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Abstract. Key performance indicators are a widely used tool to manage any
type of processes including manufacturing,  logistics,  and business processes.
We present  an approach to  map informal  specifications of  key performance
indicators to prototypical data warehouse designs that support the calculation of
the  KPIs  via  aggregate  queries.  We  argue  that  the  derivation  of  the  key
performance  indicators  shall  start  from  a  process  definition  that  includes
scheduling and resource information. 
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1   Introduction

Key performance indicators (KPI) evaluate the success of an organization or of a
particular  activity  in  which  it  engages  (source:  Wikipedia).  They  are  used  to
continuously monitor those activities [1]  in order  to understand and control  them.
Deming  [2]  pioneered  this  field  by  statistically  correlating  independent  process
parameters to dependent performance indicators known as statistical process control
(SPC).  In  SPC,  the  process  parameters  are  kept  in  certain  ranges  such  that  the
dependent  variables  such  as  KPIs  or  the  product  quality  also  remains  in  certain
predictable ranges. These ideas were later also applied to software engineering [3],
and to business process management [1]. Typical  examples of KPIs are number of
defects  of  a  product,  customer  satisfaction  with  a  service,  the  profit  margin  of  a
product, the percentage of deliveries before the promised delivery time, the machine
utilization in a factory, and so forth. All these examples relate in some respect to an
activity or to sets of  activities.  Moreover,  they involve the interaction of  multiple
objects or subjects such as customers, employees, or machines. 

In this paper, we investigate the relation of KPIs, data warehouses, and business
process management. Specifically, we propose a guideline on deriving a prototypical
data warehouse design from annotated KPI definitions, which themselves are derived
from  business  process  model  fragments.  This  yields  a  top-down  data  warehouse
design that strictly supports the calculation of the KPIs via aggregate queries.

1  Part of the research was carried out while the second author was carrying out his master
thesis project in the Erasmus IMMIT program at Tilburg University, The Netherlands.
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A data  warehouse  consists  of  multi-dimensional  facts  representing  measurable
observations  about  subjects  in  time  and  space.  The  subjects,  time  and  space  are
forming the dimensions, and the measures are representing the observations about the
participating  subjects.  A  data  warehouse  is  essentially  a  large  collection  of
measurements covering a certain part of the reality.  In practically all instances, the
measurements  are  about  processes.  If  it  were  not,  it  would  only  provide  a  static
account of objects in the reality. The key problem of this paper is how to design the
data warehouse from annotated KPI definitions such that the KPIs can be calculated
by aggregate queries on the data warehouse.

Another angle to KPIs is their summarizing nature. A KPI is not based on a single
arbitrary observation but it aggregates a large number of observations about the same
entities (or activities) to be statistically meaningful. The concept of an observation is
the atomic building block of KPIs. Once the common properties of observations are
set, one can start to collect such observations systematically and create the KPI on top
of  them.  Different  types  of  observations  lead  to  different  KPIs.  So,  given  the
definition of a KPI, what is the type of observations belonging to this KPI? KPIs can
also  be  formed  as  expressions  over  other  more  simple  KPIs.  For  example,  the
productivity of a process can be measured the division of a KPI on the output of the
process divided by a KPI on the resources used for producing the output. Such KPIs
are called  derived KPIs.  Since their computation is simple once the part KPIs  are
computed, we shall focus on simple KPIs that are not defined in terms of other KPIs
but that are defined in terms of sets of atomic observations of the same type. 



2    Related Work

Key  performance  indicators  are  a  technique  to  quantify  the  performance  of  an
organization or of its processes to achieve business objectives. In this chapter we view
KPIs as used in conceptual modeling, in particular business process modeling, and in
data warehousing.

2.1   Key performance indicators in conceptual modeling

Wetzstein  et  al.  [1]  investigate  the  definition  of  KPIs  in  the  context  of  business
process models, in particular from a service-oriented architecture perspective. Simple
KPIs (called process performance metrics, PPMs) are the basis of more sophisticated,
context-specific  KPIs  such  as  determining  whether  a  customer  has  received  the
promised quality of service QoS (e.g.  response time) can depend on the customer
class and further parameters that we can view as dimensions of the KPI measurement.
In their view a KPI is based on PPMs, a QoS definition, and a decision tree that
determines whether a PPM measurement fulfills the QoS definition. 

Strategic business modeling based on the Business Intelligence Model BIM [4]
extends the goal modeling language i* by metrics linked to i* goals on the one side
and tasks on the other side. The goals are monitored by the metrics and the tasks are
the  measures  to  achieve  the  goals.   The  metric  interval  is  decomposed  into
performance  regions  (target,  threshold/acceptable,  worst  value).  The  approach
reminds of balance scorecards but extends it to the rich goal modeling language i*.

In  software  engineering,  KPIs  were  introduced  to  manage  the  software
development  process  [22],  in  particular  in  combination  with  the  capability  and
maturity model CMMI [23]. Measurements such as the defect density in source code
are  used  to  control  the  software  development  process.  Oivo  and  Basili´s  goal-
question-metric  (GQM)  approach  [24]  provides  an  informal  guideline  on  which
metrics need to be monitored in order to assess that a certain goal (like improving the
software  quality)  is  reached.  A quality  goal  is  decomposed  in  a  set  of  quality
questions, which is itself decomposed into a set of quality metrics. The metrics are
comparable to KPIs. Hence, the GQM approach allows to group KPIs by the goals of
stakeholders.  An agreement  on goals  allows to  focus  only on those KPIs  that  are
needed to assess to which extent the goals have been reached. The GQM approach
highlights  that  metrics  (and  thus  KPIs)  should  not  be  mixed  up  with  goals.
Nevertheless, quality goals are often formulated in terms of KPIs such as the average
cycle time of a certain process must be below a certain threshold.



Statistical  process control (SPC) [25] was introduced by Deming [2] and others
into  the  manufacturing  domain  as  a  tool  to  monitor  the  production  and  product
quality.  Specifically,  it  measures  parameters  and  establishes  statistical  correlations
between  the  parameters  (called  variables  in  statistics).  The  correlations  between
variables are translated into a set of equations for predicting values for dependent
variables from independent variables. The idea is to control the independent variables
(such as the quality of input materials) at early stages of the production process in
order to guarantee that the dependent variables (such as product quality parameters)
are within  a desired interval. The variables in SPC are comparable to KPIs. 



2.2   Data Warehouse Design and KPIs

A central issue in data warehousing is to design appropriate multi-dimensional data
models  to  support  querying,  exploring,  reporting,  and  analysis  as  required  by
organizational  decision  making.  DW  design  has  received  considerable  research
attention. However,  there are different methodological  approaches proposed by the
literature. Some approaches are data-driven in the sense that they aim at deriving facts
and dimensions from the structures of operational sources that are usually represented
as  Entity  Relationship  Diagrams  (ERD)  or  Unified  Modeling  Language  (UML)
diagrams.  The  outcome of  this  approach  is  a  set  of  candidate  facts  or  even  data
schemas, among which only relevant ones are selected to include in DW systems. For
instance, Golfarelli et al. [5] proposed the DW design approach based on E/R scheme.
Golfarelli and Rizzi [6] also developed a data-driven method for DW design based on
Dimensional Fact Model. 

Song, Khare, and Dai [7] developed the SAMSTAR method that is a semi-automated
approach  to  generating  star  schema from operational  source  ERD.  Although,  the
authors mentioned that the SAMSTAR method was both data-driven and goal-driven,
this  method is  primarily  data-driven  because  it  derives  star  schema based  on  the
structures  and  semantic  of  operational  sources.  Zepeda,  Celma,  and  Zatarain  [8]
proposed a conceptual design approach consisting of two stages. The first stage is to
generate multidimensional data structures from UML-based enterprise schema. The
second stage  is to use user  requirements  to select  relevant  schema. Moreover,  the
algorithm for  automatic conceptual  schema development  and evaluation  based  on
Multidimensional  Entity  Relationship Model  (M/ER) was  invented  by Phipps and
Davis [9]. Similarly, Moody and Kortink [10] proposed a methodology for designing
DW schema based on enterprise models. 

On the other hand, a goal-driven approach gives more relevance to user requirements
in  designing  DW.  Prakash  and  Gosain  [11]  present  a  requirement-driven  data
warehouse development based on the goal-decision-information model. In addition,
Giorgini,  Rizzi, and Garzetti [12] propose a goal-oriented requirement analysis for
DW design in which the organizational goals are made explicit and decomposed into
sub-goals and then the relationships among sub-goals and actors are identified and
analyzed.  Their  method  starts  with  identification  of  corporate  goals  (i.e.,  user
requirements) and actors involved. The actor can be either a responsible persons or
resources that are needed to accomplish the goal.            



We focus on the conceptual design phase to provide a blueprint for lower level logical
design  that  is  consistent  with  the  KPI  definitions  from which  we  start.  Tryfona,
Busborg, and Christiansen [13] developed the starER model for conceptual design of
Data Warehouses and argued that DW design should be exposed to higher level so
that  it  becomes more understandable,  and easier  to identify conceptually what are
ingredients  are  actually  needed  in the DW. In  addition,  it  is  advisable  not  to  use
computer metaphors such as ‘table’ or ‘field’ 

Jones  and  Song  [14]  developed  Dimensional  Design  Pattern  (DDP)  that  assists
designers to effectively determine commonly used DW dimensions. In this sense, the
DDP  framework  consist  of  six  classes  of  dimension  domain,  from  which  DW
designer can choose specific dimension and attributes during the mapping process. 

Moreover, an important issue in designing DW schema is additivity of facts. A fact is
additive  relative  to  a  dimension  if  it  is  summarizable  along that  dimension.  The
importance of summarizability is discussed by Shoshani [15]. Horner, Song, and Chen
[16] present a taxonomy of summary constraints that can be used for this purpose. 

The other issue in designing DW schema is the choice between the various types of
multidimensional data models, among which star schema and snowflake schema are
most  common  in  data  warehouses.  However,  the  most  data  warehouses  use  star
schema for two important reasons. First, it is the most efficient design because less
joint operations are required due to denormalized tables. Second, the star schema is
supported by most query optimizers for creating an access plan that use efficient star
join operations [17].      

A study of data warehouse in connection with KPIs can be found in the triple-driven
data modeling methodology presented by Guo et al [18]. This methodology consists
of four major stages: (1) goal driven stage, (2) data driven stage, (3) user driven stage,
and  (4)  combination  stage.  During  the  first  stage,  business  goals  and  KPIs  are
identified according to business subject  area.  The second stage is to obtain a data
schema that supports the KPIs from the operational data sources. The third stage is to
interview users in order to identify important business questions. The fourth stage is
to check if the business KPIs can be calculated and questions can be answered by the
obtained data schema. As indicated by its second stage, this methodology is primarily
data-driven  because  the  operational  sources  impose  total  constraints  on  the
computation of KPIs. Moreover, the first stage is where KPIs have to be identified
and the attributes needed to support these KPIs have to be determined. However, this
methodology does not specify how to determine those required attributes as part of
the DW data models. In other words, the practical steps to analyze the KPI structural
definition are not provided. In addition, the generation of star schema is based on the
data-driven method that was developed by Moody and Kortink [10].

Vaisman  and  Zimány  [21]  propose  a  classification  of  KPIs  along  several
dimensions.  First  KPIs  are  classified  wrt.  to  the  time span  of  observations  (past,



present, future). Second, they distinguish KPIs on inputs needed for a business results
from KPIs about the business result and performance. Further, there are operational
vs.  strategic KPIs  and qualitative (obtained by surveys  etc.) vs. quantitative.  They
multidimensional expressions (MDX) to relate a KPI value to a KPI goal (expressed
as thresholds or intervals).

In the sequel, we develop an informal guideline on how to create a data warehouse
schema  out  of  patterns  found  in  business  process  models.  The  multi-dimensional
character of the KPIs is excerpted from the products serving as inputs and outputs of
the processes, the resources used in the processes, and time and location information.
We also shall review the role of plans and schedules (compare to targets in BIM) in
formulating KPIs.

3    Data Warehouses for Structuring Observations

A data warehouse manages multi-dimensional facts, where each fact constitutes an
observation  about  the  domain  of  interest,  e.g.  an  enterprise.  The  structure  of  an
observation is a tuple

(d1, d2 ,…, dk, m)

where  di are  dimension  entities  represented  by  their  identifier  and  m  is  a
measurement  value,  typically  a  number.  The  measurement  value  attribute  is
functionally dependent from the combination of dimension entities. As an example
assume that  we have the dimensions car,  location, and time and the measurement
attribute ‘speed’ for representing car speed observations. Then, the observation facts
would look like

(‘Marys car’,‘Skövde’,2013-09-28T10:31:19,385)

(‘Johns car’,‘Barcelona’,2013-03-12T21:07:47,145)

As functional expressions, these observations can be represented as equations

speed(‘Marys car’,‘Skövde’,2013-09-28T10:31:19)=385



speed(‘Johns car’,‘Barcelona’,2013-03-12T21:07:47)=145

We learn from this example that the dimensions of the observation determine the
circumstances under which the speed observation was made. The car  parameter  is
representing  an  entity  participating  in  the  observation.  Location  and  time  are
dimension entities that frequently occur in observations. Other than the car, they are
not  entities/objects  of  the  real  world  but  we  can  reify  them  to  be  entities.  This
reification  is  common  in  data  warehouses  by  creating  dimension  tables  where
temporal and special dimension values get surrogate identifiers. The goal of this paper
is to derive the dimensions for a simple KPI from a high-level specification for this
KPI.

Fig. 1. Workflow of creating DW schemas from KPI definitions 

The general steps for realizing the KPI are 

1. Specify the KPI including its measurement context. The measurement
context  is  defined  by a  combination of  entities  (customers,  products,
time, location, etc) that were present when the observation was made.

2. Create the supporting data warehouse schema. We limit ourselves in this
paper mostly on the fact table.

3. Code the queries computing the KPI on top of the created schema. 

Natural language KPI definitions found in practice are usually rather ambiguous by
nature. Take for example the average speed of cars as a KPI for the traffic process.
What  is  the  context  of  the  underlying  observations?  It  can  be  the  time  of  the
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measurement,  the location,  and the car  involved in the measurement.  However,  it
could also include the car driver.  Some of the relevant context may be difficult to
determine such as the car driver. This can limit the utility of the KPI for decision
making or for understanding the process underlying the observations. 

3.1   The process nature of observations 

An observation is a statement made by agent (the observation)  about an object in the
reality,  possibly involving other objects. Lenz and Shoshani [19] differentiate flow
and stock observations. A flow observation is about recording a state change of the
object  recorded  wrt.  some time interval,  a  stock observation is a record  about the
object’s state. As a third category, they list  value-per-unit observations, such as the
price of a product. Assume we would only record stock observations. If there are no
changes, then the observations of an object would also not change. This is like listing
the specific weights of elementary substances. If there are changes, then the states of
objects vary over time and shall yield different observations. The reasons for changes
are  processes taking  place  in  the  reality.  These  processes  can  be  natural  like  the
radioactive decay or they are man-made, such as production processes. Consider the
example of an oil refinery that stores oil in large tanks. Each tank has a fill level.
There are two processes  that can change the fill  level:  adding oil  to the tank and
removing oil. These processes are embedded in more complex processes taking place
at the oil refinery. Flow observations about the oil tank record how much the state of
an object has changed between two points of time. For example, how many liters of
oil have been added and how many have been removed in the last month. If the state
is known at the start of the time period, then the state at the end of the time period can
be calculated by applying the additions and subtractions of the flow observations. The
third observation type, value-per-unit break down stock or flow observations to small
units, such as the oil price per liter. Assume that the oil refinery buys quantities of oil
on the market at different prices and then stores the oil in the tank. Then each liter of
oil stored in a tank virtually carries its unit price with it. The total value of the oil in
the tank is then the sum of all oil liter unit prices of oil liters stored in the tank. 

The  lesson  learned  from  this  argumentation  is  that  state  changes  require  the
presence of processes. If the processes are natural, then human influence on them is
limited.  For  example,  the water  cycle  on earth  is  driven  by the  sun and leads  to
varying levels of water in the river systems. Still, it makes perfect  sense to record
observations about the water cycle in order to predict the water levels of certain rivers
at  certain  locations,  e.g.,  to prepare  for  flooding.  An organization with man-made
processes  has  an  interest  in  managing  the  processes  to  achieve  its  goals,  e.g.  to
increase  the  profit  or  to  raise  customer  satisfaction.  The  management  includes
changing  the  parameters  of  process  steps  (e.g.  their  scheduling),  adapting  the
resources (e.g. the machines used in production steps), changing the inputs of process



steps  (e.g.  replacing  a  part  by  another  part),  or  changing  the  process  itself  (e.g.,
reordering the process steps or removing unnecessary activities). 

A single observation occurs in a context, which is characterized by the participating
entities. Time and space are regarded here as entities as well.. The presence of time
and  space  indicate  that  such  observations  are  practically  always  related  to  an
underlying process,. The process is the reason why the entities are combined and lead
to observations. As an example, consider the usage process of a customer c1 for a
product p1 at a time t1. The observation for the combination of these three entities
could be a defect  of product p1. This is  an atomic observation.  The measurement
attribute ‘defect’ is either 0 or 1. 

Now, the customer c1 belongs to the set of customers, e.g. the set of customers in
Brazil. The product p1 belongs to the set of all products of a given type, say ACME
Phone-One. Then, we can state for example

Defects(‘Brazil’,’ACME Phone-One’,2014) = 371

The example highlights that it is crucial to identify the context of an observation as a
combination  of  participating  entities.  Combined  with  another  simple  KPI  on  the
number of products of a given type sold in a country in a given year, one can define a
derived KPI on the defect density:

DefectDensity(‘Brazil’,’ACME Phone-One’,2014) =
Defects(‘Brazil’,’ACME Phone-One’,2014) /
Sales(‘Brazil’,’ACME Phone-One’,2014)

A derived KPI is simply a KPI that is defined in terms of other KPIs. A simple KPI is
calculated from a set of atomic observations. Note that the arguments of the two KPIs
'Defects' and 'Sales' are the same, i.e. the context of the two underlying observation
types is the same.

Figure 2 visualizes the step from multi-dimensional atomic observations (upper part)
to  multi-dimensional  aggregated  observations  (lower  part).  The  aggregated
observations are sets of atomic observations about the usage activities of cutomers
with products where the dimension entities of the atomic observations are member of
the  dimension  values  of  the  aggregated  observation.   The  lower  shows rolled-up
dimension entities  (all  for  customer,  2014 for  time,  and  product  group  S).  These
dimension  entities  match  a  set  of  observations,  which  can  be  aggregated  e.g.  by
counting the number of observations.  Any set of atomic observations can define a
multitude of KPIs by combining different dimension values. For example, the KPI

Defects(‘Brazil’,’ACME Phone-One’,2014-01)

aggregates all defect observation in Brazil for the product group 'ACME Phone-One'
in January 2014. We call all such KPIs simple KPIs even though equalities such as



Defects(‘All’,’ACME Phone-One’,2014) =
Defects(‘Brazil’,’ACME Phone-One’,2014-01) +
Defects(‘Brazil’,’ACME Phone-One’,2014-02) +
…
Defects(‘Brazil’,’ACME Phone-One’,2014-12)

hold true. The equality holds true due to the definition of the KPIs on the same set of
atomic observation and the roll-up relations of the dimension entities. 

Fig. 2. Context of atomic and aggregated observations 

We conclude that observations about processes are the basis to define KPIs and that
the context of observations can be represented as a combination of entities such as
products, resources, time, and location. These entities are the same entities that form
the dimensions in a data warehouse. This view is not the only view on KPIs but it is
the  one  used  subsequently to  create  guidelines  on  how to  derive  data  warehouse
schemas and queries from KPI definitions.
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4   From KPI definitions to Data Warehouse Schemas

As motivated before, any KPI is based on observations about underlying processes.
We focus on simple KPIs here, i.e. KPIs that are based on a single type of observation
denoted as

   O(e1,e2,…,m)
where ei are the entities participating in the observation and m is the value of the

observation, usually a number. Hence, an observation is a synonym to a fact in a data
warehouse where all dimension values are taken from the lowest rollup level. We also
use the functional representation

O(e1,e2,…)=m

when appropriate. Since the majority of KPIs are process-oriented, we use process
models to relate them to elements of process models. Specifically, we use the Petri net
notation [20] extended by resource and input/output elements to represent  process
model patterns. Petri nets are the formal basis for process modeling languages such as
BPMN. They provide a clear token passage semantics of the process execution, which
is necessary to define performance indicators such as cycle time. 

Fig. 3. Participating entities and measurements 

The notion of participating entity is central to the subsequent derivation of a data
warehouse schema. We treat  here time and location as entities  just  like any other
physical or immaterial object. 

Motivating Example: Derive DW schema for the KPI “average speed of cars”.

Is it a simple or derived KPI?

This is a simple KPI with an atomic underlying observation type.

What is the structure of the observation type?

speed(Mary's car, Skövde,2013-09-28T10:31:19)=385

participating entities measurement



We identify the participating entities car (given by its identification), the location
of the speed measurement, and the time when the measurement was taken. The
measure is a number with unit km/h. Hence the type of the observation is 

speed(CAR,LOC,TIM,SPEEDM)

What is the schema of the fact table of a data warehouse supporting the KPI?

The participating entities become dimensions, e.g.

CREATE TABLE SPEEDS (
CARID INT,
LOCID INT,
TIMID INT,
SPEEDM FLOAT,
PRIMARY KEY (CARID,LOCID,TIMID),

    FOREIGN KEY (CARID) REFERENCES CAR (CARID),
FOREIGN KEY (LOCID) REFERENCES LOCATION (LOCID),
FOREIGN KEY (TIMID) REFERENCES TIMETBL (TIMID));

We omit the definitions of the dimension tables since the roll-up hierarchies are not
mentioned in the KPI definitions.

The query for computing the KPI is then a straightforward aggregate query on the
fact table.

Pattern 1: Derive DW schema for the KPI “average processing time for task1 in
a process”.

Figure 4 shows a Petri-net-style process fragment to analyze  the KPI.  Place p1
represents  that  some  case  is  currently  being  processed  by task  1.  The  places  are
waiting positions for  the cases  that  flow through the process.  The two transitions
‘begin’ and ‘end’ start  or  terminate  the task,  respectively.  A case  is  a  data  object
representing an external  or internal  event to which an organization has to react.  It
carries an identifier (the case id) and possibly further attributes that describe the case.
The attributes are used to decide how to route a case thru a process [20]. The inner
place pi is uniquely defined for each task in a process model.  



Fig. 4. Process fragment for understanding processing time 

Is it a simple or derived KPI?

This is a derived KPI based on the arrival and departure times of cases at the inner
place pi of a task.

What is the structure of the observation types?

There are two observation types:

arrivaltime(CASE,PLACE,ARRTIME)
departuretime(CASE,PLACE,DEPTIME)

Here  the  time  is  not  a  participating  entity  but  a  measurement.  There  are  two
dimensions involved in the observation: the case dimension and the place dimension.
The place dimension can be rolled up to the task to which it is connect and then to the
process to which the task belongs to.

What is the schema of the fact tables of a data warehouse supporting the KPI?

CREATE TABLE ARRIVALTIME (
CASEID INT,
PLACEID INT,
ARRTIME DOUBLE,
PRIMARY KEY (CASEID,PLACEID));

CREATE TABLE DEPARTURETIME (
CASEID INT,
PLACEID INT,
DEPTIME DOUBLE,
PRIMARY KEY (CASEID,PLACEID));

The query to compute the simple KPI arrivaltime(o,p) is then

SELECT ARRTIME FROM ARRIVALTIME WHERE
CASEID = o AND
PLACEID = p;

task1

p
i

begin endp1 p2



The two fact tables can also be merged into a single one with two measurement
attributes.  Foreign  key  references  and  the  definitions  of  the  dimension  tables  are
omitted. The query to compute the KPI aggregates the average of the difference of the
departure time of the inner place p1 of a given task. We leave the query coding to the
reader. The Petri net view on the process allows to determine what events need to be
recorded by a process execution system. For pattern 1, the system has to record the
time when a case is picked up by a task (arrival time at p i) and when the task finishes
a case (departure time at pi). 



Pattern 2: Average cycle time of a case in a process

 Fig. 5. Cycle time of process 

The cycle time is the accumulated time of a case in a process, from start to end.
Assume that ps is the unique start place of the process and pe is its unique end place,
then the cycle time of a case c is a derived KPI based on the arrival time:

cycletime(c) = arrivaltime(c,pe) – arrivaltime(c,ps)

We thus  can  reuse  the  definition  of  arrivaltime of  the  previous  example.  We
assume that the process has a unique start ps and a unique end pe. The SQL query to
compute  the  average  cycle  time  over  all  cases  is  left  to  the  reader.  It  multiple
processes  are  analyzed  by the  same data  warehouse,  then  one  can  add  a  process
dimension to the fact table for cycletime. Processes can be rolled up to process groups
at the discretion of the data warehouse designer.

The cycletime is calculated here from the simple KPI 'arrivaltime'. If  the complete
process definition is known, then one can establish an equality of the cycletime with
the sum of all waiting times plus all processing times for a case flowing through the
process. 

Pattern 3: Average waiting time on a place p

This is another derived KPI that can be defined in terms of arrival and departure
time:

waittime(c,p) = arrivaltime(c,p) – departuretime(c,p)

The waittime can be aggregated to the total waiting time of a case in a process. If a
process proc has no cycles, then it is defined by the formula

ps peprocess



procwaittime(proc) =
sum{arrivaltime(c,p)-departuretime(c,p)| c in CASE, p.process=proc}

If the process has cycles, then cases can visit the same place multiple times. Then,
our original  definitions for arrival and departure time cannot be used anymore. To
solve the problem, we add an additional participating entity ‘visit’ that contains the
identifier of the visit of a case on a place:

CREATE TABLE ARRIVALTIME (
VISITID INT AUTOINCREMENT,
CASEID INT,
PLACEID INT,
ARRTIME DOUBLE,
PRIMARY KEY (VISITID,CASEID,PLACEID));

The fact table for departure time is updated accordingly. Then, the process waiting
time can be defined as

procwaittime(proc) =
sum{arrivaltime(v,c,p)-departuretime(v,c,p)| c in CASE, 

p.process=proc,v in INT}

We leave the SQL coding for calculating the KPI to the reader.

Pattern 4: Average person hours spent on a task for a given case

Person hours are an example of a resource-based metric. Resources are allocated to
tasks. They are reserved during the execution of the task and typically released before
the end of the task. We can distinguish consumable resources such as energy and non-
consumable resources such as machines or employees. The latter can be converted to
consumable resources by considering resource hours instead of the resource itself. 

Fig. 6. Resources linked to tasks 

p1 task1 p2

start finish

resource



Figure 6 links a resource to a task in a SADT-like style as also used by Fenton and
Pfleeger  for  software  processes  [22].  In  an SADT (structured analysis  and design
technique) diagram, a task has inputs, outputs, resources used for the task and control
information (e.g.  a  time schedule).  The resource  consumption can be observed by
identifying the current case, the task to be performed, the identifier of the resource.
The measurement is the consumption of the resource, e.g. person hours. Hence the
observation type is

personhours(CASE,TASK,RESOURCE,RHOURS)

The following fact table implements the observation type:

CREATE TABLE PERSONHOURS (
CASEID INT,
TASKID INT,
RESOURCEID INT,
RHOURS DOUBLE,
PRIMARY KEY (CASEID,TASKID,RESOURCEID));

The query to compute the resource consumption per task and resource is then as
follows:

SELECT  TASKID,RESOURCEID,AVG(RHOURS)  FROM  PERSONHOURS
GROUP BY (TASKID,RSOURCEID);

   

Pattern 5: Percentage of the truck shipment time where the truck cooling device
is active

This KPI is derived from the process time of the truck shipment and the aggregated
cooling times of the cooling device resource. The first KPI is discussed in example 2.
Hence, we only need to handle the use of the cooling device.

cooling(ENGAGE,CASE,TASK,CTIME)

The cooling device can be engaged multiple times during a shipment. The observation
has  as  participating  entities  the  engagement  id,  the  case,  the  task  (ship)  and  as
measurement the time of the engagement.

CREATE TABLE COOLING (
ENGAGEID INT AUTOINCREMENT,
CASEID INT,



TASKID INT,
CTIME DOUBLE,
PRIMARY KEY (ENGAGEID,CASEID,TASKID));

The cooling time aggregated over all engagements for a given task and case is then:

SELECT TASKID,CASEID,SUM(CTIME) FROM COOLING
GROUP BY (TASKID,CASEID);

In  a  similar  way  one  can  implement  KPIs  on  power  consumption  of  a  machine
resource used to perform a given task.

Fig. 7. Use of the cooling device 

Pattern 6: Material used to create a product

Physical processes create output products using input products. The input products are
not resources but they become part of the output. To model KPIs for such processes,
we need to explicitly represent inputs and outputs of tasks. Figure 8 shows the inputs
and outputs of a task. Note that their relationships to the task are different from the
control flow between place 1, the task and place 2. A task can have multiple products
as inputs and also produce multiple outputs. Each participating product can have a
quantity (measured in physical units or as count). For example, to produce an engine
for a car, one needs a certain quantity of aluminum poured in a form.  The observation
type for input products is characterized by the participating entities case, the task, and
the input product. The measurement is the quantity of the product used for the task on
the given case.

input(CASE,TASK,PRODUCT,QUANTITY)
The outputs can be characterized accordingly

output(CASE,TASK,PRODUCT,QUANTITY)

p1 ship p2

start finish

cooling device



Fig. 8. Inputs and outputs of a task 

Let us assume that 23.23 kg of aluminum are used to create a certain engine 123. The
observation facts would then be:

input(engine123,pour,aluminum,23.23)
output(engine123,pour,engine,1)

The next engine could require slightly less aluminum:
input(engine124,pour,aluminum,23.19)
output(engine124,pour,engine,1)

CREATE TABLE INPUT (
CASEID INT,
TASKID INT,
PRODUCTID INT,
QUANTITY DOUBLE,
PRIMARY KEY (CASEID,TASKID,PRODUCTID));

The average consumption of aluminum per engine is then a simple aggregate query
over the input table:

SELECT TASKID,PRODUCTID,AVG(QUANTITY) FROM INPUT
GROUP BY (TASKID,PRODUCTID);

p1 task1 p2
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Pattern 7: As-Is vs To-Be comparisons

The last pattern discussed in this chapters are deviations from the plan and KPIs
that  relate planned performance to the actual  performance.  A typical  example is a
budget for a project. This is a planned measure. The actual execution of the project
may less, all, or more than the planned budget. Another example is the deadline for a
certain  task.  The previous  patterns  already discussed  the  actual  performance  of  a
process, including resource consumption. Figure 9 adds planned performance to our
extended  process  model.  We  can  regard  the  planned  performance  as  a  simple
observation type, which has no participating case.

Fig. 9. Planned performance 

As  an  example,  consider  the  planned  processing  time  of  task  1.  It  can  be
represented in an observation fact

plannedproctime(TASK,PTIME)

This observation fact can be used like any other to form aggregate KPIs like the
average planned processing time over all tasks. The more interesting use is to form
derived  KPIs  with  KPIs  on  the  actual  performance.  Similar  planned performance
KPIs can be defined for resource consumption, and input and outputs. 

p1 task1 p2
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5   Conclusions

This paper discussed how to map a KPI definition to a data warehouse schema and the
query calculating the KPI. Rather than developing a method to automatically generate
the schema and queries, we elaborated on patterns for process performance KPIs. The
patterns included processing time, waiting time, resource consumption, material use,
and  the  comparison  of  planned  versus  actual  performance.  An  extended  process
model  that  includes  places,  tasks,  resources,  inputs/outputs,  and  plans  was
incorporated to derive the observation types underlying the KPIs.  Simple KPIs have a
single observation type associated to them. Derived KPIs are computed as expressions
over simple KPIs. 

The patterns can be used to support the top-down design of a data warehouse from
a set of process-related KPIs that shall be computed by it. The starting points are the
natural  language KPI definition and a process  model  fragment  that  visualizes  the
context in which the observations belonging to the KPI are collected. The notion of
Petri-net places allowed for a straight-forward definition of time-based KPIs by just
using arrival and departure times of cases at and from places. The pattern on resource
consumption allows dealing with a whole group of KPIs such as person hours spent
on a task. 

The input/output pattern allows to measure physical material flow. These patterns
can also be combined with the other patterns, e.g. to measure how many person hours
are needed to produce a certain number of products. Finally, planned performance is
realized by a simplified observation type that has no case identifiers.

We argue that practically all KPIs are process-related because any change of a state
requires  some  activity  leading  to  the  state  change.  Some  KPIs  are  about  'stock'
observations (c.f. Lenz and Shoshani [19]), e.g. observing the number of cars on a
certain street segment. The observation is related to the ongoing travel processes of
the car drivers, which are not made explicit in an information system about the traffic
status. The observation times are independent of the underlying travel processes.: two
consecutive observations could be about the very same state. If  the process is not
explicit, then it cannot be controlled so easily. 'Flow' observations are directly linked
to a process  task, since they make an explicit  statement on a state change.  In  the
traffic  example,  each  time  that  a  car  enters  or  leaves  the  street  segment,  an
observation would be recorded. This type of observation allows to control the traffic,
e.g. by using traffic lights for the street segment that is set to red when too many cars
are in the segment. In this paper, we thus focussed on flow observations.



Future work is needed to understand how to define a KPI in a formal language
such that a supporting data warehouse schema can be automatically generated from
the KPI definition. Another open question is whether the discussed 7 patterns cover a
considerable  portion  of  KPIs  actually  used  in  practice.  The  KPI  Library
(http://kpilibrary.com)  contains  more  than  a  thousand  KPIs  in  high  level  natural
language that can be used to answer this question.  We did not discuss how dimension
tables can be created and populated. Most rollup hierarchies are domain-specific with
the exception of time. 

Finally,  it would be interesting to investigate rules for the correct  definitions of
derived KPIs in terms of constraints on the use of parameters for the participating
entities  of  the  observation  facts.  For  example,  it  does  not  make  (much)  sense  to
compare  the  arrival  times  and  departure  times  of  places  belonging  to  different
processes. 

KPIs  can  also  be  regarded  as  statistical  variables,  possibly depending  on  each
other. The long-term collection of KPIs can be used to calculate their correlation and
thus to form a theory on estimating dependent  KPIs  from independent  ones.  This
paper was meant to encourage the systematic collection of many process KPIs such
that theories for predicting them can be developed´and validated using methods from
SPC [25].
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