
POSTPRINT -- Original paper appeared as: M.A. Jeusfeld: SemCheck – Checking Constraints for Multi-
Perspective Modeling Languages. In D. Karagiannis, H.C. Mayr, J. Mylopoulos (eds): Domain-Specific Conceptu-
al Modeling – Concepts, Methods and Tools. Springer Int. Pub., DOI 10.1007/978-3-319-39417-6_2, pp. 31-53,
2016.

SemCheck: Checking Constraints for Multi-Perspective Modelling
Languages

Manfred A. Jeusfeld
University of Skövde, IIT, Sweden

manfred.jeusfeld@his.se

Abstract. Enterprises are complex and dynamic organizations that can hardly be understood from a single view-
point. Enterprise modelling tackles this problem by providing multiple, specialized modelling languages, each
designed for representing information about the enterprise from a given viewpoint. The OmiLab initiative pro-
motes the use of meta-modelling to design such domain-specific languages and to provide them by an open re-
pository to the community. In this chapter, we discuss how this meta-modelling approach can be combined with
the design of integrity constraints that span multiple modelling languages. We propose the services of the Con-
ceptBase system as a constraint checker for modelling languages created by the ADOxx platform.

Keywords: modelling language, consistency, Telos, ConceptBase

Introduction

Enterprise modelling environments1 provide viewpoints for modeling goals, processes, resources, enterprise
data, events, and more. Each viewpoint may be supported by several modelling languages, e.g. to support alter-
native representations or to cover different abstraction levels. The resulting enterprise models need to be syn-
chronized since they all make statements about the very same reality, the enterprise. The goal of enterprise mod-
elling is to provide a complete and correct representation of the enterprise, up to the level of detail that is of
interest to the modelers. The completeness is rather time-consuming to check since it requires comparing the
concepts in the models with observations of the (real) enterprise. The correctness has two aspects:

1. The statements derived from the enterprise models are consistent with the reality. For example, if a

process model demands that an activity A always precedes an activity B, then this should hold for all
executions of this process in the reality (external model validity).

2. The statements in the enterprise models are consistent with each other, or simpler: the statements in
the enterprise models do not contradict each other (internal model validity).

We focus on the internal model validity in the OmiLab [1] context. OmiLab offers a repository, where multi-

ple enterprise modelling languages can be stored and re-used. The ADOxx platform [2,3] used in OmiLab sup-
ports both the design of customized modelling languages and their subsequent use. The challenge is to co-design
the consistency rules for the new modelling languages. In particular, the constructs of several interrelated model-
ling languages are subject to consistency checks. For example, if a process model contains a data flow link that
retrieves a certain data element from a data store, then the data model of that data store must also define this data
element.

The rest of the paper is organized as follows. The next chapter discusses why constraints crossing multiple
modeling perspectives occur in enterprise models. We argue for two types of such constraints: one is linking
models at the same abstraction level, e.g. the business level. We call them horizontal constraints. The second
type links models at different abstraction levels. We call them vertical constraints. After this discussion, we in-
troduce the constraint checking capabilities of the ConceptBase [4,5] system. ConceptBase allows representing

1 This work was supported in part by the Erasmus+ project Open Model Initiative (OMI).

2

both multiple modeling languages and their models in a uniform data structure. Finally, we propose the architec-
ture to integrate the ADOxx platform with ConceptBase. The interaction between the two is described by a sim-
ple model exchange interface. The ADOxx platform can incrementally submit language and model update to the
ConceptBase constraint checker and receives constraint checking results back. New constraints can be added at
any time and old ones can be updated or removed at any time. The examples discussed in this chapter are availa-
ble online at http://conceptbase.cc/nemo2015.

Constraints between multiple models

Models describe some real or imagined reality, so enterprise models describe an existing or not yet existing
enterprise. A model consists of model elements, which represent some physical or immaterial artefact of the real-
ity. Consider an enterprise that maintains a database DB. This immaterial artefact occurs in multiple models. It
may occur in a process model as input or output of some process task. It may also occur in a conceptual data
model like an ER diagram defining the schema of the database. And it may occur as logical database design de-
fining the precise datatypes of the database.

Fig 1: Links between levels and perspectives

Enterprise models cover multiple perspectives (data, process, goal, …) and abstractions levels (business, ap-

plications, technology, …). Links between perspectives relate model elements that are represented in different
models but still need to be synchronized. For example, a database model element in a BPMN process model is
related to the data model that defines the classes stored in that database (link type 1 in figure 1). Link type 2 re-
lates model elements that make statement about the same artefact but uses different levels of detail to do so. This
type of link is an “implementation link”. For example, the relational database schema describes the same data-
base as a UML class diagram but at different level of detail and usually committing to a specific way of imple-
menting. Finally, there may be links of type 3 that change both the perspective and the abstraction level.

Subsequently, we first discuss the constraint language as implemented by ConceptBase. Then, we discuss the

types of constraints crossing multiple enterprise models using examples from 4EM [6] and ArchiMate [7].

Constraint checking with ConceptBase

ConceptBase is a deductive database systems specifically designed to manage models and modeling lan-
guages. Constructs describing modeling languages are represented in the very same data structure that is used to
represent models and even data. The underlying data model of ConceptBase is Telos [8] and the common data
structure is the P-fact P(o,x,n,y) (“the statement o establishes a relationship with label n between the statements x
and y”).

Perspective I Perspective II

Level
A

Level
B

X Y

V W

type 1

type 2
type 3

align perspective

align le vel

model 1 model 2model 1

model 3 model 4

3

The P-fact data structure is used to store models at any abstraction level. The statements identifiers are gener-
ated by the system and carry no semantics from the modeled reality. Thus, we shall use the textual frame syntax
of ConceptBase for example. The first example shows how to define a small ER language, use it for a model on
employees and projects, and define some data object. The first two frames define the meta-classes “Relation-
shipType” and “EntityType”. They form a meta-model in the ADOxx terminology and would be part of an M2
model in OMG’s classification. The subsequent three frames represent part of a conceptual model (OMG level
M1) defined in terms of the meta-model. The last frame on “bill” is at the OMG M0 level.

RelationshipType with
 attribute
 role : EntityType
end
EntityType end

Employee in EntityType end
Project in EntityType end
worksFor in RelationshipType with
 role
 toEmp : Employee;
 toProj : Project
end

bill in Employee end

Fig . 2: Example ConceptBase model spanning three abstraction levels

Figure 2 displays the example model as a graph. The green links are instantiations. Note that instantiation ap-
plies not only two node objects like “bill”, “Employee”, “EntityType” but also to link objects like the role link of
“RelationshipType”. The uniform representation of objects, classes, and meta-classes allows to specify rules and
constraints at any of the abstraction levels. There are no explicit abstraction levels in ConceptBase but rather in-
stantiation relations between objects.

ConceptBase implements a rule and constraint language based on Datalog [9]. Since statements at any ab-

straction level are represented in the same way, one can also define rules and constraints at any abstraction level.
The syntax of the rule and constraint language follows is a first-order predicate logic, where variables are bound
to class objects, i.e. they range over the instance of the class objects. The most important predicates are

(x in c): The object x is an instance of the class object c, for example (bill in Employee)
(c isA d): The object c is a specialization of the object d, for example (Manager isA Employee)
(x m/n y): There is a link with label n between x and y and this link has the category m, for example (works-

For role/toEmp Employee)

4

(x m y): There is a link between x and y and this link has the category m, for example (worksFor role Em-
ployee); this predicate is derived from the previous one

Links are treated as objects. The expression worksFor!toEmp references the toEmp link of Employee. A
complete list of predicates is available from the ConceptBase user manual [10]. To continue the example, we de-
fine two constraints, one at modeling language level and the other at model level:

forall R/RelationshipType exists E/EntityType
 (R role E)

forall e/Employee exists p/Project w/worksFor
 (w toEmp e) and (w toProj p)

The two formulas realize multiplicity constraints, however, the constraint language is not restricted to them.

Note that the two constraints are syntactically rather similar. They operate at different abstraction levels but
ConceptBase does not treat them differently. Abstractions levels are only a user interpretation of the models in
ConceptBase.

ConceptBase also supports deductive rules. They are characterized by a single predicate in the conclusion and

all variables in the conclusion predicate are forall-quantified, for example

forall w/worksFor e/Employee p/Project b/Integer
 (w toEmp e) and (w toProj p) and
 (p budget b) and (b > 0)
==> (e workIn p)

Queries in ConceptBase amalgamate the concept of a class and the concept of a constraint. They are defined

as subclass of another class and a membership constraint specifies the condition, which instances of the super-
class are instances of the query class. The variable ‘this’ stands for an instance of the superclass ‘Project’.

BigProject in QueryClass isA Project with
 constraint
 c1: $ forall b/Integer (this budget b) ==> (b > 1000) $
end

A class constraint may never be violated by a database, hence any attempt to add objects violating a con-

straints leads to a rejection of the update. In modeling, this behavior is generally note desired since one starts
with incomplete models that may violate certain constraints. Query classes are not constraining the database but
returning an answer based on the query class definition. This behavior allows re-formulating the original con-
straints into a negated form that returns all violators. Consider for example the constraint

forall this/Employee exists p/Project w/worksFor
 (w toEmp this) and (w toProj p)

For the query class re-formulation, we decide to return those employees who violate the constraint:

EmployeeWithNoProject in QueryClass isA Employee with
 constraint
 c1: $ not exists p/Project w/worksFor
 (w toEmp this) and (w toProj p) $
end

The instances of EmployeeWithNoProject are precisely those employees that violate the original con-

straint.

5

Attributes of objects are represented in the same way as relationships. Values like integers or strings are ob-
jects as well:

 Employee with bill in Employee with
 attribute age
 age: Integer; billsage: 27
 colleague: Employee colleague
 end col1: mary;
 col2: anne

end

The above frame syntax is closely linked to the base predicates of ConceptBase. The frame for “bill” is

equivalents to the predicate facts (bill in Employee), (bill age/billsage 27), (bill colleague/col1 mary), (bill col-
league anne). The frame for “Employee” corresponds to the facts (Employee attribute/age Integer), (Employee
attribute/colleague Employee). A number of built-in rules and constraints make sure that instantiation and spe-
cialization are done in the proper way. For example, the object “27” must be an instance of “Integer”, and
“mary” and “anne” must be instances of ‘Employee’.

ConceptBase also supports active rules that can update the database if certain events (query calls, insertions,

and deletions) occur. Active rules are more expressive than deductive rules. In particular, they could loop forever
if not carefully programmed. Deductive rules, constraints, and queries shall always terminate. Another addition
are (recursive) functions including arithmetic. Function calls can create new objects on the fly, e.g. 100+1 cre-
ates the new integer object 101. Like with active rules, functions are beyond the expressiveness of classical de-
ductive rules. We refer to the ConceptBase user manual [10] for more details on active rules and functions. A
particular case for using them is the definition of the execution semantics of process models, see end of this
chapter.

Case 1: Linking STD and DFD

The first case of linking two modeling perspectives is taken from the structured analysis method [11]. It fea-

tures data flow diagrams (DFD), entity relationship diagrams (ERD), state transition diagrams (STD), and others.
The DFD language includes the construct of a control process. A control process is a process that receives events
from other processes or the environment and reacts to them by triggering other processes. The inner behavior of
a control process in a DFD is specified by an STD. Figure 3 shows the DFD and the STD modeling language as
meta models and below an example DFD and its relation to an example STD.

Like with figure 2, the green links are instantiations. The upper level of the figure introduces a cross-
notational link (STD attribute/specifies ControlProcess). This link is of type 1 in the classification scheme of fig-
ure 1. At the lower level, the STD ‘AccountsSTD’ is linked to the ‘ControlAccounts’ process:

 (AccountSTD specifies/cp ControlAccounts)

The AccountsSTD itself is a model that is decomposed into states (here ‘Active’ and ‘InActive’) and the tran-

sitions between the states. Such a decomposition is called model explosion in MetaEdit+. So, a model construct
from the DFD side is linked to a model on the STD side. A simple constraint crossing the two perspectives is
that each control process must have a STD that specifies it. In the negated query class format, we return those
control processes that have no STD:

6

Fig. 3: Linking DFD and STD

UnSpecifiedControlProcess in QueryClass
 isA ControlProcess with
 constraint
 c1 : $ not exists std/STD (std specifies this) $
end

A more complex constraint is linking the conditions attached to the STD transitions. They must correspond to

incoming control flows on the DFD side. For example, the condition E2occured on the STD side is linked to the
‘unfreeze’ control flow on the DFD side. The following query class returns all those incoming control flows on
the DFD side that are not matched with a corresponding condition on the STD side:

UnmatchedIncomingControlFlow in QueryClass
 isA DFD_Node!incomingCF with
 constraint c1 : $ exists cp/ControlProcess
 To(this,cp) and
 not exists std/STD s/State
 c/Condition t/State!transition
 (std specifies cp) and (std containsState s) and
 From(t,s) and (t withCond c) and (c withCF this) $
end

The query class uses two predicates that were not defined yet. The predicate From(p,x) returns the source ob-

ject of a relation, and the predicate To(p,y) returns its destination object.

Case 2: Multiple perspectives in 4EM

4EM is an enterprise modeling language that strongly ties the perspectives by a variant of link type 1. The
meta-model of 4EM [ref] heavily uses the specialization construct to define interface classes between the model-
ing perspectives. Hence the link remains in the same modeling perspective, but classes for other perspectives are
integrated via specializing the interface class.

7

Fig. 4: Linking perspectives in 4EM by interface classes

The interface classes are GM_RelatableObject and IM_GoalModivatesEnd. They belong to the goal modeling

perspective. The class GM_Goal is linked to GM_RelatableObject. The upper right side of figure 4 displays part
of the 4EM meta-model for the business process perspective. There, the class BPM_Process is defined as sub-
class of IM_GoalMotivatesEnd. The high number of subclasses of GM_RelatableObject allows to attach goals to
virtually any other 4EM object.

The lower part of figure 4 shows an excerpt of a 4EM model, instantiating the meta classes of the upper part.
The process manufactureMountainBikes is related to the goal improveProducts. This link crosses the perspective
boundaries between the goal model and the process model.

ConceptBase allows realizing analysis services for 4EM models via query classes. For example, we may want
to know to which goals a business process related to:
ImpactOfGoal in QueryClass isA GM_RelatableObject with
 computed_attribute
 goalElement : GM_IntentionalComponent
 constraint
 hasImpact : $ exists g1,g2/GM_Goal
 (~goalElement relatedTo g1) and
 (g1 subGoal g2) and (g2 goalRelatedTo this) $
end

The attribute goalElement is declared as computed attribute. It shall be returned in the answer. The subGoal

relation of GB_Goal is defined as transitive and reflexive. These properties are realized by deductive rules, not
shown here but easily implemented in ConceptBase. The complete specification is available on the website
http://conceptbase.cc/nemo2015.

Case 3: ArchiMate

ArchiMate is a standard meta-model and notation for enterprise architectures. It does not distinguish perspec-
tive but rather levels: the business layer, the application layer, and the infrastructure layer. The links between
these levels are incarnations of our link types 2 (“implementation. ArchiMate defines two links in its meta-model
that are falling in our link type category 2. The ‘realizes’ link is relating concepts that are in the same level but
the realizing concept is more concrete than the realized one. The ‘uses’ link relates concepts at different levels.

The main purpose of ArchiMate is to allow traceability between concepts of a complex enterprise architec-
ture. For example, an enterprise architect is interested to know which business services depend on a particular
operating system platform like ‘DebianLinux’. ConceptBase allows to implement this traceability by a set of de-
ductive rules for a predicate ‘dependsOn’:

8

forall o/AM_Object d/AM_DataObject
 (d realises o) ==> (o dependsOn d)
forall o/AM_Object r/AM_Representation
 (r realises o) ==> (o dependsOn r)
forall b/AM_Behaviour s/AM_BusService
 (b realises s) ==> (s dependsOn b)
…
forall a/AM_AppFunction i/ AM_InfService
 (a uses i)) ==> (a dependsOn i)
…

The rules then allow following dependencies between model elements spanning multiple levels.

Fig. 5: Tracing dependencies for ArchiMate

There are in total more than twenty such rules for the ‘dependsOn’ relation. A generic query computes them

all:

DepService in GenericQueryClass isA AnyNode with
 computed_attribute,parameter
 element : AnyNode
 constraint
 c1 : $ (~element dependsOn ~this) $
end

The query has a parameter ‘element’ that allows to focus on a specific ArchiMate element, e.g. the ClaimAc-

ceptService from the business layer. The answer to the query lists all ArchiMate object on which this object de-
pends on. The class AnyNode is subsuming any ArchiMate object. Hence, we follow dependencies regardless of
the level in which they are defined. The ‘dependsOn’ relation is defined as transitive by the following frame:

AnyNode in Class with
 transitive dependsOn : AnyNode
 rule
 generated : $ forall x,y,z/AnyNode ((x dependsOn y)
 and (y dependsOn z)) ==> (x dependsOn z) $
end

9

The rule is generated by ConceptBase from a generic rule defining transitivity of any relation. ConceptBase
supports a large library of such generic formulas, e.g. for symmetry, anti-symmetry, reflexivity, and multiplicity
constraints.

SemCheck: integrity checking for ADOxx

ADOxx views a modeling method as combination of several modeling techniques, each coming with a model-
ing language (represented as a meta-model), a modeling procedure the workflow of modeling steps that leads to
a desired result), and related mechanisms and algorithms (methods that operate on models). Example algorithms
are for example discrete event simulation algorithms that take a process model and a configuration of parameters
as input and produce performance data such as the average cycle time. The logical language of ConceptBase
provides integrity checking services (called SemCheck) both on the generic level (defined for a given modeling
language in the ADOxx development toolkit), and the specific level (only applicable for specific models defined
in the ADOxx modelling toolkit).

The dual use in ADOxx is possible since ConceptBase uniformly represents models, meta-models, and meta2
models with the same predicates for instantiation, specialization, and attribution. The preferred way to realize in-
tegrity constraints in ConceptBase is by means of a query class as discussed in the preceding chapters. From the
viewpoint of ADOxx, a query class is a method that can be called at any time and returns the ‘violators’ of the
integrity constraint that it implements. Most such query classes are defined for a given modeling language, e.g.
entity relationship diagrams. An example is the integrity constraint ‘RelationshipTypeLacksRoles’ that each rela-
tionship type must have at least one role link to an entity type (compare section on constraint checking with
ConceptBase):

RelationshipTypeLacksRoles in QueryClass
 isA RelationshipType with
 constraint
 c: $ not exists E/EntityType (this role E) $
end

The response to calling this query are all relationship types that match the query class. The execution of the

query class call can be linked to a specific step of the modelling procedure defined in ADOxx. Moving from one
modelling state to the next then requires that all query classes defined as post-condition of the current stage re-
turn an empty answer.

An example of a model-level constraint is that each employee who works for the R&D department must work
on at least one project:

RDEmployeeWithoutProject in QueryClass isA Employee with
 constraint
 c: $ (this department R&D) and
 not exists w/worksFor p/Project
 (w toEmp this) and (w toProj p) $
end

Such an integrity constraint is specific for a given ER model. The mechanism to call it is the same as for the ge-
neric constraint “RelationshipTypeLacksRoles”. Note that the above constraint requires as sample data level to
be evaluated.

Query classes are subclasses of other classes. The query class ‘RelationshipTypeLacksRoles’ is a subclass of
“RelationshipType” (being part of a meta-model), the class ‘RDEmployeeWithoutProject’ is a subclass of ‘Em-
ployee’, which is part of a conceptual model expressed in terms of a meta-model. All such query classes of the
same superclass form the set of constraints that the superclass must eventually fulfill. Asking the query classes
returns the violators, i.e. those instances of the super classes that match the condition of the query class. The use
of query classes has the advantage that one can ask them when appropriate. In early modeling stages, the concep-
tual models are incomplete and possibly violate many conditions expressed in the query classes. One can count

10

the number of instances in the query classes to realize a metric on the degree of inconsistency of a given model,
e.g. COUNT(RelationshipTypeLacksRoles). If a class has multiple query classes defined for it, then one
can aggregate them into a single query class:

FaultyRT in QueryClass isA RelationshipType with
 constraint
 c: $ (this in RelationshipTypeLacksRoles) or
 (this in RelationshipTypeXXX) or …$
end

SemCheck is also used for checking the consistency of a meta-model (e.g. defining the ER language) against

meta2 models. Consider figure 6 (ER meta-model assimilated in FCML) in the chapter “Fundamental Conceptual
Modelling Languages in OMILab” (FCML). The meta2 model consists of the concepts ‘Class’ and ‘Relation-
ship’. The latter has two role links ‘Class’ (labelled ‘source’ and ‘target’). The concept ‘Class’ has a self-
referential link ‘inheritance’ that is used to specify specialization hierarchies. The semantics of the ‘inheritance’
link can be specified in ConceptBase by the following definitions:

CLASS with
 attribute,single,transitive,reflexive,antisymmetric
 inheritance: CLASS
end

InheritanceRule in Class with
 rule r1: $ forall C,D/CLASS x/Proposition
 (C inheritance D) and (x in C) ==> (x in D) $
end

The first frame uses a combination of attribute categories ‘single’, ‘transitive’, ‘reflexive’, and ‘antisymmetric,
which can be imported from a formula repository in ConceptBase. For instance, the definition of ‘antisymmetric’
is:

 (x M y) and (y M x) ==> (x = y)

which translates to

 (x inheritance y) and (y inheritance x) ==> (x = y)

for the ‘inheritance link. The other attribute categories are defined in an analogous way. The meta-model instan-
tiated from the meta2 model uses the ‘inheritance link as shown here (see also figure 6 in the FCML chapter).

ENTITY in CLASS with
 inheritance
 super: EoR
end

RELATION in CLASS with
 inheritance
 super: EoR
end

The ‘inheritance rule’ of the meta2 model ensures that any instance of ‘Entity’ is also an instance of ‘EoR’, the
abstract super-class of ‘Entity’ and ‘Relation’. For example, the concept ‘Book’ is a direct instance of ‘Entity’
and via generic inheritance rule also an instance of ‘EoR’.

The formal specification of rules and constraints at the meta2 model assists the method engineer in designing
compliant modeling languages. Attempts to create meta-models that violate the constraints result in appropriate

11

error messages. For example, a circular specialization hierarchy is detected by the transitivity and anti-symmetry
rules of the meta2 model.

Integration architecture for ADOxx and ConceptBase

The three cases discussed above motivate the suitability of ConceptBase as a tool to check constraint and to
provide deduction-based analysis services for enterprise modeling frameworks that cover multiple perspectives
and levels. ADOxx is such a framework. This chapter discusses how to integrate ADOxx and ConceptBase.

ADOxx offers two toolkits. The development toolkit is used to define a modeling language by means of meta-
models. It also assigns a graphical notation of node and link shapes to the elements of the meta-models. Further,
the designer of the modeling language can associate semantics to the modeling language by linking them to algo-
rithms. For example, a process modeling language is associated to a mapping to simulation models that utilize
specific algorithms. The second toolkit is called the modeling toolkit. The development toolkit generates the
modeling toolkit for the given modeling language. Hence, this is the environment that is used by an enterprise
modeler.

ConceptBase does formally not distinguish between the constructs of a modeling language and the constructs
of a model. They are all represented in the very same data structure. Still it makes sense to distinguish the two
types of concepts since ADOxx distinguishes them. To do so, we propose to use the module system of Concept-
Base. Modules in ConceptBase are simply sets of objects. Modules can have sub-modules, in which all objects
of the super-modules are visible.

Fig. 6: ConceptBase module structure for ADOxx integration

Figure 6 shows the module structure of ConceptBase adapted to the requirements for ADOxx integration.
Each sub-module ‘sees’ the definitions made in its super-module hierarchy, i.e. the modules on the path from the
sub-module to the top module. The top module ‘System’ includes the pre-defined objects of ConceptBase. Be-
low is the module ‘oHome’ which hosts the home modules, one of them being ‘M2MODEL’. The ‘M2MODEL’
module contains definitions of meta-classes that make ConceptBase compatible with ADOxx. It also contains a
set of generic rules and constraints such as for transitivity and for multiplicity constraints. These constraints can
then be re-used for all sub-modules of ‘M2MODEL’. The sub-modules like ‘BPMN’ contain the meta-models of
the ADOxx modeling language to be supported by the SemCheck service of ConceptBase. The definitions are
passed from the ADOxx Development Toolkit to the suitable sub-module whenever a new modeling language is
defined. The translation of the ADOxx meta-model to the ConceptBase frame syntax has to be performed by an
adapter. Some sub-modules like ‘DFD_STD’ combine several modeling languages, here DFD and STD. This is
achieved by storing the meta-models of both languages in this sub-module. The model DFD_STD shall also in-
clude the query classes to check the semantic integrity and to analyze the models, e.g. on dependencies between
model elements.

System

oHome

M2MODEL

STD DFD_ERDDFD

otherModule

DFD_STD

sysmodel1

BPMN

bpmn
process1

12

The sub-module ‘sysmodel1’ is an example for a module storing models in the combined DFD_STD lan-

guage. It uses the definitions of DFD_STD to represent the models. The ADOxx Modelling Toolkit shall pass
the model definitions to the appropriate sub-module via an adapter. It can then retrieve reports on the semantic
integrity via the query classes defined in the super-module.

Fig. 7: Integration architecture for ADOxx and ConceptBase

Figure 7 identifies the components that are needed for the ADOxx/ConceptBase integration. The components

ADOxx Development Toolkit, ADOxx Modelling Toolkit, CBShell and CBServer are readily existing. The
CBShell component is a command interpreter for the ConceptBase server CBServer. CBShell is Java program
that accepts commands from a terminal and then calls the CBServer to execute the command. It can be easily
adapted to let it be called from another program, here the Adapter ADOxx/Telos. This adapter receives meta-
models and models from the ADOxx components and translates them into the ConceptBase frame syntax. This
adapter needs to be implemented to get the integration working.

The workflow is starting from the development toolkit. Assume a designer creates a meta-model for
DFD_STD. The meta-model is stores in ADOxx’s repository and in parallel the definition is passed to the adapt-
er. The adapter transforms the ADOxx representation into CBShell commands that store the meta-model in the
suitable ConceptBase module, here DFD_STD. The next step is that a modeler uses the modelling toolkit to cre-
ate an example model. This model is stored in the ADOxx repository and then passed it to the CBServer via the
adapter and CBShell. The modelling toolkit can then request the consistency checks by calling the query classes
implementing them. The answer is a list of ‘violators’, which can then be highlighted in the modelling toolkit.
Depending on the modelling phase, the toolkit could request different consistency checks. For example, the que-
ry ‘UnmatchedIncomingControlFlow’ of the DFD/STD case could be part of the final consistency checks when
both the DFD and the STD are regarded as complete.

The commands of CBShell define the interface between the adapter and the CBServer. The following com-

mands are the most relevant ones for the integration:

startServer serveroptions
start a new CBServer on localhost. The server options allow among others to specify the database to be
used and to specify the port number for TCP/IP connections

connect host port
connect to an already running CBServer on host:port

disconnect
disconnect from the current CBServer

setModule modulePath
set the new module, e.g “setModule oHome/ADOxx/BPMN”

newModule modulename

ADOxx
Development

Toolkit

ADOxx
Modelling

Toolkit

1:define

Adapter ADOxx/Telos

1:define 2:model

CBShell

CBServer

1:tell 2:tell 3:ask

3:check

13

create a new sub-module in the current module
tell frames

store the specified frames (given as text string) to the current module
ask query options

ask the specified query given by the name of the query class, possibly including parameters in the query
call; the options can be used to specify the answer representation

showAnswer
displays the answer to the query called before

The CBServer stores by default all objects persistently. It can however also be configured to only store them
in main memory. Below is a trace of CBShell using the above commands for the DFD_STD example.

1. connect localhost 4001
2. setModule ADOxx/DFD_STD/sysmodel1
3. tell "INTERNALCONTROL with
 incomingCF
 reset: ControlAccounts
 end"
4. ask UnmatchedIncomingControlFlow
5. showAnswer
 INTERNALCONTROL!reset

It is assumed here that the modules ADOxx and DFD_STD have already been defined and that the example

model of figure 3 has been stored in ‘sysmodel1’. The tell command incrementally adds a new model element to
the existing model, here a ‘reset’ link as incoming control flow of the control process ‘ControlAccounts’. The
query ‘UnmatchedIncomingControlFlow’ then exposes this new link as being not matched with the STD speci-
fying the control process.

Note that the ask command is typically called after a meaningful sequence of modeling steps in ADOxx have
been executed. The answer ‘INTERNALCONTROL!reset’ identifies the ‘reset’ link of the object
‘INTERNALCONTROL’ as the violator. The query name ‘UnmatchedIncomingControlFlow’ tells ADOxx how
to interpret the answer. In this case, ADOxx may present to the modeler that he has link the control flow to some
condition in the STD.

Instead of incremental changes, ADOxx can also pass the whole model to ConceptBase. ConceptBase will au-
tomatically extract only the new objects and then tell only them to the selected module.

There are a number of improvements that the CBServer could offer to support the integration. The most sig-

nificant one would be to support merging two existing modules. For example, DFD_STD could be defined as
submodule of both DFD and STD and then would see the definitions of both. Currently, one has to duplicate the
content of DFD and STD into DFD_STD. A second improvement would be to remove a module, i.e. to delete
its content. ConceptBase can handle models with several hundred thousand objects. The query performance for
the examples discussed in this chapter are in the range of milliseconds.

Inheriting execution semantics for process models

The ConceptBase module structure discussed in the previous section allows to share meta-models and to sep-
arate different modelling environments from each other. In this section, we discuss the uses of so-called active
rules and deduction rules to specify the execution semantics for petri nets and then to share this semantics as
well.

A classical Petri net consists of places and transitions. Places have a marking being a non-negative integer
number. There are flow links between places and transitions. A place is an input place for a transition if there is a
flow link from the place to the transition, and an output place if there is a flow link from the transition to the
place. A transition is enabled if all its input places have a marking greater than zero. In ConceptBase, this can be
modeled as follows:

14

GProcessElement with
 attribute flowTo : GProcessElement
end
GPlace isA GProcessElement with
 attribute marks : Integer
end
GTransition isA GProcessElement end

M in Function isA Integer with
 parameter p : GPlace
 constraint c1 : $ (p marks this) $
end
Input in GenericQueryClass isA GPlace with
 parameter t : GTransition
 constraint
 ci : $ (this flowTo t) $
end
ConnectedPlace in GenericQueryClass isA GPlace with
 Parameter trans : GTransition
 constraint
 c : $ (this flowTo trans) or (trans flowTo this) $
end
IM in Function isA Integer with
 parameter p : GPlace; t : GTransition
 constraint
 c1 : $ (t flowTo p) and not (p flowTo t) and (this = 1) or
 (p flowTo t) and not (t flowTo p) and (this = -1) or
 not (p flowTo t) and not (t flowTo p) and (this = 0) $
end
Enabled in QueryClass isA GTransition with
 constraint c : $ forall p/Input[this] (M(p) > 0) $
end

The query class ‘Enabled’ returns the currently enabled transitions. The function M returns the marking of a

given place and the function IM realizes the incidence matrix between places and transitions. The firing of a
transition can be expressed by an active rule:

gfire in GenericQueryClass isA YesClass with
 parameter transition : Enabled
end
UpdateConnectedPlaces in ECArule with
 mode m : Deferred
 ecarule
 er : $ t/GTransition p/GPlace m/Integer
 ON Ask gfire[t]
 IFNEW (t in Enabled) and (p in ConnectedPlace[t]) and
 (m = M(p)+IM(p,t))
 DO Retell (p marks m) $
end

The active rule is triggered by the command gfire[t] for an enabled transition. It will then change he

markings of the connected places according to the old state and the incidence matrix IM.
Since the above frames are completely defining the semantics of classical petri nets, we can re-use the defini-

tion to define semantics to other process modelling languages such as BPMN, state transition diagrams, event-
process chains and others just by mapping their constructs into the petri net constructs for places and transitions.

15

Fig. 8: A BPMN model instantiated to Petri net constructs

Figure 8 shows how the result of the mapping on a sample BPMN model. The figure is an actual screendump

of ConceptBase, hence all displayed elements are actually taken from the model definitions stored in Concept-
Base. The BPMN tasks are instantiated to GTransition, hence they operate like Petri net transitions. The start and
end events are mapped to GPlace. The connection between two transitions like t1 and t2 is interpreted as a place,
and there are corresponding derived flow links from t1 to the link and from the link to t2. The following Con-
ceptBase frames are achieving the mapping:

TransitionLike isA BPMN_Element,GTransition end
PlaceLike isA BPMN_Element,GPlace end
BPMN_Activity isA TransitionLike end
BPMN_Event isA PlaceLike end
MapBPMNToGPM in Class with
 rule
 r1 : $ forall a1,a2/TransitionLike link/BPMN_Element!next
 From(link,a1) and To(link,a2) ==> (link in GPlace) $;
 r2 : $ forall a1,a2/TransitionLike link/BPMN_Element!next
 From(link,a1) and To(link,a2) ==> (a1 flowTo link) $;
 r3 : $ forall a1,a2/TransitionLike link/GPlace
 (link in BPMN_Element!next) and
 From(link,a1) and To(link,a2) ==> (link flowTo a2) $
 end

This definition allows to directly executing a BPMN process model using the ‘gfire’ command. The complete
definition is available via http://conceptbase.cc/nemo2015. Even if the execution semantics is not needed in the
integration with ADOxx (since it has more advanced algorithms to specify execution semantics), the query to
check enabled tasks on a given state is useful to designers of new process modeling languages.

Conclusions

This chapter motivated that enterprise models consist of multiple modelling perspectives and that these per-
spectives need be synchronized by semantic constraints. We presented the capabilities of the constraint and que-
ry language of the ConceptBase system and showed in three cases that it can represent and evaluate typical con-
straints.

We also presented an integration architecture where ConceptBase is used as a backend for the ADOxx enter-
prise modeling platform. Since ConceptBase allows the representation of models at any abstraction level, its ser-
vice can support both the ADOxx Development Toolkit (meta-modelling) and the ADOxx Modelling Toolkit
(modelling).

Finally, we presented an approach to re-use execution and analysis functions for process modelling languages.
The constructs are defined for Petri nets and then can be re-used for BPMN and other process modelling lan-
guages.

All definitions used in this chapter are also available online. Future work has to be done for actually integrat-
ing ADOxx and ConceptBase. One element is the adapter that converts the ADOxx models and meta models into
the Telos syntax used by ConceptBase. Since both are based on graphical representations, this should be a rather
straightforward step. Secondly, the semantic constraints have to be declared within ADOxx and then passed to

16

ConceptBase. Finally, the error reports returned by ConceptBase need to be displayed in a suitable way by
ADOxx.

There are some services beyond constraint checking that could be outsourced to ConceptBase. One service is
the dependency tracking in large enterprise models, see the case study on ADOxx. ConceptBase has a fast Data-
log engine to evaluate recursive rules, in particular for following transitive links. A second service are model
metrics. The recursive functions in ConceptBase allow the definition of metrics such as for model complexity.

Acknowledgements. The ConceptBase models for ArchiMate were created in 2008 by Sander van Arendonk,
Niels Colijn, Dirk Janssen, and Jeffrey Kramer as part of an assignment for the method engineering course at
Tilburg University. Their models are available under a Creative Commons CC-BY-NC 3.0 license. Special
thanks to Wilfrid Utz and David Götzinger from the University of Vienna for their help in getting the coupling
between ConceptBase and ADOxx working.

References

1. D. Karagiannis, W. Grossmann, P. Höfferer (2008): Open Model Initiative – A Feasibility Study. Project
Study on behalf of the Austrian Federal Ministry for Transport, Innovation and Technology. Vienna, Sep-
tember 2008.

2. D. Karagiannis, H. Kühn (2002): Metamodelling Platforms. Proceedings 3rd. International Conference
EC-Web 2002/Dexa 2002, http://dx.doi.org/10.1007/3-540-45705-4_19.

3. H.-G. Fill, D. Karagiannis (2013): On the Conceptualisation of Modelling Methods Using the ADOxx
Meta Modelling Platform. Enterprise Modelling and Information Systems Architectures 8(1):4-25.

4. M. Jarke, R. Gallersdörfer, M.A. Jeusfeld, M. Staudt, S. Eherer (1995): ConceptBase – A Deductive Ob-
ject Base for Meta Data Management. J. Intell. Inf. Syst 4(2):167-192,
http://dx.doi.org/10.1007/BF00961873.

5. M.A. Jeusfeld (2009): Metamodeling and method engineering with ConceptBase. In M.A. Jeusfeld, M.
Jarke, J. Mylopoulos (eds.): Metamodeling for Method Engineering, The MIT Press, Cambridge, MA,
USA, ISBN 978-0262101080, 89-168.

6. K. Sandkuhl, J. Stirna, A. Persson, M. Wißotzki (2014): Enterprise Modeling - Tackling Business Chal-
lenges with the 4EM Method. The Enterprise Engineering Series, Springer 2014, ISBN 978-3-662-
43724-7.

7. M. Lankhorst et al. (2013): Enterprise Architecture at Work. Third Edition. Springer, Berlin, ISBN 978-
3-642-29650-5.

8. J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis (1990): Telos - Representing Knowledge About In-
formation Systems. ACM Trans. Inf. Syst. 8(4):325-362, http://doi.acm.org/10.1145/102675.102676.

9. S. Ceri, G. Gottlob, L. Tanca (1989): What you always wanted to know about Datalog (and never dared
to ask). IEEE Trans. Knowledge and Data Eng. 1(1): 146-166. https://dx.doi.org/10.1109/69.43410.

10. M.A. Jeusfeld, C. Quix, M. Jarke (2015): ConceptBase.cc User Manual. Version 7.8, Online
http://conceptbase.sourceforge.net/userManual78/.

11. E. Yourdan (1989): Modern Structured Analysis. Prentice Hal, Englewood Cliffs, NJ, USA.

