise specific requirements.
Surprisingly, only very limited attention to variability is paid in the domain of
business modeling (and reference models alike). In [9], extensions to classical
Event Process Chains are proposed that allow for configurable functions (that may
be included, skipped or conditionally skipped) and connectors (Joins and Splits).

MOTIVATING SCENARIO

The motivating scenario deals with a realistic, yet simplified, case study that
transforms two source models (an enterprise model capturing a invoice processing
scenario and a reference model of SAP R/3 invoice processes) into a customized
reference model that serves as the basis for the actual configuration and
deployment of SAP R/3. In this section, we will first introduce the two source
models.

4 Heuvel, WJAM van den and Jeusfeld, M.J.A

Reference Model

Figure 1 depicts an excerpt from the SAP R/3 Reference Model (taken
from:[ROS06]) that is modeled using an Event Process Chain (EPC) [SC99].
Events are represented as hexagons, a task or function is depicted as a rectangle,
and dotted arrows denote the control flow. Three basic logical operators may be
used to express logical relationships between events and functions/tasks: XOR,
AND, and, OR. The dotted lines and boxes on the lines are extensions to demarcate
four model chunks (see below).

Figure 1 A reference model for invoice processing (adopted from: [9])

This model encompasses three variants of invoice processing that are implemented
in SAP R/3 (labelled Chunk 1-3 in Figure 1): standard, evaluated receipt settlement
(ERS) and invoice plan settlement (IPS). Standard invoice processing consists of
creating a purchase order, receiving the invoice and a check upon actual receipt of
goods or services. ERS circumvents these checks and allows to directly processing
the invoice after goods have been received and a purchase order has been created.
IRS entails an alternate invoicing scheme that enables staged or planned (e.g.,
periodic) payments. Standard invoice processing is drafted at the core of this

 Model Transformation with Reference Models 5

reference model while variant 2 (ERS) and variant 3 (IPS) are rendered at
respectively the left hand and the right hand side.

Enterprise Model

This enterprise model depicts the key business tasks for creating a voucher, which
serves as a preparatory step for actual payment to creditors of the University of

Sydney1. It is rendered in a UML Activity Diagram alike notation2. The invoicing
process at the university works basically as follows. Once a purchase requisition is
authorized, it is sourced into a purchase order, and subsequently dispatched to the
corresponding Supplier. Upon delivery of the goods and services at the University,
a Receipt document is created that details the Purchase order, mentioning the
quantity that was received. Once the receipt of an Invoice is received from the
Supplier and chekced. If the unversity agrees, the receipt is used as the basis for
creating a Voucher. Payment is then made to the Supplier in accordance to the
payment terms and payment method previously agreed.

1 Source: http://www.finance.usyd.edu.au/docs/supplier_invoice_flatfile.pdf
2 We found out that typically, business users will resort to a non-formal type of graphical notation, free

natural language texts or tables for the purpose of customizing a reference model.

Figure 2 Enterprise Model

Requisition
Created

Requisition

Approved and
Sourced

Purchase Order

Dispatch to
Supplier

Supplier

Deliveries
Goods/Services

Supplier

Transmits flat
file

Info used to
Generate Receipt

Requestor
Verifies info

Receipt evaluated

Voucher

Generated and
Payment made

Requisition
Created

Requisition

Approved and
Sourced

Purchase Order

Dispatch to
Supplier

Supplier

Deliveries
Goods/Services

Supplier

Transmits flat
file

Info used to
Generate Receipt

Requestor
Verifies info

Receipt evaluated

Voucher

Generated and
Payment made

6 Heuvel, WJAM van den and Jeusfeld, M.J.A

The university assumes an ERS style of payment so Vouchers will only be
generated for Receipts that have a matching Goods Receipt Note (GRN), that is
approved for payment by the Requestor. In this situation, it is no longer required
that paper versions of the Invoice are sent to the Requestor for authorization,
smoothening the payment process.

THE METHODOLOGICAL FRAMEWORK

While traditional model transformations establish (fully) automated mappings
between a source and target model, transformation for the purpose of customizing
reference models entails a more complex, multi-dimensional and inherently
interactive process.

Transformation approach

Complexity of reference-guided transformation is believed to be higher than in
case of traditional transformations because of four main reasons. Firstly, a
reference model does not just simply serve as input to the transformation, but also
pre-determines the structure and notation of the target model. This is due to the fact
that a reference model contains re-usable building blocks that are plugged into
some position of the target model. Secondly, a reference model abstracts from a
specific usage, i.e. it can be applied for many application scenarios but needs to be
instantiated before it can be used. Thirdly, reference modeling requires a
sophisticated matchmaking process to compare a reference model to parts of a
source model in order to ascertain its re-usability. The latter is a particular
challenge because the reference model is abstract in nature, while a source model is
enterprise-specific and rendered in another modeling language. Figure 3 presents
the conceptual architecture of reference model guided model transformation.
Transformation lies at heart of this architecture, using multiple models as input,
including a reference mode that is to be morphed into a customized counterpart.
Although we have depicted the transformation process using one ellipse, we
foresee an incremental transformation process comprising a series of

Figure 3: Conceptual Architecture of model transformation of Reference Models

Transformation

Process
Transformation

Process

Enterprise

Model

Reference Model

Customized

Reference Model

Source Models

Target Model

Human Analyst

 Model Transformation with Reference Models 7

transformation steps, each of which may formulate its own pre- and post-
conditions to ensure proper operations. During each transformation step one or
more of the input models may be consulted.
The source model constitutes the traditional input of the transformation process,
and its usage is obvious: concepts of the source model are used to tailor or extend
the functionality in the reference model. We here assume that the source model
entails a domain model of an enterprise, representing requirements derived from
business processes, roles, entities and the like. Reference models serve as
additional input to the transformation process. They are matched against the source
model, and are instantiated during the transformation. The selection of a suitable
reference model requires formulating a search criterion based on the input concepts
of the source model and possible the (partially existing) target model. If
information contained in the source and reference models is insufficient for a
transformation step, then a human user can provide the missing information.
Based on this architecture, we propose a staged methodology that comprises four

basic steps (see Figure 4): (1) matchmaking, (2) selection (3) enrichment and (4)
integration. During the first step, the source model is matched to reference models
in order to identify which reference models cater best the requirements from the
business domain. In case no suitabe reference model(s) is avaialable, a traditional
MDD approach may be followed, encompassing definition or reuse of
transformation rules, and transforming (part of) the source into a target model.
Next, in step 2 scenarios are selected from the reference model. Step 3 then aims at
enriching the reference model to capture more detail and select variants. Lastly, the
step 4 aims at integrating the enriched reference model with other target models,
e.g., generated from a source model deploying a traditional MDD approach. If the
target model is empty, it is just copied. Modeling and schema integration
techniques may be used to facilitate this step. In the remainder of this paper we will
assume that a reference model has been pre-determined (given the choice of a
particular ERP packagee). Instead, we will concentrate on Step 2 and Step 3 of the
approach, as they play a pivotal role in the methodological framework.

Figure 4 Methodological Framework for Transforming Reference Models

8 Heuvel, WJAM van den and Jeusfeld, M.J.A

SELECTION

Intuitively, the running example suggests that the SAP R/3 reference model is a
suitable candidate to implement the invoicing scenario. However, only the left
(evaluated receipt settlement) branch is applicable and shall be included in the
target model.
To support identification of reusable chunks in a reference model, the following
transformation primitives should be supported:
1. Remove(p): The chunk p of the reference model is removed. The result is a
subset of the reference model, that is better aligned to the business scenario.
2. Aggregate(c1,c2,c3): Concept c1 and c2 are assembled into a aggregate
concept c3. For example, a sequence of activities is aggregated into a single (more
abstract) activity.
3. Rename(n1=n2): Concept label n1 in the reference model is replaced by n2.
4. Split(c1,c2,c3,n): Concept c1 is split into c2 and c3; the concepts c2
and c3 are connected by a link labeled n. This is the reverse operation to
Aggregate.

Selection using a Generic Model

Matching the enterprise and reference models requires to represent them in a way
that makes them comparable. We adopt the meta-model approach used in GoRoMe
[17] for data model and apply the idea to process models. The goal is to define a
set of primitives for process models that form a super-set of all concepts occuring
in process model. Hence, it shall be possible to represent practically any proces
model in terms of the generic model and have a uniform representation.

Figure 3 lists the core concepts of the generic model. The central concept is the
process step. It can have a state as pre-condition and post-condition. Places in petri
nets and events in event-process chains are incarnations of this concept.
Furthermore, information objects can serve as input and outputs of process steps.
Process steps can be associated to each other by a successor link (one step is
successor to another step). Process steps with more than one predecessor are called
joins. Steps with more than one successor are calle joins. Synchronized joins are
joins that wait for some pre-decessor steps to be completed. A special version is an
AND-Op. It waits for all predecessors to be completed. An XOR-Op is a special
join step that will wait until the first predecssor has been completed. While still
simple, this generic model is expressive enough to capture both the EPC reference
model and the more informal enterprise model.

We use a fact quadruple Q(model,source,label,destination) as uniform
representation for enterprise and reference models. The first component identified
the name of the model, e.g. fig1 for the reference model in figure 1. The remaining
three components are virtually like RDF triples. The special label 'type' is used to
classify an element into the generic model.

Table 1 shows an excerpt of the fact representation of chunk 1 in figure 1 and
the some steps of figure 2. Note that the fact representation uses the same concepts
from the generic model. The reference model uses the event-process chain

 Model Transformation with Reference Models 9

language to denote process models. This features the concept of events (classified
as states in the genric model). The enterprise model of figure 2 uses a simpler
notation where process steps follow each other. To make the two modeling
languages more comparable, we introduce a logical rule

forall m,p1,p2,s Q(m,p1,post,s1) and Q(m,p2,pre,s) ==> Q(m,p1,successor,p2)
that derives p2 to be sucessor or p1 if there is an state s that is post-condition of p1
and pre-condition of p2.

Table 1: Uniform quadruple representation of enterprise and reference model

Model Source Label Destination
fig1 purchase order created type State
fig1 and1 type AND-Op
fig1 and1 pre purchase order created
fig1 and1 successor evaluated receipt

settlement
fig1 xor1 type XOR-Op
fig1 evaluated receipt settlement type ProcessStep

fig2 requistion created type ProcessStep
fig2 requisition approved and sourced type ProcessStep
fig2 requistion created successor requisition approved

and sourced
fig2 supplier deliveries goods/services successor join1
fig2 requestor veriefies info successor join1
fig2 join1 type Join
fig2 join1 successor receipt evaluated
fig2 voucher generated and payment made type ProcessStep

As preparatory step to the actual selection, we split the operation 'voucher
generated and payment made' by the operation split into a process step 'generate
voucher and a state 'payment made'. This results in the Q facts

fig2 generate voucher post payment made
fig2 payment made type State

By identifying the state 'payment made' of fig2 with 'payment must be effected' of
fig1, we can match fig2 against fig1 after applying fig1.Remove(chunk3)and
fig1.Remove(chunk2). The XOR operation xor1 vanishes and the
remaining and1 of fig1 matches against join1 of fig2.

10 Heuvel, WJAM van den and Jeusfeld, M.J.A

Figure 3 Generic Model for Processes

Now the model primitives, figure1.Remove(chunk3)AND Remove
(chunk2) are deployed to prune the reference model into a scaled-down version
with one invoice processing scenario. Likewise, this procedure may be followed
for the other nodes in the models.
In many cases, the compose model operator is used to deal with granularity
conflicts, e.g., the activities in the left branch of the enterprise model (“Requisition
Created – Supplier Deliveries”) were manually combined in an aggregated and
renamed concept “Purchase Order Created” to facilitate the selection process.

The result of the selection phase is graphically depicted in Figure 4. The dotted
lines in the figure indicate mappings that were constructed based on the results of
queries on the enterprise- and reference model and detailed knowledge of the
human analyst on the business context. The colored ellipses in the enterprise model
denote matched concepts; note that two of these concepts constitute the result of
the composition primitive.

Enrichment

After the reference model has been scoped, it may be customized adding
enterprise-specific information that was not available in the original reference
model. For this purpose, we define the following operators:
1. Refine(m,n): Part m of the reference model is refined by specification n.

Refinement implies that m ⊆ m must hold (thus N must be able to replace M
without someone noticing it). Refinement may include decomposition of
activities in the reference model into sub-activities. This operator may use
information that was gained during the selection step, e.g., the “Purchase
Order” step in the reference model may be refined into four smaller steps. This
decision is left to the human analyst.

2. Extend(): Add part of model that is not covered in source model. This
implies adding extra functionality to the reference model, which was not

StateProcessStep

post

pre

Join

SynchronizedJoin

And-Op XOR-Op

Fork

... ...

...

InformationObject

output input

successor

StateProcessStep

post

pre

Join

SynchronizedJoin

And-Op XOR-Op

Fork

... ...

...

InformationObject

output input

successor

StateProcessStep

post

pre

Join

SynchronizedJoin

And-Op XOR-Op

Fork

... ...

...

InformationObject

output input

successor

 Model Transformation with Reference Models 11

foreseen. For example, the extend primitive may be used to extend the
reference model in Figure 1 with one additional end state expressing that a
voucher will be created.

3. Choice (x,y): a parameter x is chosen from a predefined list of type-level
variation points. This operator serves to choose a particular variant at a
variation point (e.g., select a discount rate 10% from a given list of discount
rates: {10%,20% and 30%}).

Hence, these primitives result into a instantiated and extended reference model. In
terms of the generic model, this implies that existing facts are specialized or new
facts are introduced. For example, the fact Q(generate voucher,successor,release
invoice) is added to the knowledge base as a result of execution of the Extend
primitive. Currently, rudimentary and experimental (ConceptBase)
implementations of the above operators have been designed. More research and
experimentation is of critical importance before the methodological framework can
be used in practice. In the next section, we will review our research results and
outline our research roadmap.

DISCUSSION

Existing techniques like graph grammars are compatible to our framework, in
particular to express the model transformation operations. The framework that has
been introduced in this paper is core research in nature; extensions and refinements

Figure 4 Mappings between Reference Model and Enterprise Model

Chunk 1

Chunk 2

Chunk 3

Chunk 4

QuickTime™ and a
 decompressor

are needed to see this picture.

Requisition
Created

QuickTime™ and a
 decompressor

are needed to see this picture.

Requisition

Approved and

Sourced

QuickTime™ and a
 decompressor

are needed to see this picture.

Purchase Order

Dispatch to

Supplier

QuickTime™ and a
 decompressor

are needed to see this picture.

Supplier

Deliveries

Goods/Services

QuickTime™ and a
 decompressor

are needed to see this picture.

Supplier

Transmits flat

file

QuickTime™ and a
 decompressor

are needed to see this picture.

Info used to

Generate Receipt

QuickTime™ and a
 decompressor

are needed to see this picture.

Requestor

Verifies info

QuickTime™ and a
 decompressor

are needed to see this picture.

Receipt evaluated

QuickTime™ and a
 decompressor

are needed to see this picture.

Voucher

Generated and

Payment made

12 Heuvel, WJAM van den and Jeusfeld, M.J.A

are needed in several directions: (1) Develop a base of reference models and tag
them with meta data, in particular specifying the chunks and specifying which
chunks are optional, (2) select or develop algorithms for matching source and
reference models, (3) generate from the matching algorithm sequences of
operations that specialize a given reference model such that the specialization is a
close approximation to source model (or source model chunk), (4) Control the
order in which source model chunks are matched against reference models. (5)
Define rules that control the application of enrichment operations.

REFERENCES

[1] A. Agrawal, G. Karsai, and F. Shi; “A UML-based Graph Transformation Approach for

Implementing Domain-Specific Model Transformations”. International Journal on Software and
Systems Modeling, 2003.

[2] Thomas A. Curran and Andrew Ladd, “SAP R/3 Business Blueprint”, Prentice Hall, 2000

[3] Blostein D., Schürr A., ”Computing with Graphs and Graph Rewriting”, Technical Report AIB
97-8, Fachgruppe Informatik, RWTH Aachen, Germany.

[4] K. Czarnecki and U. Eisenecker, “Generative Programming: Methods, Tools and Applications”,
Addison-Wesley, 2000

[5] S. Sendall and W. Kozaczynski, "Model Transformation - the Heart and Soul of Model-driven
Software Development", IEEE Software, Vol. 20, No.5, pp. 42-45, Sept/Oct 2003

[6] "MDA Guide Version 1.0.1", Object Management Group, Document Nr: omg/2003-06-01, June
2003

[7] Tewfik Ziadi and Jean-Marc Jézéquel. -- Families Research Book, chapter Product Line
Engineering with the UML: Products Derivation. -- To be published in LNCS. Springer Verlag,
2006

[8] A.W. Scheer, “ARIS- Business Process Frameworks”, Springer, Third Edition, 1999

[9] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Language.
Information Systems, 2006 (to appear).

[10] A. Kleppe et al., “MDA Explained: Practice and Promise”, Addison-Wesley, 2003

[11] QVT-Partners, First revised submission to QVT RFP, August 2003. OMG document: ad/03-08-08

[12] L. Trat, “The MT model transformation language”, Proceedings of SAC’06, ACM, 2006

[13] J. Mylopoulos et al (1990), "Telos: representing knowledge about information systems”, ACM
Transactions on Information Systems (TOIS) , 8 (4): 325-362, 1990

[14] P. Fettke et al., “Business Process Reference Models: Survey and Classification”, In Proceedings
of BPM Workshops, 469-483, DBLP/conf/bpm, 2005

[15] Bernstein, P.A., A.Y. Levy, R.A. Pottinger, "A Vision for Management of Complex Models,"
Microsoft Research Technical Report MSR-TR-2000-53, June 2000, PDF, 179KB (short version
in SIGMOD Record 29, 4 (Dec. '00)).

[16] Beatty, R.C. and Williams, G.D., “ERP-II”, Communications of the ACM, 46(3): 105-110, March
2006

[17] D. Kensche, D., Quix, C., Chatti, M.A., Jarke, M., GeRoMe: A Generic Role Based Metamodel
for Model Management, Proc. 4th Intl. Conf. on Ontologies, DataBases, and Applications of
Semantics (ODBASE), Agia Napa, Cyprus, 2005

