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Summary. ConceptBase is a meta data management system intended to support
the cooperative development and evolution of information systems with multiple
interacting formalisms. It supports a simple logic-based core language, O-Telos,
which integrates deductive and object-oriented features in order to support the
syntactical, graphical, and semantic customization of modeling languages as well
as analysis in multi-language modeling environments.

1. Multi-language Conceptual Modeling

Conceptual models offer abstract views on certain aspects of the real world
(description role) and the information system to be implemented (prescrip-
tion role) [You89]. They are used for different purposes, such as a communica-
tion medium between users and developers, for managing and understanding
the complexity within the application domain, and for making experiences
reusable. The presence of multiple conceptual modeling languages is common
in information systems engineering as well as other engineering disciplines.
The reasons are among others:

— the complexity of the system requires a decomposition of the modeling task
into subtasks; a frequent strategy is to use orthogonal perspectives (data
view, behavioral view, etc.) for this decomposition;

— the information system is decomposed into subsystems of different type,
e.g. data storage system vs. user interface; experts for those subsystems
tend to prefer special-purpose modeling languages;

— the modeling process is undertaken by a group of experts with different
background and education; the experts may have different preferences on
modeling languages;

— conceptual modeling has different goals (e.g., system analysis, system
specification, documentation, training, decision support); heterogeneous
goals lead to heterogeneous representation languages, and to heterogeneous
ways-of-working even with given languages.

The pre-dominant approach to solve the integration problem is to ”buy”
an integrated CASE tool which offers a collection of predefined modeling
languages and to apply it in the manner described in the manual. There
are good reasons to do so: the method design has already been done and
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the interdependencies between the multiple modeling languages have already
been addressed by the CASE tool designers. Moreover, a CASE tool supports
the standardization of information systems development within an enterprise.

Still, there are information systems projects that require more flexibility in
terms of modeling language syntax, graphical presentations, and semantics
of modeling language interactions. The Telos meta modeling language has
been developed to address these concerns. Its implementation in Concept-
Base, a meta data management system based on the integration of deductive
and object-oriented technologies, supports an Internet-based architecture in-
tended to support flexible and goal-oriented distributed cooperation in mod-
eling projects.

1.1 A Brief History of Meta Modeling

In the mid-1970s, several semiformal notations supporting the development
of information systems were developed. The use of some of these became
standard practice in the 1980s, especially entity-relationship diagrams for
data modeling and dataflow diagrams for function modeling. More recently,
object-oriented methods have added notations for behavior modeling, such
as Statecharts, giving a broader picture of the specification and an easier
mapping to implementations in languages like C++ or Java.

It was recognized early on that managing large specifications in these no-
tations posed serious problems of inconsistency, incompleteness, maintenance,
and reuse. Conceptual modeling languages incorporate ideas from knowledge
representation, databases, and programming languages to provide the neces-
sary formal foundation for users with limited mathematics background.

In early 1980s, Sol Greenspan was the first to apply these ideas to re-
quirements engineering, when he formalised the SADT notation in the RML
language [GMBY4]. This was a precursor to numerous attempts worldwide.
Initially, these languages embodied a fixed ontology in which requirements
engineering could be described. As early as 1984, it was recognized that mod-
eling formalisms must be customizable. Jeff Kotteman and Benn Konsynski
proposed a basic architecture that included a meta meta model (M2-model
for short) as the basis for using different notations within a development en-
vironment [KK84]. ISO’s Information Resource Dictionary System (IRDS)
[ISO90] standard generalized this idea to propose an architecture that com-
bines information systems use and evolution. Figure 1.1 shows its four-layer
architecture applied to the conceptual modeling activity.

The Instances and scenarios level contains objects which cannot have
instances. Examples are data, processes, system states, measurements and so
on. Objects may have attributes and they may have classes (residing in the
model level). During design, when the information system and therefore the
instances do not yet exist, this level also contains scenarios of the intended
use of the system.
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Fig. 1.1. The ISO IRDS architecture applied to conceptual modeling

The Models level represents the classes of the objects at the instance
level. Those classes define the schema (attributes, properties) of the instance
level objects as well as rules for manipulating these objects. At the same time
the classes are themselves instances of the schema defined at the modeling
language level.

At the Modeling languages level, meta classes define the structure of
the objects (classes) at the model level. In other words, a model is instanti-
ated from the meta classes of the modeling language level. In section 3., the
modeling language level will be used to define specific graphical notations
and their interrelationships.

The M2-model level contains meta meta classes (M2-classes). They
are classes with instances at the modeling language level. Multiple modeling
languages are possible by appropriate instantiations from these M2-classes.
Moreover, the dependencies between the multiple languages can be repre-
sented as attributes between M2-classes in the M2-model level.

The four IRDS levels can be grouped in pairs that define interlocking
environments, as shown on the right side of the figure: usage environments,
application engineering environments, and the method engineering environ-
ment, which manages the interrelationships among modeling languages and
the interactions among modeling tools. The interlocking between the models
can be read down or up. Reading down, the architecture supports the gen-
eration of a distributed modeling environment; reading up, it supports the
integration of existing environments. In either case, the choice of metamodels
is crucial for the support the model definition and integration environments
can offer.

However, modeling languages do not just have a programming language
syntax which needs to be customized. The customization should also address
graphical conventions of the modeling formalisms; for example, the mobile
phone developer Nokia employs more than 150 method variants in terms of
notation, graphics, and ways-of-modeling. Moreover, the correct usage of each
formalism and the consistency of models that span across different modeling
formalisms should be definable.
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Since the late 1980s, more dedicated M2-models have been developed, as
discussed in the next subsections. In parallel, the need to have generalized
languages dedicated to meta modeling and method engineering was recog-
nized by several people. In several iterations, a number of European projects
[JTMSV92] jointly with the group of John Mylopoulos at the University of
Toronto developed the language Telos [MBJK90] which generalized RML to
provide a meta modeling framework which integrates the three perspectives
of structured syntax, graphical presentation, and formal semantics.

However, early attempts to implement the full Telos language (as in the
first version of ConceptBase [JR88]) showed that its semantics was still too
complicated for efficient repository support based on known technologies.
Three parallel directions were pursued by different, but interacting and par-
tially overlapping groups of researchers.

The MetaEdit environment developed at the University of Jyviaskyla
[KLR96] is a good example of an effort focusing on graphics-based method
engineering, i.e. the graphical definition of graphical modeling formalisms.

Starting from early experiences with ConceptBase in the DAIDA project
[JMSV92] the Semantic Index System developed in ESPRIT project ITHACA
[CIMV95] focused on an efficient implementation of the structurally object-
oriented aspects of the Telos language. It may be worth noting that the
recently announced Microsoft Repository [BHST97] has generalized such an
approach to full object orientation based on Microsoft’s Common Object
Model.

Complementing these structural concerns, the first step in the further
development of ConceptBase within ESPRIT project Compulog focused on
the simplification of the logical semantics. The dissertation [Jeu92] showed
that the non-temporal part of Telos, with very minor modifications, can be
based on the perfect model semantics of deductive databases with negation
[CGTI0], resulting in the O-Telos dialect used in the present version of Con-
ceptBase ! [JGJ*95]. Thereby, the diagrams denoting the structure became
explicit facts in the database (of concepts), the syntactical constraints are rep-
resented as deductive rules or queries or integrity constraints, and the manip-
ulation services are expressed as restrictions on how to update the database.
This simple formalization thus was a prerequisite of the re-integation of syn-
tactical, graphical, and semantic aspects of meta modeling, as discussed in
section 2. below.

1.2 Three Basic Modeling Methodologies

As observed in [Poh94], modeling processes proceed along three dimensions:
representational transformation, domain knowledge acquisition, and stake-

! ConceptBase has been developed since 1988 and been applied in numerous
modeling projects around the world. The current version of the system can
be obtained from the address http://www-i5.informatik.rwth-aachen.de/CBdoc
for research and evaluation purposes.
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holder agreement. Existing methodologies tend to emphasize one of these
dimensions over the others: the modeling notations, the available knowledge
within a specific domain, or the people involved in the analysis project. All
three methodologies have long histories, with little interaction between them.
All of them use multiple modeling perspectives but the purpose of these and
therefore the integration strategies are quite different.

Notation-oriented methods manifest their assistance in the set of
modeling notations they offer. Their philosophy can be characterized by the
slogan In the language lies the power. Examples of notation-oriented meth-
ods are structured analysis approaches, as, e.g., Modern Structured Analysis
(MSA) [You89], and object-oriented techniques, as, e.g., the Unified Modeling
Language (UML) [FS97]. A large number of CASE tools in the market offer
graphical editors to develop models of the supported notations and check the
balancing rules that must hold between models of different notations. The
notations as well as the constraints are hard-coded within the tools and are
not easily customizable by users.

A completely different strategy is employed by the domain-oriented
analysis methods. For a specific application domain, e.g., public adminis-
tration or furniture industry, they offer a predefined set of reference models.
Reference models describe typical data, processes and functions, together
with a set of consistency tests which evaluate relationships between the mod-
els. Reference models represent the knowledge collected in multiple analysis
projects within a particular domain: In the knowledge lies the power. The
reuse of reference models can strongly reduce the analysis effort. However,
it can be inflexible since the user can tailor the notations, the constraints
or contents only to the degree foreseen by the developers of the reference
models, or completely loses the help of the method.

The ARIS Toolset [IDS96] offers a platform for working with reference
models. It also offers hard-coded constraint checks within and across the
models. These tests are programmed individually and new tests can be added
manually, without a coherent theory, even though the concept of event-driven
process chain (EPC) provides a semi-formal understanding [Sch94]. Towards
a more formal approach, the NATURE project has defined formal problem
abstractions [MSTT94] via a M2-model which defines principles for the spec-
ification of domain models.

Goal- and team-oriented approaches specifically address the objec-
tive to capture requirements from multiple information sources and to make
arising conflicts productive. They incorporate stakeholder involvement and
prescribe general process steps rather than notations or contents: In the peo-
ple lies the power. Prominent examples include IBM’s JAD (Joint Application
Design) [Aug91], SSM (Soft Systems Methodology) [Che89], and PFR (Anal-
ysis of Presence and Future Requirements) [Abe95]. In these methods highly
skilled group facilitators animate the participants, guide the analysis process
and keep an eye on the compliance with the specified analysis goals. The
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general idea is to get as much information as possible from different sources
in a short time.

Teamwork remains very informal to enhance creativity. Neither notations
nor analysis goals are predefined by the methods but specified by the par-
ticipants according to the actual problem to be solved. To accommodate the
change of goals during project execution, the customization of analysis goals
and notations is required even during a running project. Outside ConceptBase
few supporting tools are available beyond simple groupware tools. The main
reason for this dilemma is the high degree of customizability the tools must
offer. They must be extensible towards new notations and flexible enough to
support changing analysis goals.

1.3 Goals and Architecture of ConceptBase

The design of ConceptBase addresses the following goals:

1. The system should include a feature to define and interrelate specialized
conceptual modeling languages in an cost-effective way. The language
should reflect the modelers’ need of key concepts types and their inter-
pretation of those concepts.

2. The system should be extensible at any time. when the need for a new
concept type occurs, it should be possible to include it into the conceptual
modeling language definition in terms of language constructs, graphical
presentation, and semantic constraints.

3. The system should not only check the syntactic correctness within and
between models, but also allow to memorize patterns that indicate se-
mantic errors in the models. The memory of those patterns should be
extensible and adaptable to the user’s growing experience, thus support
organizational knowledge creation [Non94].

Graph Telos
Browser#2 Editor#5

P |

Communication channel (Internet)

5] | |

CB Toolbar

- - Fig. 1.2. Concept-
SCB Slnjrulaltlon CB Toolbar Base is a client-server
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ConceptBase is realized in a client-server architecture (cf. figure 1.2). The
ConceptBase server stores, queries, and updates Telos models. The server
offers the method TELL for updating the object base and the method ASK
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for querying its contents. Persistent object storage is implemented in C++.
Reasoning services for deductive query processing, integrity checking, and
code generation are implemented in Prolog.

A ConceptBase client is often a modeling tool, either graphical or textual,
but it could be another application, such as a simulation tool. The Internet
is the medium for the communication between the server and the clients.
Programming interfaces for various toolkits, including Andrew, Tcl/ Tk, Ilog
Views and Java exist. The distributed version of ConceptBase includes a
standard usage interface, along with advice on how to develop your own.

2. The O-Telos Language

Like other conceptual modeling languages, O-Telos offers a textual and a
graphical representation. Both are structurally extensible through our meta
modeling approach, encoded in the basic language structure. However, the
distinguishing feature of O-Telos in comparison with other meta modeling
approaches is its simple logical foundation which enables (a) efficient imple-
mentation using experiences from deductive database technology, (b) cus-
tomization of the semantics of modeling formalisms, and most importantly,
(c) customization and incremental organizational learning about the analysis
of interactions between modeling formalisms. We first discuss the user view
of the language (textual and graphical syntax), then the logical foundations
and finally its usage in customization and model analysis.

Method engineer

- NodeConcept
QLinkConcept

O /
ﬁ\ | M2-model level

\

entity-attr .
EntityType Domain

/

salary Integer
Employee % String

Model level

Application engineer
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O Bill has-salary 1500

ﬁ Instance level

Fig. 2.1. IRDS and O-Telos

Modeling language level

3
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2.1 User View

The four IRDS levels discussed in the introduction define different user classes
for O-Telos. Method engineers define a modeling language (here: ER) based
on common principles (M2-classes NodeConcept and LinkConcept in the ex-
ample). Application engineers learn such a modeling language (symbolized by
the meta class EntityType) and develop a model (containing for example a
class Employee). Finally, application users manipulate instance level objects
that conform to the model.

— " Object * T

attribute
rule/ ™
constraint

Fig. 2.2. O-Telos’ builtin objects

A closer look at figure 2.1 reveals that any modeling facility supporting
such an interlocked way-of-working requires at least three basic language
concepts — one for self-standing labeled objects, a second one for labeled links
between them, and the third one to express the instantiation relationship
between the IRDS levels. In order to provide formal control over the usage
of these base constructs, a fourth concept, that of a logical assertion, is also
desirable.

As shown in figure 2.2, the kernel of the O-Telos language is just that.
All other language facilities (such as generalization hierarchies, cardinality
constraints, and so on) can be bootstrapped from this kernel.

In the textual view we group together all information for an object (e.g.
Employee). The class (e.g. EntityType) of that object precedes the object
name, the attributes of the object (e.g. salary) are sorted under attribute
categories (e.g. entity_attr) which refer to the attribute definitions of the
object’s classes. Note that all objects, i.e. links and nodes, are instances of
the builtin object Object.

Object EntityType with EntityType Employee with
attribute entity-attr
entity-attr: Domain name : String;
end salary: Integer
end

Besides inserting and modifying O-Telos objects (TELL function), the
second main function of the server is the ASK facility. Queries are formu-
lated like ordinary classes with a (membership) constraint [SNJ94]. They are

recognized by the system via the keyword QueryClass. The query evaluator
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computes the answers and establishes an intensional instantiation relation-
ship between the query class and the answers.

The following example presents a query class RichEmployees computing
all employees with salary greater than 120.000. We restrict the set of answers
to the employees by defining the query class as a specialization of Employee.
The attributes which should be part of the answer are specified as attributes
of the query class. In the example we will get the msalary attribute for all
computed employees. The constraint forms the membership condition, i.e.
all only employees that satisfy this constraint become answers to the query
class. For the example we require that the value of the salary attribute is
greater than 120.000.

QueryClass RichEmployees isa Employee with
attribute
salary : Integer
constraint
c : $ salary > 120.000 $
end

Note that updates (TELL) and queries (ASK) may refer to any abstrac-
tion level. Thus, instance level objects are updated and queried in exactly
the same way as the concepts of the modeling language level.

The ConceptBase user interface includes a customizable graph-browser.
The base function is to display node objects like Employee and link ob-
jects like Employee!salary. The customization is done by assigning graph-
ical types to nodes and links directly or via deductive rules. It is therefore
possible to specify a certain graphical type to all instances of a specific object.
An example of graphical customization will be given in section 3..

2.2 Logical Foundations of O-Telos

O-Telos is fully based on the framework of deductive databases, more pre-
cisely Datalog with stratified negation [CGT90]. It employs a single relation
P to store nodes and links of a semantic network. Nodes are represented by
self-referring objects P(x,x,n,x) stating that an object identified by x and
labelled by n exists. An attribute labelled a of an object x having the at-
tribute value y is written as P(o,x,a,y). The attribute itself is regarded as a
full-fledged object with identifier o. We distinguish two attribute labels with
predefined interpretation: The fact that an object x is an instance of a class
c is represented by an object P(o,x,in,c). Moreover, the specialization re-
lationship between two objects c and 4 is stored as an object P(o,c,isa,d)
where c is sometimes called a subclass of its superclass d.

The P relation allows the representation of arbitrary semantic networks.
It serves as the so-called extensional database in the deductive interpretation
of O-Telos: all explicit information (e.g., a diagram) is stored as objects in
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the P relation. It should be noted that instances and classes are uniformly
represented as objects. Classes may be instances of objects themselves?. The
ability of O-Telos to represent instances, classes, meta classes, M2-classes
etc. uniformly as objects makes it a good framework to store information at
different abstraction levels as presented in the subsequent sections.

The extensional database is accompanied by the so-called intensional
database, i.e. a set of deductive rules and integrity constraints that are stored
as attributes of objects. The rules and constraints are logical expressions that
are evaluated against the extensional database. The formal interpretation of
rules is based on a fixpoint semantics [CGT90] which precisely defines which
facts can be derived from the database (extensional plus intensional part).
Intuitively, the derivation follows the Modus Pones rule: if the condition A
holds and we have a rule ”A then B”, then the fact B holds. Constraints
are special rules of the form ”if A does not hold then we have discovered
an inconsistency”. The object-oriented structure of O-Telos is defined on the
simple P-relation via predefined rules and constraints included in any O-Telos
database - the so-called O-Telos axioms.

forall o,x,c P(o,x,in,c) ==> (x in c)

If we explicitly state that x is an instance of c¢ than the fact (x in ¢)
holds.

forall o,x,c,d (x in ¢) and P(o,c,isa,d) ==> (x in d)

If x is an instance of a subclass, then it is also an instance of its super-
classes.

forall p,c,m,d,0,x,1l,y P(o,x,1,y) and P(p,c,m,d)
and (o in p) ==> (x m/1 y)
forall x,m,1,y (x m/1 y) ==> (x m y)

The first rule derives an attribute predicate (x m/1 y) whenever an at-
tribute o is declared as an instance of another attribute p at the class level.
The label m is called the category of the attribute p. The second rule omits
the label of the instance level attribute.

Alltogether only 30 such rules were predefined in O-Telos [Jeu92]. The
two important things to memorize are

— The single P relation is able to capture semantic networks ("nodes con-
nected by links”).

— Rules and constraints are used to fix the interpretation of abstractions like
instantiation and specialization. These abstractions are predefined node
and link types in the semantic network.

2 If x is an instance of a class ¢ and c is an instance of a class mc, then we refer
to mc as a metaclass of x.
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2.3 Conceptual Modeling Languages as Meta Models in O-Telos

The foundation of O-Telos just provides the facilities for representing graphs,
plus to constrain and query them via logical conditions. In the following
we show that this is enough for not only describing a large collection of
conceptual modeling languages but also to relate them in a formal way.

O-Telos treats information at each abstraction level uniformly as objects.
The fact that some object is an instance of a class at the upper level is
represented as a (derived or stored) fact (x in c). A meta class in O-Telos
is simply a class mc which fulfills the condition exists x,c (x in c) and
(c in mc). Attributes are also full-fledged objects: attributes at a class level
are the classes of the attributes at the instance level.

Constraints are employed to specify conditions on the instantiation of
classes. Rules define information that is derived from explicit information.
Note that constraints and rules can be defined at any abstraction level, even
crossing several abstraction levels. For example, the instance inheritance rule
above is applicable for objects at the model level as well as for objects at
the M2-model level. We distinguish the following types of formulae according
to the levels involved in the logical condition. As an example, we again use
pieces of a formalization of the Entity-Relationship (ER) approach within
O-Telos.

— Model conditions. Such formulae quantify over instances of classes defined
at the model level. For example, there may be a class Employee at the
model level with an attribute ’salary’:

forall e,s (e in Employee) and (e salary s) ==> (s > 0)

— Modeling language conditions. Such formulae quantity over instances of
meta classes. For example, the meta class EntityType could have a con-
straint that each instance (like Employee) must have at least one attribute
(like salary):

forall ¢ (c in EntityType) ==> exists d (d in Domain)
and (c entity_attr d)

— M2-model conditions. Here, the formulae talk about objects at the mod-
eling language level. In our running example, we can think of the two
M2-classes NodeConcept and LinkConcept that shall be used to define
EntityType and RelationshipType. A M2-model condition could be that
links connect nodes but not vice versa:

forall x,y (x connects y) ==>
(x in LinkConcept) and (y in NodeConcept)

The reader should have noticed that there is no formal difference between
those three kinds of formulae; they are just quantifying over objects at differ-
ent abstraction levels. The uniform representation of O-Telos objects provides
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this feature quasi for free. The above examples showed formulae quantifying
over objects at the next lower level of abstraction (class to instance). It is also
possible to express conditions spanning more than two IRDS levels. Such con-
ditions are needed when the semantics of certain concept types (meta classes)
can only be expressed in terms of the instances of the instances of the meta
classes. As an example consider "key attributes” of entity types in the ER
modeling language.

forall x,y,e,k,a,d,v (x,y in e) and
(e in EntityType) and P(k,e,a,d) and
(k in Key) and (x a v) and (y a v)
=> (x = y)

The formula states that when two entities x,y of the same entity type e
have the same value for the key attribute a, then they must be the same.

Such conditions are typical for formal interpretation of conceptual mod-
eling languages. The interesting thing is that those conditions are expressible
in the Datalog logic of O-Telos. Thereby, they can be added and evaluated
to the (deductive) database at any time. This makes it possible to define
specialized modeling languages just by storing appropriate meta classes with
their axioms (rules and constraints) in the database. More examples of such
formulae crossing multiple IRDS levels can be found in [JJ96].

3. Case Study: Design of a Customized Conceptual
Modeling Environment

The following case study illustrates the management of conceptual models in
the context of computer-support for an informal, teamwork-oriented analysis
method used by a consulting company. Details and experiences can be found
in [NJJ*96].

The consulting firm uses the analysis method PFR (Analysis of Presence
and Future Requirements) for rapid, focused requirements capture in settings
that alternate between team workshops and individual interviews:

1. In a two-day workshop, stakeholders define an initial shared vision. The
group makes a rough analysis of the current business processes (mostly
in terms of information exchange among organizational units), analyses
the goal structure behind the current pattern, identifies goal changes,
drafts a redesigned business process, and identify the perspectives of some
stakeholders as critical to success.

2. The perspectives identified as critical are then captured in detail by inter-
views, workflow analyses, and document content studies. This step has
the goal of testing the initial vision against the existing and expected
organizational context, and to elaborate it, both in terms of deepened
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understanding and in terms of more formal representations (e.g. in the
form of activity sequences or data flow models). The acquisition process
is accompanied by a cross-analysis of the captured conceptual models for
consistency, completeness, and local stakeholder agreement.

3. A second workshop is intended to draw the individual perspectives to-
gether and to achieve global stakeholder agreement on the requirements.
The step is accompanied and followed by the development of a compre-
hensive requirements document of typically several hundred pages.

Even for rather complex projects, the goal is to complete the whole process
in a matter of weeks rather than months. A major obstacle in achieving this
goal has been the cross-analysis of heterogeneous conceptual models in step
2. Due to time pressure, this analysis often remained incomplete. This led
to repeating cycles of steps 2 and 3 due to problems detected only during
the second workshop. In a few cases, it even led to problems in the final
requirements document which showed up later as errors in the design, coding,
or even usage testing phase.

Initially, standard modeling languages like Entity-Relationship diagrams
were used both for describing the current procedures and the new (improved)
procedures.

Problems with the standard tools emerged with respect to interpretation,
extensibility, and analysis functionality. Regarding interpretation, customers
complained that they wouldn’t understand the difference between certain
concepts of the modeling languages. For example, discussions emerged on
whether a certain property of an entity would be a relationship or just an at-
tribute. During these discussions, computer scientists would take the lead and
the other participants would loose interest. Customers asked for a graphical
method where one has just nodes and links.

Another issue mentioned was extensibility. The consulting company has
developed its own approach to IT controlling where media was a central con-
cept, i.e. the physical carrier of data like paper and floppy disk. Information
on which data would be stored on which medium was important to decide how
to improve the current workflow of the customer. Unfortunately, no CASE
tool on the market fitted to these needs or could be easily adapted to it.

Finally, the analysis capabilities of standard packages were regarded as in-
sufficient. Standard tools concentrate on syntactical correctness of the models
and their interdependencies. However, the semantic correctness was seen as
much more urgent. The following situation occured in a customer project: A
complex data object (tax form) was modeled which contained a smaller data
object (tax rate) as a part. A system function was provided to update the tax
rate. In this application however, it was required that the numbers in the tax
form are updated whenever the tax rate is changed. Since this dependency
was detected only after implementation, major error correction costs were
induced. As a consequence, the consulting company wanted to memorize this
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pattern as a possible (not sufficient) cause for a semantic error in the system
model.
3.1 Customizing ConceptBase

To tailor O-Telos to the standard PFR modeling languages the consulting
firm first defined their syntax in O-Telos, as shown in figure 3.1.

activity sequence information exchange document

notation notation structure
Employee

notation
A

sends
includes
gets .
I—, produce: Information Org. Unit] Package o Flg 3.1 Syntax of

\/ the standard PFR no-
follows tations

The ’activity sequence’ notation comprises the concept of an Employee
who is the performer of an Action. The Action gets and produces
Information. The follows relation describes dependencies between differ-
ent Actions. The 'information exchange’ notation captures Organisational
Units which may send a Package to another unit. Finally, the ’document
structure’ notation comprises concepts to define a Form and the Items it
includes.

The semantic properties of these notations are specified by integrity con-
straints and deductive rules. The PFR analysts required, e.g., that every in-
formation exchange between Organisational Units must be accompanied
with the exchanged Package. The following integrity constraint expresses this
requirement in a formal way:

forall s (s in OrgUnit!sends) exists p,a (p in Package) and
(a in OrgUnit!sends'a) and From(a,s) and To(a,p).

Similar constraints specify the semantic properties of the modeling con-
cepts of the other notations.

The semantic analysis of the individual conceptual models exploits the
properties of the observed domain and the analysis goals of the specific
project. The consulting firm specified the domain structure within a concep-
tual model on the M2-model level, shown in figure 3.2. The modeling language
definitions in figure 3.1 form partial instances of this model which describes
the corresponding perspective. It interrelates all three perspectives mentioned
before. An Agent supplies another Agent with the Medium. This Medium
may contain some Data. On this Data an Agent performs his Activity. The
Data can be used as input or output. This model defines the extent of the
analysis project: exactly the concepts mentioned in this model must be cap-
tured and modeled within the acquisition part of the project. It also reflects
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some of the expected problems. The explicit distinction between the Medium
and the Data it contains allows for the detection of optimizable workflows
in the business process. Since the analysis goals may change from project to
project, also this domain model may change to cover the actual problems to
be investigated.

suppliesA the
needs
=y

generates

performed_by takes contains

follows — input
<:P_: Fig. 3.2. A media-centered meta

output meta model for PFR

Beside the domain structure, the meta meta model contains the formal-
ization of the analysis goals. They reflect the problems the analysis project is
supposed to discover. Many customers of the consulting firm want to optimize
their document flow. Therefore an analysis goal is to detect agents who get
a document, but perform no activities on data contained on that document.
Thanks to the formal semantics of O-Telos we are able to specify this analysis
goal as a formal multi-level condition and to evaluate it on the contents of
the object base. We use a special syntax to indicate multi-level literals: A lit-
eral of the form (i [in] c) describes an instantiation relationship between
i and c that crosses multiple classification levels. A literal of the form (a [m]
b) where m is an arbitrary label describes an attribute predicate that crosses
multiple levels. In our case we use a label from the M2-model level to form a
condition on the schema level.

forall supply,user,medium (supply [in] Agent!supplies) and
(user [in] Agent) and (supply [to] user) and
(medium [in] Medium) and (supply [the] medium)
==> exists info,action (info [in] Data) and
(medium [contains] info) and (action [in] Activity)
and (action [performed_by] user) and
((action [input] info) or (action [output] info))

In the example environment more than 80 standard analysis goals make
semantic statements about single models, inter-relationships between multi-
ple models and properties of the modeled business process. These analysis
goals cannot be hard-coded because they may change from one project to
another. Further experiences in applying the PFR method lead to the de-
tection of further patterns of potential errors in business processes. These
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patterns are then formulated as analysis goals to be available in following
analysis projects. An example of such a pattern is the situation where an
agent gets a document that contains only data that is already supplied to
him by other media. This pattern does not always describe an error of the
business process, but it is a hint for further investigation. It may indicate an
unnecessary media supply which is subject for optimization. But it may also
be an intended situation where the agent performs a comparison check of the
same data located on different media.

The syntactic and semantic extension of ConceptBase is complemented by
a graphical extension. A graphical type can either be specified for a specific
object or for all the instances of an object.

(-l ConceptbaseCraphbrowser [ ||

More...
d Erase
wl D upplies Favy
j*‘ Show Attributes
!________M"m———————" Show Instances
’__’__,“e_ed;—J—J—” show classes
i Medium Show Subclasses
Agent Show Superclasses
Save Layout
Load Layout
Help
Quit
« MorthGrant ExpensesReceipt
Payment . N
ol El
File saved.

Fig. 3.3. The three levels within ConceptBase

Figure 3.3 presents a screendump of the ConceptBase graph browser. It
shows a part of the three repository levels using the graphical types defined
by the consulting firm. The part of the meta meta model defining the infor-
mation exchange is shown on the top. The shape of a human is the graphical
presentation of the object Agent and the shape of a set of papers of Medium.
They used the shapes to indicate the abstract nature of these concepts. Below
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these objects the notation of the corresponding conceptual models is shown.
The Organisational Unit is presented as a rectangle and the Package as a
diamond. On the bottom a small excerpt of the 'information exchange’ model
is given. For the modeled agents and documents they used the filled graphical
types of the concepts of the meta meta model to indicate that these objects
are more concrete.

4. Summary and Outlook

Conceptual modeling requires the use of multiple interdependent languages.
Selecting the right collection of languages and focusing the analysis of their
interactions is a not trivial task. For example, the mobile phone company
Nokia claims to employ more than 150 different notations and/or methods
in their software development processes. In such new application domains,
standard languages may very well miss the modeling goal by distracting the
modelers to details of notation instead to details of the domain to be modeled.

In O-Telos, as supported by the ConceptBase system, experts can define
an adapted collection of languages via meta classes. The customized lan-
guages are interrelated via a meta meta model which encodes the overall
modeling goals independently from details of the notation of the modeling
languages.

Versions of ConceptBase have been distributed for use in research, teach-
ing, and industrial development since the early 1990s. Currently, a few hun-
dred groups worldwide use the system, a number of such efforts have resulted
in spin-off products derived from the ConceptBase prototypes. The main ap-
plications have been in cooperation-intensive projects which we have here
placed in contrast to notation-oriented standards such as UML or domain-
oriented reference models as in the ARIS framework. Especially for the ref-
erence models, there is good reason to believe that this competitive situation
should be turned into a cooperative one — a cooperative, customized, and
goal-oriented modeling process should still be enabled to take advantage of
external experiences as encoded in reference models. This attempt to bring
goals, teamwork, and formal analysis into the customization process of com-
ponent software strategies such as SAP or Baan is a major methodological
goal of our ongoing research.

In order to support such methodological advances, some advances in the
technical support by ConceptBase are also being investigated. The descrip-
tion in this paper corresponds roughly to version 4.1 of the system which has
been distributed since 1996. In the following, we sketch some extensions which
have been developed for integration into the next versions of the system.

Any extensions aim to preserve the decisive advantage of O-Telos, its
firm basis on standard predicate logic with clear semantics. Its ability to
uniformly represent instances, classes, meta classes, and attributes as objects
makes it an ideal framework for meta data management and meta modeling.
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Its implementation, ConceptBase, adds persistent storage of objects, a query
evaluator, and a collection of graphical and frame-based tools.

In order to offer even more scalability in cooperative modeling tasks,
the most important extension is the introduction of a concept of modeling
perspectives, i.e. interacting modules, into the language such that models can
be organized according to accepted principles of software architecture. In
[Nis97, NJ97], the language M-Telos has been developed (and prototypically
implemented) which is upward compatible with O-Telos and preserves the
simple foundations based on Datalog™.

A second important extension under development is a more active role
the ConceptBase server can take with respect to its clients; an important
special case is the transformation across notations (as opposed to just analy-
sis queries). To preserve consistency, such transformations with materialized
results should be incrementally maintainable over change. In [Sta96, SJ96],
formalisms and algorithms to achieve incremental maintenance of material-
ized views not only inside the server, but also in external clients have been
developed and implemented. The power of such algorithms and the user com-
fort are significantly enhanced if they are realized using mobile code that can
move to the client without local installation effort. Starting from experiences
with the CoDecide client that offers spreadsheet-like interfaces to the kind
of data cubes used in data warehousing [GJJ97], a complete Java-based user
environment is being developed.

Last not least, many cooperative modeling processes require inconsistency
management not just for static logical interactions, but along possibly com-
plex process chains. The current deductive approach only allows the analysis
of process chains consisting of very few steps. Recently developed process rea-
soning techniques [BMR93] in a logical framework that is comparably simple
to ours appear as a promising candidate for an integration into ConceptBase,
without sacrificing its uniform framework and conceptual simplicity.
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