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Abstract

As one of the most complex and advanced forms of Internet information systems, digital libraries serve

as an increasingly important channel to a vast array of information sources and services. However, from

the standpoint of satisfying human’s information needs, the current digital library systems suffer from the

following two shortcomings: (i) inadequate strategic level cognition support; (ii) inadequate knowledge

sharing facilities. In this paper, we introduce a two-layered digital library architecture to support different

levels of human cognitive acts. The model moves beyond simple information searching and browsing

across multiple repositories, to inquiry of knowledge. To address users’ high-order cognitive requests, we

propose aninformation space,consisting of aknowledge subspaceand adocument subspace. A formal de-

scription of the knowledge subspace for knowledge sharing and dissemination, as well as mechanisms for

constructing the two subspaces, are particularly discussed. Such an enhanced information space extends

the traditional role of digital libraries asinformation providerto information& knowledge provider. Some

distinguished features in comparison with the traditional knowledge-based systems are also discussed in

the paper.

1 Introduction

With the exponential growth of information in the Web, more and more people nowadays demand effective

search and indexing functionalities. Digital Libraries (DLs) are a form of information technology which

provides new opportunities to assemble, organize and access large volumes of information from multiple

repositories, while making distributed heterogeneous resources spread across the network appear to be a

single uniform federated source [29]. Under the assistance of such an information-rich system, users can

move from source to source, seeking and linking information automatically or semi-automatically. From a

user’s perspective, DLs establish an underlying infrastructure for a bulk of digital information and information

services associated with users’ information acts.

Traditionally, when people retrieve information, their activities are classified into two broad categories:search-

ing andbrowsing. Searching implies that the user knows exactly what to look for, while browsing should assist

users navigating among correlated searchable terms to look for something new or interesting. So far, most of

the major work on DL systems fall into these two categories.

However, with more digital libraries built up to handle users’ information needs, we ask questions:Are

the existing information technologies powerful enough to facilitate DL users’ problem solving? Or what

technologies do we still need to help users better do their work? Compared to traditional physical libraries,
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are there any important features missing from the current DL systems?To answer these questions, let’s first

look at a scenario on the use of a DL system.

Kooper works in a city plan& management office. He is investigating the precaution policy against flood

this year. If there will be a flood in the coming summer, necessary actions (e.g., strengthing the embankment,

resource allocation, etc.) must be taken now to prevent the city from sustaining losses. According to Kooper’s

previous experience, it seems that “A wet winter might cause flood in summer.” To confirm this pre-conceived

hypothesis, he logins on a DL system to request information talking about the reasons of flood. The DL

system returns a number of articles. He browses through the returned article list and selects three articles

that look most relevant. All of the three articles mention that “A precursor to the flooding in summer is a wet

winter.” To assure this information is also valid for the area where Kooper lives, he accesses the DL again

to ask for documents reporting river flood in the city before. From the articles returned, he gets to know

the latest 3 severe flood that happened in 1986, 1995, 1997, respectively, in the city. He then navigates to

the meteorological repository of the DL, and accesses the weather information of the city during the winter

time of these three years. He notes a tight correlation betweenwet winterand flood summer. Based on the

information obtained from the DL, Kooper is pretty sure now about his prior flood prediction assumption for

the city. He logs off the system. Having experienced a very wet winter this year, Kooper decides to draw up a

city flood precaution plan immediately.

From this scenario, we observe that a number of deficiencies exist in current DL systems. Below we outline

some of the problems and highlight our work to solve them.

Problem 1 - Inadequate Strategic Level Cognition Support. The aim of DL systems is to empower users

so that they can find useful information to solve their own problems. When a person goes into a library to look

for something, he/she usually has certain purposes in mind. For example, he/she may want to read a specific

article written by a certain author. In this situation, the target of the user is precise and clear. Sometimes, the

user wishes to explore the available resources first before exploiting them. This exploration may be targeted at

refining a prior understanding of a certain information context, or formulating a further concrete requirement

for specific documents. Most efforts of the current DL systems aim to support these two kinds of users’

behavior, namely,searchingandbrowsing.

However, besides simply entertaining users with documents as what searching and browsing do, DL systems

should also consider supporting human’s strategic level cognitive work which can directly enable correct

actions and problem solving. Typically, users have some prior domain-specific knowledge or pre-conceived

hypotheses. They may expect the library systems to confirm/deny their existing concepts, or to check whether

there are some exceptional/contradictional data source evidences against the pre-existing notions, or to provide

some predictive information so that users can take effective actions. Under this circumstance, the users’

information needs are not only for relevant documents, but also for intelligent answers to their questions

together with a series of supporting literatures for justification and explanation, as illustrated in the above

scenario. In order to distinguish this kind of information needs from the traditional searching and browsing

requirements, we categorize traditional users’ information searching and browsing activities intotactical level

cognition actand the latter intostrategic level cognition act.

As [5] says, “The nature of an information system is to provide informational support to people as they carry

out their intentional tasks.” As one of the most complex and advanced forms of information systems, DL

system designers must have a comprehensive understanding of users’ information needs and their purposes
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for using DLs. In the above example, if the DL system could automate user’s rational exploration from the

knowledge space, consisting of propositions and assertions, to the corresponding justification/explanation

space, consisting of data sources in various forms like textual articles, reports, databases, etc., the information

role of the DLs in helping users derive effective decisions will be greatly enforced. Unfortunately, such

strategic level complex cognition support and its impact on users’ work have constantly been ignored by

current DL systems.

Our Work. We propose a two-layered DL function model to support both tactical level and strategic level

cognitive tasks of users according to their information needs and purposes in section 2. The model moves

beyond simple searching and browsing across multiple correlated repositories, to acquisition of knowledge.

This knowledge subspace consisting of hypotheses, together with the associated document subspace for justi-

fications, are particularly described in the section.

Problem 2 - Inadequate knowledge sharing facilities. Traditional libraries are a public place where a

large extent of mutual learning, knowledge sharing and exchange can happen. A user may ask a librarian

for search assistance. Librarians themselves may collaborate in the process of managing, organizing and

disseminating information, or share experiences in using consistently-emerging new systems and tools to

tackle users’ search questions. Users may communicate and learn from each other by observing how others

use library’s resources, or by asking for help. With paper sources digitalized and physical libraries moving to

virtual DLs, these valuable features of traditional libraries should be retained. We believe DLs of the future

should not just be simple storage and archival systems. To be successful, DLs should become a knowledge

place where knowledge acquisition, sharing and propagation take place. For example, if the DL in the above

scenario could make readily available expertise and answers to strategic level cognition questions, which

might require time-consuming search or consultation with experts, it can help users to better exploit the DLs

and improve working effectiveness. Also, as computerized knowledge does not deteriorate with time as that

human knowledge does, for long-term retention, DLs offer ideal repositories of the knowledge in the world,

and make them universally accessible.

Our Work. In section 3, we provide a formal description of the DL’s knowledge subspace. Two methods for

the construction of DL’s knowledge and document subspaces are proposed in section 4. One of them is based

on the manual input from experienced human users. Another approach addresses (semi-)automatic knowledge

acquisition by correlating and analyzing data sources from multiple repositories in DLs. The distinguishes

between such an enhanced DL system with knowledge elements and traditional knowledge-based information

systems are discussed in section 6.

2 A Two-Layered DL Cognitive Function Model

Supporting users’ information searching and browsing has been the focus of DL research for a long time.

However, as social humans, their information expectations for a DL are more than pure searching and brows-

ing. In this section, we extend the traditional role of DLs frominformation providerto information& knowl-

edge provider. Figure 1 illustrates the function model of DLs in response to various information requests,

which are categorized intotactical level cognition actandstrategic level cognition actin the model.
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Figure 1: A two-layered DL model

2.1 Tactical Level Cognition Support

We view traditional DL searching and browsing as tactical level cognitive acts.

Searching. The target of searching is towards certain specific documents. One searching example is “Look

for the article written by John Brown in the proceedings of VLDB’88.” As the user’s request can be precisely

stated beforehand, identifying the target repository where the requested document is located is relatively easy.

Primarily, the ability to search indexes of repositories can support this kind of searching activities.

Browsing. Different from searching whose objective is well-defined, browsing aims to provide users with a

conceptual map, so that users can navigate among correlated items to hopefully find some potentially useful

documents, or to formulate a more precise retrieval request further. For instance,a user reads an article

talking about a water reservoir construction plan in a certain region. He/she wants to know the possible

influence on ecological balance. By following semantic links for the water reservoir plan in the DL, he/she

navigates to the related “ecological protection” theme, under which a set of searchable terms with relevant

documents are listed for selection.To facilitate browsing, DLs must integrate diverse repositories to provide

users with a uniform searching and retrieval interface to a coherent collection of materials. The capability that

enables navigation among a network of inter-related concepts, plus the searching capability on each individual

repository, constitute the fundamental support to browsing activities. Thereby, we can view a user’s browsing

activity as navigation plus searching, i.e.,browsing= searching+ navigation.

As the techniques of searching and browsing have been extensively studied and published in the literature, we

will not discuss these any further here.

2.2 Strategic Level Cognition Support

In contrast to tactical level cognition support which intends to provide users with requested documents, strate-

gic level cognition support not only provides documents but can also intelligently answer high-order cognitive

questions, and meanwhile provide justifications and evidences. Taking the scenario in section 1 as an example,

the purpose of Kooper on the use of the DL is to confirm his prior knowledge about “Wet winter causes flood
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in summer”. Instead of retrieving documents using dispersed keywords like “wet winter”, “ flood”, “ cause”,

etc, the user would prefer to pose a direct questionQ1 as follows, and expect a confirmed/denied answer from

the DL system rather than a list of articles lacking explanatory semantics and waiting for his further checking.

Q1: “Does wet winter cause flood in summer?”

Other high-order cognitive request examples are like:

Q2: “Give me articles which talk about thecauseof flood.”

Q3: “Give me articles which talk about theinfluencesof wet winter.”

In response to different questions, it is desirable for DL systems to provide knowledge-level answers and

related justifications for holding the answers. For example, the justifications forQ1 will consist of a series

of articles talking about “wet winter causes flood in summer”, as well as evidence articles which talk about,

respectively, “wet winter” in certain years and “summer flood” in the next years in certain particular regions.

The provision of strategic level cognition support adds values to DLs beyond simply providing document

access. It reinforces the exploration and utilization of information in DLs, and advocates a more close and

powerful interaction between users and DL systems. With this high-order cognitive assistance, DL users peo-

ple will be able to find things to solve their real information problems themselves. From the viewpoint of DLs,

to realize such a strategic level cognition function, substantial information analysis needs to be done. This

inevitably involves the navigation and correlation of information items across multiple repositories in DLs,

and production of intelligent knowledge in answering users’ strategic level cognitive questions. Thereby,

compared to the tactical level cognition support by information searching and browsing, the strategic level

cognition support involves the efforts on information searching, navigation and analysis, i.e.,knowledge in-

quiry = searching+ navigation+ analysis.

We sketch a DL’s information space, comprised of aknowledge subspaceand adocument subspace, in Fig-

ure 2 to address users’ strategic level cognition requests.
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Figure 2: A DL’s information space for strategic level cognition support

1) The Knowledge Subspace. The basic constituents of theKnowledge Subspaceare knowledge, such as

hypotheses, rules, beliefs, etc.1 Each piece of hypothesis describes a certain relationship among a set of con-

cepts. For example, the hypothesis “H: Wet winter may cause summer flood” explicates a causal relationship

between a cause “C1: wet winter” and the effect “C2: summer flood” it has. A more general hypothesis in

respect toH is like “H 0: wet winter may cause river behavior”. Based on different concept relations (e.g.,

1In this initial study, we focus on hypothesis knowledge in empirical sciences.
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is-a, part-whole, synonym,and antonym) in the concept base, we can build up inter-relationships of rele-

vant hypotheses, formulating a hypothesis lattice around one theme. A detailed description of the knowledge

subspace is given in Section 3.

2) The Document Subspace.Under each hypothesis is a justification set, giving reasons and evidences for

the knowledge. These justifications, made up of articles, reports, data, etc., constitute theDocument Subspace

of the DL’s information space. Here, we differentiate two kinds of justifications, namely,direct-justifications

andfact- justifications. Direct-justifications give documents that support the knowledge straightforward. Tak-

ing hypothesisH for an example, the article mentioning exactly that “wet winter is an indicator of summer

flood.” is a direct-justification. On the other hand, fact-justifications provide evidences for believing the

knowledge. For instance, by illustrating abreast wet winter meteorological reports and summer flood reports

in the same years, the system can hopefully confirm users of this hypothesis. It is worth notice here that

the document subspace challenges traditional DLs on literature organization, classification, and management.

For belief justifications, we must extend the classicalkeyword based index schema, which is mainly used for

information searching and browsing purposes, toknowledge-justification based index schema, in order that

the information in DLs can be easily retrieved by both keywords and knowledge. Details for constructing the

knowledge and document subspaces are described in Section 4.

The information space consisting of both knowledge and documents as described above enables different

levels of cognition solutions. For instance, referring to the above questionsQ1, Q2 andQ3, the DL system can

provide not only intelligent answers according to hypothesisH, but also a series of links to the justification

articles for further reference.

3 A Formal Description of DL’s Knowledge Subspace

In this section, we define the basic constituent of the DL’s knowledge subspace -hypothesis, starting with its

two constructional elements, i.e.,conceptsandrelationsamong the concepts.

3.1 Concepts and Concept Terms

We distinguish two kinds of concepts:atomic conceptsandcomposite concepts. Atomic concepts are the

building blocks of sentences (e.g., “dog”, “ animal”, “ traffic-jam”, “ wet-winter”, “ summer-flood”, etc.), which

convey the most fundamental cognitive knowledge in human society, while composite concepts are built up

from atomic concepts through a concept conjunctive operatoru. One composite concept example is “warm-

winteru wet-winter”. A concept termcan be either an atomic or a composite concept.

<concept term> ::= <atomic concept> j <composite concept>

<composite concept> ::= <atomic concept> u : : :u

<atomic concept>

Throughout the paper, we useC = fc1;c2; : : : ;csg to denote a set of atomic concepts in the universe of dis-

course, andT to denote a set of concept terms taken fromC.
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3.2 Concept Relations

Based on the substantial work on lexicography and ontology [19, 12, 25, 14, 15], fourprimitive relationships

between atomic concepts are considered in our current study. They areIs-A, Part-Whole, Synonym, and

Antonym, each of which is denoted using a binary predicate. For example,Is-A (“summer-flood”, “ river-

behavior”) represents the notion that “summer-flood” is a “river-behavior”, andAntonym(“wet-winter”, “ dry-

winter”) represents a pair of antonym concepts, “wet-winter” and “dry-winter”.

Property 1 The four primitive relationships of atomic concepts have the following properties:

. Is-A is reflexive and transitive.

. Part-Wholeis reflexive and transitive.

. Synonymis reflexive, transitive and symmetric.

. Antonym is symmetric.

Based on the primitive relationships of atomic concepts, we define four concept-term-based relationships.

Assumet = x1u : : :u xn and t 0 = y1u : : :u ym are two concept terms in the following definitions, where

t 2 T; t 0 2 T; 8i (1� i � n) (xi 2C) and8 j (1� j �m) (yj 2C).

Definition 1 Specific Relation SPEC(t; t 0).

Concept term t is morespecificthan concept term t0; iff 8yj 2 fy1; : : : ;ymg 9xi 2 fx1; : : : ;xng; either(xi = yj)

or Synonym(xi ; yj) or Is-A(xi ; yj).

Example 1 SPEC (“wet-winter u warm-winter”, “ wet-winter”); SPEC (“ wet-winter u warm-winter”,

“ warm-winter”); SPEC (“ warm-winteru rare”, “ abnormal-winteru seldom”), sinceIs-A (“ warm-winter”,

“ abnormal-winter”) and Synonym (“rare”, “seldom”).

Definition 2 Equivalent Relation EQ(t; t 0).

Concept term t isequivalentto concept term t0; iff the following two conditions hold:

1) 8yj 2 fy1; : : : ;ymg 9xi 2 fx1; : : : ;xng; either(xi = yj) or Synonym(xi ; yj);

2) 8xi 2 fx1; : : : ;xng 9yj 2 fy1; : : : ;ymg; either(yj = xi) or Synonym(yj ; xi).

Example 2 EQ (“warm-winteru rare”, “ warm-winteru seldom”), since Synonym (“rare”, “seldom”).

Definition 3 Intersect Relation INSE(t; t 0).

Two concept terms t and t0 intersect, iff 9yj 2fy1; : : : ;ymg 9xi 2fx1; : : : ;xng; either(xi = yj) or Synonym(xi ; yj).

Example 3 INSE (“warm-winteru disease”, “warm-winteru wet-winter”), with “ warm-winter” as the

common concept.

Definition 4 Opposite Relation OPSI(t; t 0).

Concept term t isoppositeto concept term t0; iff the following two conditions hold:

1) 8yj 2 fy1; : : : ;ymg 9xi 2 fx1; : : : ;xng, either(xi = yj) or Synonym(xi ; yj) or Antonym(xi ; yj);

2) 9yj 2 fy1; : : : ;ymg 9xi 2 fx1; : : : ;xng; Antonym(xi ; yj).
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Two concept terms are opposite if their concepts contained are either the same, synonym, or antonym. The

second requirement in the definition indicates that there exists at least one antonym concept pair between the

two concept terms.

Example 4 OPSI (“dry-winteru f lu”, “ wet-winteru f lu”), since Antonym (“dry-winter”, “ wet-winter”)

and the rest concept “ f lu” exists in both concept terms.

Property 2 The four context-term-based relationships defined above have the following properties:

. SPEC is reflexive and transitive.

. EQ is reflexive, transitive and symmetric.

. INSE is reflexive and symmetric.

. OPSI is symmetric.

3.3 Hypotheses

A hypothesis communicates a human’s cognitive idea or thinking about things in existence, such as the causal

connection of situations, the sequential occurrence of events, etc. Here, we describe each piece of hypothesis

through a predicate with concept terms as its arguments. At the moment, we focus our study on binary

predicates associated with two concept terms - a left-side concept term and a right-side one. For example, the

hypothesis “Wet winter may cause summer flood” can be expressed asCause(“wet-winter”, “ summer-flood”).

“Air pollution may cause acid rain” is another hypothesis example which can be described asCause(“air-

pollution”, “ acid-rain”). The DL’s knowledge subspace is made up of a number of this kind of hypotheses.

Definition 5 A hypothesisH is a binary predicate H= P(tl ; tr), where P is the predicate name, and tl ; tr 2 T

are the left- and right-side concept terms of the predicate, respectively.

By means of the concept-term-based relations, we can formulate the inter-relationships among hypotheses as

follows.

Definition 6 A hypothesis H= P(tl ; tr) is morespecificthan a hypothesis H0 = P(t 0

l ; t 0

r), written as H�h H 0,

iff one of the following conditions holds:

1) EQ (tl ; t 0

l ) and SPEC(tr ; t 0

r);

2) EQ (tr ; t 0

r) and SPEC(tl ; t 0

l );

3) SPEC(tl ; t 0

l ) and SPEC(tr ; t 0

r).

Conversely, H0 is calledmore generalthan H, written as H0 �h H.

Axiom 1 Let H= P(tl ; tr) and H0 = P(t 0

l ; t 0

r) be two hypotheses, where H�h H 0. H is true implies that H0 is

true. In other words, P(tl ; tr)! P(t 0

l ; t 0

r) and:P(t 0

l ; t 0

r)! :P(tl ; tr).

Note that using the definition of speciality/generality between hypotheses, we can be sure that if a hypothesis

is consistent with a set of documents, any generalization of it will also be consistent with this document sets.

Conversely, if a document does not justify a hypothesis, it cannot justify any specialization of that hypothesis

either.
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Example 5 Hypothesis H1 =Cause (“wet-winteru warm-winter”, “ summer-flood” ) is more specific than

hypothesis H2 =Cause (“wet-winter”, “ summer-flood” ), which is also more specific than hypothesis H3 =

Cause (“wet-winter”, “ river-behavior” ). That is,(H1�h H2) and(H2�h H3), since SPEC(H1:tl ; H2:tl ) and

EQ (H1:tr ; H2:tr), SPEC(H2:tr ; H3:tr) and EQ(H2:tl ; H3:tl ).

Definition 7 A hypothesis H= P(tl ; tr) is equivalentto a hypothesis H0 = P(t 0

l ; t 0

r), written as H�h H 0, iff

EQ (tl ; t 0

l ) and EQ(tr ; t 0

r).

Definition 8 Two hypotheses H= P(tl ; tr) and H0 = P(t 0

l ; t 0

r) are supplementary, written as H'h H 0, iff

either of the following two conditions holds:

1) EQ (tr ; t 0

r) and INSE(tl ; t 0

l ).

2) EQ (tl ; t 0

l ) and INSE(tr ; t 0

r).

The first condition of the definition states that the two hypotheses have the same left-side, but the right-side

of the predicate intersect, while the second condition is in reverse.

Example 6 H1 = Cause(“ wet-winteru warm-winter”, “ summer-flood” ) and H0

1 = Cause(“ wet-winter”,

“ summer-flood” ) can be viewed as a pair of supplementary hypotheses(H1 'h H 0

1), since EQ(H1:tr ; H 0

1:tr)

and INSE(H1:tl ; H 0

1:tl ).

So is the pair of H2 = Cause(“ wet-winter”, “ summer-flood” ) and H0

2 = Cause(“ wet-winter”, “ summer-

floodu hot-summer” ) (H2'h H 0

2), since EQ(H2:tl ; H 0

2:tl ) and INSE(H2:tr ; H 0

2:tr).

Definition 9 A hypothesis H= P(tl ; tr) is oppositeto a hypothesis H0 = P0(t 0

l ; t 0

r), written as H∝h H 0, iff

either of the following two conditions holds:

1) EQ (tr ; t 0

r) and OPSI(tl ; t 0

l ).

2) EQ (tl ; t 0

l ) and OPSI(tr ; t 0

r).

Example 7 H1 = Cause(“ wet-winter”, “ summer-floodu hot-summer” ) and H2 = Cause(“ wet-winter”,

“ summer-floodu cool-summer” ) can be viewed as a pair of opposite hypotheses(H1 ∝h H2), since EQ

(H1:tl ; H2:tl ) and OPSI(H1:tr ; H2:tr).

Property 3 The relationships defined on hypotheses have the following properties:

. Specific�h is reflexive and transitive.

. Equivalent�h is reflexive, transitive and symmetric.

. Supplementary'h is symmetric.

. Opposite∝h is symmetric.

Hypotheses and the defined relationships among them constitute DL’s knowledge subspace, on which knowl-

edge inquiry, navigation and induction can be performed to support users’ tactical requests. If a new user

inquiry has the form of a hypothesis, the above relationships likeequivalent, specific/general, supplementary

can be explored to find matching hypotheses in the knowledge subspace. The hypotheses together with the

backing documents (see Figure 2) are returned to the user as a part of the answer to his/her inquiry.
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4 The Construction of DL’s Knowledge & Document Subspaces

The construction of such a knowledge subspace and its associated justification (document) subspace can be

done in two ways: 1)human-centered knowledge acquisition.Experienced humans input hypothesis knowl-

edge manually, based on which justifying articles are collected by performing searching and browsing on DL

systems; 2)machine-centered knowledge acquisition.Under the assistance of users, DL systems automati-

cally deduce hypothesis knowledge by correlating and analyzing data sources. We discuss these two methods

in detail in the following subsections.

4.1 Human-Centered Knowledge Acquisition

The central problem in all attempts to leverage a digital library by addingknowledgeto mainlysymbolic data

(either in the form of raw data or document collections) is to understand the data. Currently, machines hardly

extract proper knowledge from data alone. Therefore, any practical application of the techniques described in

this paper involves human knowledge acquisition efforts.

The sheer amount of data available through current digital library systems, including the Web, prevents “chart-

ing of the knowledge space,” as traditionally done by librarians and other knowledge workers. Their efforts

are still invaluable, as all “portals” on the Internet prove: few true search engines without human knowledge

charts survive to date. However, humans alone on the knowledge provider side cannot properly chart all

documents and data that becomes, or already is, available to (potential) knowledge consumers.

What is needed is a human input from theconsumerside. As even detailed logs of search engines prove, these

logs (taken at the tactical level of information seeking) only reveal attempts of users to find what they want

using coarse, dumb tools [30]. It is like attempting to reconstruct the history of the great pyramids in Egypt by

looking only at the cuts the tools of the stone carvers made on the sand stone blocks. What is totally missing

from search engine query logs is the actualstrategic intentionof the user behind the keyboard.

Acquiring this strategic intention is difficult. Few users will volunteer a semi-formal description of their

intentions when there is no single form of short-term reward for their efforts. Users will never take the time

to learn a formal language to express their strategic target in, and any user interface trying to guide them will

likely become either too complex to understand or too coarse to be of use.

In order to overcome at least some of these problems and to be able to run some experiments on strategic user

intention acquisition, we intend to concentrate on a very limited subset of knowledge acquisition (hypothesis

support/denial). Such a limited goal can be pursued with limited tools, making it suitable for a small group

of users with a well-defined type of knowledge need. On top of the limited, but understandable and simple

strategic intention acquisition tool, we intend to implement some kind of immediate reward system that makes

it attractive for users to specify their strategic intentions to the system before embarking on their traditional,

tactical search effort. Currently we think of a system that extends the user’s quota for certain activities,

typically inter-library loans or other kinds of priced assets that are required for the work, but are in short

supply due to the costs involved. Users who are active in supplying proper strategic targets are rewarded

by increasing quota for related activities, facilitating their work. Existing systems which use this “return on

investment” policy have showed that such a policy has a self-regulating property2, and indeed may lead to a

2http://www.slashdot.org
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coarse but useful filtering of data items (documents) useful to support a strategic goal.

Our future work will concentrate on finding a proper test case for such a system, and to gather data on the

success of a “return on investment” policy, the collected strategic knowledge targets in respect to the retrieved

documents, and the re-usability of these targets and the document result sets for other users with comparable

information needs.

4.2 Machine-Centered Knowledge Acquisition

With more and more digital information in a wide variety of disciplines accumulated in DLs today, the au-

tomatic and/or user-assisted semi-automatic extraction of inherent knowledge from such a large volume of

data becomes indispensable. In this subsection, we outline a framework for machine-centered knowledge

discovery across multiple repositories in DLs. Basically, it proceeds in 6 steps: 1)set up knowledge discovery

targets,2) identify relevant resources,3) filter out interesting concepts from identified resources,4) corre-

late concepts according to contextual information,5) extract knowledge and justifications from correlated

concepts,and 6)evaluate the discovered knowledge and justifications.

Phase-1: Set Up Knowledge Discovery Tasks

Before extracting knowledge and associated justifications, we need to know what kind of knowledge and jus-

tifications are expected from users. Does the user want to know the inherentassociationsof some of concepts

in certain areas? Or does the user want to obtain some knowledge onclassifyingor discriminatingobjects?

Or is the user interested in thesequential evolutionof certain objects in order to make predictions? Here, a

friendly user interface is important to the natural and accurate specification of such knowledge acquisition

targets.

Phase-2: Identify Relevant Resources

Confronted with a huge collection of data sources scattered in heaps of repositories, we must identify repos-

itories which contain the most likely relevant resources in respect to a given knowledge request. Otherwise,

the following knowledge discovery process will be lengthy, aimless and inefficient. To do this, we must cat-

egorize the information content in each repository. By querying the concepts, which are elicited from the

user’s request and background, against these meta-data catalogs, we may identify relevant data sources. For

example, if a user is interested in the correlations between “summer flood” and “meteorological factors”, the

meteorological repository in the observatory headquarters, and the repository in the river management office,

will be identified as mostly relevant.

Phase-3: Filter Out Interesting Concepts from Identified Resources

The identified resources from Phase-2 could be in various formats. They can be unstructured articles, mul-

timedia documents, formatted reports, database records, semi-structured files, or hypertexts, etc. To make

knowledge discovery across multiple heterogeneous repositories possible, we need to transform the original

data sources into a uniform format. Arecord structureconsisting of a set of keywords can be exploited to

describe each documental entity. These keywords explicate the major concepts conveyed by the correspond-

ing documents. For example, from a textual article which mentions “high rainfall amounts in November and

December in 1996”, we can filter out “wet winter” concept “in 1996”. Note that the transformation from

heterogeneous resources into keyword-based records solicits a wide range of techniques, including natural

language processing, information analysis, categorization and summarization, textual and multimedia data
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mining, etc.

Phase-4: Correlate Concepts According to Contextual Information

Data records filtered out of diverse resources must be logically linked together so that their inherent associ-

ations can be detected. This could be done based on their common contextual information. For example, to

find possible relationships betweenseasonandriver behavioras a consequence, we can linkyearly weather

record obtained from one resource, with the correspondingriver behavior recordin the same year, which

is obtained from another resource. Here, “year” conveys a kind of contextual information with which the

existence of concepts “weather” and “river behavior” have concrete meaning. Table 1 shows a list of logical

connection examples between these two kinds of records.

linked record weather record river behavior record
ID Context In f o: Concept Context In f o: Concept

1 1984 : wet winter, warm 1984 : serious flood summer
2 1985 : dry winter, warm 1985 : no flood summer
3 1986 : wet winter, cold 1986 : no flood summer
4 1994 : wet winter, cold 1994 : flood summer
5 1996 : except wet winter, cold 1996 : flood summer

Table 1: A logical connection example between two resource records

Phase-5: Extract Knowledge and Justifications from Correlated Concepts

After preparing linked data records, we are now in a position to find their inherent knowledge and justifica-

tions. In the current study, we focus on the discovery of correlationships of concepts. The association rule

technique developed in the data mining area can be applied to this knowledge extraction phase.

The problem of mining association rules from transactional data was first introduced in [1]. The application is

sales data of supermarkets. It aims to discover the associations among items purchased by customers such that

the presence of some items in a transaction will imply the presence of other items in the same transaction. The

following is a mathematical model to address the problem of mining association rules. LetI = fi1; i2; :::; img

be a set of literals, called items. LetD be a set of transaction records, where each transaction recordA consists

of a set of items such thatA� I . Let X be a set of items. A transactionA is said to containX if and only if

X � A. An association rule is an implication of the formX )Y, whereX � I , Y � I andX\Y = φ. The rule

X )Y holds in the transaction setD with con f idence cif c% of transactions inD that containX also contain

Y. The rule hassupport sif s% of transactions inD containX[Y.

Applying the concept of association rules in transactional data to our linked records illustrated in Table 1,

we can find the correlationship of concept terms like “wet-winter) summer-flood”. Since among the total

5 records in this small database, 3 of them containfwet-winter, summer-floodg, thussupport= 3=5= 60%.

Within the 4 records statingwet winter, 3 of them also statesummer flood. Therefore, we havecon f idence=

3=4 = 75%. These supporting records, together with thesupportandcon f idencemeasurement values, can

serve as the justifications for the extracted knowledge.

Phase-6: Evaluate the Discovered Knowledge and Justifications

Obtaining a set of knowledge and justifications is not the end. Besides using statistical indicators such as

support, confidence to measure the strengths of discovered knowledge, we may also incorporate subjective
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measurements to evaluate and rank their significancy in respect to users’ cognitions and their real-life prob-

lems.

5 Discussions

We extend the traditional role of DL systems from information provider to information & knowledge provider

by incorporating both knowledge and documents into the DL’s information space. The proposed framework

raises a number of issues, calling for multi-disciplinary cooperation in the information science field. In this

section, we provide a brief review of relevant work from different areas, includingontologies and lexical

relations, knowledge representation, information retrieval and multi-source integration in digital libraries,

and then discuss some distinguished features of our work by comparison with the traditional knowledge-

based information systems.

5.1 Related work

Ontologies and Lexical Relations. The wordontologyin philosophy refers to a systematic description of a

minimal set of concepts that a language needs to express all its other concepts. In linguistic and lexicographic

contexts, an ontology is a specification of the concepts and their relationships that exist for a community of

people or automated agents. Its purpose is to enable knowledge sharing and reuse. To reflect cognitive re-

lations among the concepts as expressed by or embodied in words in natural languages, the theory oflexical

relationswas developed [19], where information is represented as a collection of nodes connected by labeled

arcs that express links or relationships between the nodes. These links may represent semantic and syntactic

relationships among concepts, and can be used to reflect not only major aspects of word meaning, but also

their morphological relationships [25]. The most widely recognized relationships includeis-a, part-whole,

synonym, antonym, which can be denoted using either a labeled arc or a proposition node. Further, a method-

ology for identifying, evaluating and describing different relationships, along with their logical properties

in modeling human reasoning, was presented [22]. The method begins with a study of dictionary and folk

definitions to obtain the linguistic formulae used to express the link in question. Then it discovers how this

link appears in anthropology, linguistics, philosophy and psychology, and the way it interacts with other links

and the way it is used in conceptual information processing. A hierarchy of lexical-semantic relations is thus

constructed which contains both basic and non-basic semantic relations as well as a large number of lexical

relations. Many (but not all) of the lexical relations so far identified can be extracted automatically from

dictionary definitions [25]. CYC developed in [21] aims to build a common sense knowledge base consisting

of roughly 100,000 general concepts spanning all aspects of human reality. WordNet is another remarkable

and widely used lexicon, which groups the words together by means of synonym sets. It aims to provide an

aid to search in a lexicon in a conceptual rather than an alphabetical way [24].

Knowledge Representation. Knowledge is an important element of any AI application. A number of

knowledge representation schemas are designed in the AI field so that the knowledge can be applied in the

reasoning process to solve problems. These techniques can be roughly categorized as eitherdeclarative

methods, in which most of the knowledge is represented as a static collection of facts accompanied by a small

set of general procedures for manipulating them; orprocedural methods, in which the bulk of the knowledge

is represented as procedures for using it. Typical declarative methods include predicate logic, semantic nets,
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frames and scripts. 1) Predicate logic involves using standard forms of logical symbolism to represent real-

world facts as statements, written as well-formed formulae, which are made up of predicates, constant terms,

variables, logical connectives, and quantifiers. 2) Semantic nets take the complex structure of the world

into consideration, where information is represented as a set of nodes connected to each other by a set of

labeled arcs, representing relationships among the nodes. 3) Frames and 4) scripts serve as general-purpose

knowledge structures that represent some common features of things or sequence of events in a particular

context. Some procedural knowledge representation methods include procedures and production rules. In our

study, we explore the use of predicate logic and semantic network mechanisms to represent hypotheses and

their inter-relationships in DL’s knowledge subspace.

Information Retrieval and Multi-Source Integration in DLs. To support efficient informationsearching

activity, many efforts have been made in developing retrieval models, building document and index spaces, ex-

tending and refining queries for DLs [13, 9]. In [11], index terms are automatically extracted from documents

and a vector-space paradigm is exploited to measure the matching degrees between queries and documents.

Indexes and metadata can also be manually created from which semantic relationships are captured [10].

Furthermore, the information space consisting of a large collection of documents can be semantically par-

titioned into different clusters, so that queries can be evaluated against relevant clusters [32]. According to

topic areas, a distributed semantic framework is proposed to contextualize the entire collection of documents

for efficient large-scale searching [27]. To improve query recall and precision, several query expansion and

refinement techniques based on relational lexicons/thesauri or relevance feedback have been explored [31].

A recent work incorporates knowledge about the document structures into information retrieval, and the pre-

sented query language allows the assignment of structural roles to individual query terms [33]. Applying AI

to library science, many library-oriented expert systems have been developed in the literature [20]. Most of

these systems essentially aid in carrying out the support operations of libraries, such as descriptive cataloging,

collection development, disaster planning and response, reference services, database searching, and document

delivery, etc. [20]. On the other hand, observing one DL usually contains lots of distributed and heteroge-

neous repositories which may be autonomously managed by different organizations, in order to facilitate

users’browsingactivities across diverse sources easily, many efforts have been engaged in handling various

structural and semantics variations and providing users with a coherent view of a massive amount of infor-

mation [29, 6]. The concept extraction, mapping and switching techniques, developed in [4, 6], enable users

in a certain area to easily search the specialized terminology of another area. A dynamic mediator infrastruc-

ture [23] allows mediators to be composed from a set of modules, each implementing a particular mediation

function, such as protocol translation, query translation, or result merging [26]. [28, 17] present an extensible

digital object and repository architecture FEDORA, which can support the aggregation of mixed distributed

data into complex objects, and associate multiple content disseminations with these objects. [18, 26] employ

the distributed object technology to cope with interoperability among heterogeneous resources. The expe-

riences in designing and implementing digital libraries including the archival repository architecture, user

interface, and cross-access mechanism, etc. are extensively described in [16, 8, 7, 3].

5.2 Some Distinguished Features

Compared to the traditional expert-like knowledge-based information systems, the DL systems enhanced with

knowledge elements have the following distinguished features.
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Functions. Knowledge-based systems simulate human behavior by making deductions using the rules of log-

ical inference. Most businesses have processes which are based on rules and company policies. Knowledge-

based systems are designed to apply these rules to make judgement in processing business routines and come

up with a conclusion to a certain pre-defined problem [2]. For example, a production rule used in knowledge-

based systems always has the format: IF x THEN y, whose IF part states a premise and THEN part refers

to the conclusions or consequences. On the contrary, the mission of a DL system equipped with a knowl-

edge subspace is to make expertise knowledge widely available to the public. We can view such a system

as aninformation & knowledge dictionary, since a huge body of knowledge of various kinds in the world,

together with their justification documents, is preserved, classified, and maintained inside its knowledge sub-

space. Turning on a DL system, users can acquire not only the requested documents, but also the knowledge

in response to their high-order cognitive questions.

Scopes. A knowledge-based system intends to solve problems in a specific area/domain (e.g., company

delivery charge, heart disease diagnosis, etc.) The rules stored in its knowledge base are thus only limited to

a particular field of interest. Comparatively, the scope of the knowledge embraced within the DL’s knowl-

edge subspace is very extensive, covering a wide spread of scientific and enginering disciplines. Users from

different backgrounds can turn to the library for expert-like helps in carrying out their work.

Unitization. With the continuing developments in storage and communication technologies, a tremendous

amount of structured, semi-structured, and unstructured information assets is collected and maintained within

a DL. While we extend the DL’s information space to incorporate knowledge, such a huge body of documents

constitutes knowledge justifications for users’ further reference. In comparison, this is not the case for tradi-

tional knowledge-based systems, which provide only a limited amount of rules and facts in a particular field

of expertise.

6 Conclusion

Motivated by the problems - (i) inadequate strategical level cognition support; (ii) inadequate knowledge

sharing facilities - with the present-day digital library systems, we first introduce a two-layered digital library

function model to support different levels of human cognitive acts. The tactical level cognition support aims to

provide users with requested relevant documents, as searching and browsing do, while strategic level cognition

support can provide not only documents but also intelligent answers to users’ high-order cognitive questions.

Second, to address users’ high-order cognitive requests, we propose an information space comprised of a

knowledge subspaceand adocument subspace. Finally, two mechanisms for constructing the two subspaces

are discussed to enable knowledge sharing and propagation among DL users. The major contributions of

the paper are twofold. First, the presented DL information space extends the traditional role of DLs from

information providerto information & knowledge provider. Second, the traditional simple keyword-based

index schema is expanded to strategic knowledge-based level, consisting of inter-related hypotheses that are

backed by documents. One can say that the essence of the documents is reconstructed in the DLs’ knowledge

level.

We view this work as a first step, with a number of interesting problems and challenges remaining for future

work. (1) To facilitate strategic level cognitive activities, efficient storage and management of the knowledge

& document subspaces is very important and must be carefully planned. This demands effective indexing
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strategies for both knowledge and justifying documents. (2) Efficient knowledge inference and navigation

mechanisms must be built to support users’ question-answering. (3) A flexible and easy-to-use query lan-

guage is to be designed to help DL users make the best of information and knowledge assets in solving their

problems. (4) Scalability is a big issue in any DL, which usually contains tens of thousands of repositories of

digital information. Discovering knowledge from such a huge amount of heterogeneous resources and main-

taining the discovered knowledge are a big challenge. (5) Libraries exist in a social and economic framework.

Intellectual property and data security are a big concern when performing cross-repository correlation and

analysis. One possible way here is to conduct multi-leveled information analysis, so that users of different au-

thentication levels can have different views of analysis results. (6) Our eventual goal is to develop a practical

DL system, which can empower human with real actionable knowledge in solving their information problems.
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