
Manfred A. Jeusfeld
University of Skövde / IIT

Skövde, Sweden
manfred.jeusfeld@acm.org

João Paulo A. Almeida
Federal University of Espírito Santo

Vitória, ES, Brazil
jpalmeida@ieee.org

Victorio A. Carvalho
Federal Institute of Espírito Santo

Colatina, ES, Brazil
victorio@ifes.edu.br

Claudenir M. Fonseca
Free University of Bozen-Bolzano

Bolzano, Italy
cmoraisfonseca@unibz.it

Bernd Neumayr
Johannes Kepler University Linz

Linz, Austria
neumayr@dke.uni-linz.ac.at

ABSTRACT
In the last two decades, about a dozen proposals were made to
extend object-oriented modeling by multiple abstraction levels. One
group of proposals designates explicit levels to objects and classes.
The second group uses the powertype pattern to implicitly establish
levels. From this group, we consider two proposals, DeepTelos
and MLT*. Both have been defined via axioms and both give a
central role to the powertype pattern. In this paper, we reconstruct
MLT* with the deductive axiomatization style used for DeepTelos.
The resulting specification is executed in a deductive database to
check MLT* multi-level models for errors and complete them with
derived facts that do not have to be explicitly asserted by modelers.
This leverages the rich rules of MLT* with the deductive approach
underlying DeepTelos. The effort also allows us to clearly establish
the relation between DeepTelos and MLT*, in an attempt to clarify
the relations between approaches in this research domain. As a
byproduct, we supply MLT-Telos as a fully operational deductive
implementation of MLT* to the research community.

CCS CONCEPTS
• Software and its engineering→ Syntax; Semantics;Domain
specific languages; Visual languages.

KEYWORDS
Multi-level modeling, Object-oriented modeling, MLT*, Powertype,
ConceptBase, Datalog, DeepTelos

ACM Reference Format:
Manfred A. Jeusfeld, João Paulo A. Almeida, Victorio A. Carvalho, Claudenir
M. Fonseca, and Bernd Neumayr. 2020. Deductive reconstruction of MLT*
for multi-level modeling. In ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems (MODELS ’20 Companion),
October 18–23, 2020, Virtual Event, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3417990.3421410

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8135-2/20/106. . . $15.00
https://doi.org/10.1145/3417990.3421410

1 INTRODUCTION
Multi-level modeling approaches developed over last two decades
can be roughly divided into two flavors. In the first one, objects and
classes are explicitly designated by themodeler to a particular “level”.
Attributes and relations get so-called “potencies” that specify how
many levels lower they can be instantiated. Example realizations
of this flavor are Melanee [19], MetaDepth [9], and FMMLx [12].
The second flavor uses the powertype pattern [6, 22, 23] to form
sequences of powertype relations between certain classes to estab-
lish levels implicitly. Two examples of this approach are MLT* [1]
and DeepTelos [18]. The multi-level community has undertaken a
number of attempts to compare and unify the existing proposals
for multi-level modeling. One method is to compare the proposals
and tools by feature lists. Another method is to define demanding
challenges, for which the researchers behind the multi-level model-
ing tools submit solutions. The complexity and expressiveness of
the solutions is then evaluated by the community. In this paper, we
follow a different approach. We review the axioms of the multi-level
theoryMLT* and implement them in the same system, ConceptBase
[13, 15], that was used to define DeepTelos. Differences between
MLT* and DeepTelos have be dealt with in this process. First of all,
the axioms and definitions of MLT* are expressed in first-order logic
with classical open-world semantics, while ConceptBase intention-
ally restricts itself to Datalog-neg [8] with minimal Herbrand model
semantics and closed-world assumption for negation. This means
that ConceptBase trades some expressive power for suitability as a
deductive system.

Rendering MLT* in ConceptBase allows the operationalization
of certain rules for multi-level modeling structures that were not
defined before for DeepTelos. Thus, we aim for a combination that
leverages the best of both worlds in the MLT-Telos implementa-
tion: a rich set of multi-level mechanisms and run-time deduction.
Further, this exercise allows for a better understanding of the com-
monalities and differences of DeepTelos and MLT*. The attempt to
unify two existing approaches to multi-level modeling contributes
to reducing unnecessary diversity in this research domain.

Section 2 presents the foundations of MLT* and DeepTelos. Sec-
tion 3 introduces MLT-Telos as an implementation of MLT* using
the deductive capabilities of ConceptBase. Section 4 evaluates the
implementation by showing how MLT* example models from the
literature can be checked for errors and completed automatically.
Section 5 shows MLT-Telos is a superset of DeepTelos. The paper
concludes with a discussion of the results and future research.

© 2020 by the authors. This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. The definitive version was published in MODELS '20 Companion, https://doi.org/10.1145/3417990.3421410.

Deductive reconstruction of MLT* for multi-level modeling

Hyperlinks at figures lead to corresponding ConceptBase graph files (*.gel)

https://doi.org/10.1145/3417990.3421410
https://doi.org/10.1145/3417990.3421410

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada M.A. Jeusfeld et al.

2 FOUNDATIONS OF MLT* AND DEEPTELOS
Both MLT* (with its modeling language ML2) and DeepTelos are
axiomatically defining extensions to the object-oriented modeling
paradigms to better support multiple classification levels, such as
objects, classes, meta-classes and so forth. Unlike the potency-based
multi-level modeling approaches, MLT* and DeepTelos tackle the
problem by additional logical axioms on instantiation and special-
ization.

2.1 MLT*
MLT* is defined by first-order logic axioms with classical semantics.
In this logic, the axioms are used to make formal proofs of theorems
that are then true in all interpretations that fulfill the axioms. MLT*
is intended as a reference theory, establishing admissible multi-level
structures that arise from the basic axioms and definitions. The
theory is built up from a primitive instantiation relation.

The first axiom of MLT* states that any constant in any inter-
pretation of MLT* is an entity1:

(1)∀𝑥 Entity(𝑥)

As a second example, types are defined as being those objects
that have at least least one instance:

(2)∀𝑥 Type(𝑥) ↔ ∃𝑦 iof(𝑦, 𝑥)

The predicate iof(𝑦, 𝑥) is true when 𝑦 is an instance of 𝑥 . The
predicate Type(𝑥) is true when 𝑥 is a type, i.e. it has at least one
possible instance. This rules out necessarily uninstantiated types.
MLT* also defines a predicate "Individual" to qualify entities that
have no instance (those that are not types). The predicate "Entity"
thus subsumes "Type" and "Individual".

A central construct of MLT* is the powertype relation, which
holds whenever all instances of a type 𝑡1 (the so-called powertype)
are specializations2 of a base type 𝑡2 (following Cardelli [6]):

(3)
∀𝑡1, 𝑡2 isPowertypeOf(𝑡1, 𝑡2) ↔ Type(𝑡1)∧

∀𝑡3(iof(𝑡3, 𝑡1) ↔ specializes(𝑡3, 𝑡2))

In total, MLT* comprises around 20 such axioms [1]. The other
axioms describe categorizations (powertypes following Odell [22]),
in particular partitions, and the difference between ordered types
(those that can be strictly stratified into orders) and orderless types
(those that defy stratification). There are also various theorems
that are proven from the axiomatization (using model finders and
automated theorem provers). For example, it follows that a (Cardelli)
powertype is unique given a base type; that two types that partition
the same base type cannot specialize each other, etc. The formally-
proven theorems were shown to rule out problematic multi-level
hierarchies in a realistic setting [4].

2.2 DeepTelos
DeepTelos [18] is based on the 30 axioms of O-Telos [14], which are
a deductive Interpretation of the formalization of the knowledge
representation language Telos [21]. The O-Telos axioms define and
constrain the use of instantiation, specialization and attribution.
Due the underpinning by O-Telos, the definition of DeepTelos only

1Infinite interpretations are neither ruled out nor necessitated.
2The formal definition of "specializes" in MLT* [1] is shown later in section 3.2.2.

requires six axioms in its latest incarnation [16]. Reformulated with
the predicates used in MLT*, the central axiom of DeepTelos is

(4)∀𝑡1, 𝑡2, 𝑡3 iof(𝑡1, Proposition) ∧ iof(𝑡2, Proposition)

∧ iof(𝑡3, 𝑡1) ∧ isPowertypeOf(𝑡1, 𝑡2) → specializes(𝑡3, 𝑡2)

There are however two important differences. First, all variables
in formalization of O-Telos and DeepTelos are bound to finite exten-
sions based on the deductive database consisting of a single base re-
lation "Proposition", subsuming all objects, explicit attributes/links,
explicit instantiations, and explicit specializations. The axioms of
O-Telos and DeepTelos are then forming the intentional database
using a fixpoint operator to compute the unique minimal Herbrand
model [8]. Since the base relation is finite, all intentional (=derived)
relations are finite as well. In the above formula, all variables must
be bound to finite extensions, here the class "Proposition".

DeepTelos is implemented via deductive rules and integrity con-
straints in ConceptBase [13, 15]. With deductive rules, the right
hand side of the rule (here specializes(𝑡3, 𝑡2)) stands for the con-
cluded/derived predicate and the left hand side for the condition.
While classical logic allows arbitrary re-ordering of predicates con-
forming to equivalences, this is not the case for deductive rules.
Formula (3) in MLT* states the equivalence of a left hand side sub-
formula to the right-hand side sub-formula, i.e. one can conclude in
both directions. Such formulas are completely defining predicates
such as "isPowertypeOf". In contrast, formula (4) derives new facts
for the predicate "specializes" based on the left-hand side. There
may well, be further deductive rules with the same right-hand side
predicate "specializes". In DeepTelos, one declares facts of "isPow-
ertypeOf" in the database and then formula (4) defines how new
"specializes" facts are derived from it.

Besides deductive rules, ConceptBase also supports the definition
of integrity constraints. Integrity constraints must be true in all
database states. Technically, integrity constraints are transformed
into a denial form deriving a predicate "inconsistent". The system
makes sure that "inconsistent" has an empty extension at all times.

3 MLT-TELOS DEFINEDWITHIN O-TELOS
The previous section exposed the main difference of MLT* and
DeepTelos. MLT* is rooted in classic first-order logic allowing to
prove theorems for any interpretation that satisfies the MLT* ax-
ioms. DeepTelos is based on ConceptBase which adopts Datalog-
neg semantics where every program has a unique minimal Her-
brand mode [8] computed by an efficient deductive database engine.
DeepTelos is thus more suitable for analyzing actual models (in-
stances of the DeepTelos constructs) by means of queries, rather
than proving theorems. This section proposes MLT-Telos as a lan-
guage to represent multi-level models using the MLT* constructs
of instantiation, specialization, powertypes, and categorizations.
The semantics of these constructs are expressed by rules and con-
straints on top of the O-Telos axioms (which are also expressed
as rules and constraints). The purpose of this effort is to create an
implementation of a multi-level modeling environment that approx-
imates the original MLT* axioms and allows to analyze multi-level
models for modeling errors via efficient Datalog engines. From a
logic point of view, the minimal Herbrand model is just one of all
possible interpretations in classical logic. However, if a multi-level

Deductive reconstruction of MLT* for multi-level modeling MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

model is inconsistent3 in its minimal Herbrand model, then it is
also inconsistent in general. The deductive approach promoted by
O-Telos and DeepTelos is therefore suitable to tackle the goal of this
paper. O-Telos is the variant of Telos as implemented by Concept-
Base. We thus shortly review the deductive features implemented
in ConceptBase.

3.1 ConceptBase as implementation of O-Telos
ConceptBase stores all factual information as "propositions", i.e.
quadruples of the form 𝑃 (𝑜, 𝑥, 𝑛,𝑦), where 𝑜 is the system-generated
identifier of the proposition, 𝑥 is the source object identifier, 𝑛 its
label, and 𝑦 the destination identifier. A proposition can represent
named objects (and classes), explicit attributions and links, explicit
instantiations, and explicit specializations. So, ConceptBase is effec-
tively a deductive database with a single base relation 𝑃 (𝑜, 𝑥, 𝑛,𝑦).

Predicates for attributions, relations, instantiations and special-
izations are defined by deductive rules, some of them being defined
in terms of the proposition predicate 𝑃 (𝑜, 𝑥, 𝑛,𝑦) and predicates
based on 𝑃 (𝑜, 𝑥, 𝑛,𝑦). The most important predicates are:

(x in c) The object x is an instance of the object c. This corre-
sponds to the "iof" predicate of MLT*.

(c isA d) The object c is a specialization or subclass of the
object c. This corresponds to the "specializes" predicate of
MLT*.

(x m y) The objects x and y are linked by a relation m. The
label "m" must be defined at some class of x.

The complete list of predicates and their precise definition is
provided by the ConceptBase user manual [17]. O-Telos regards
constants such as numbers and strings as objects. There is ex ante
no difference between attributes and relations, though one can add
extra rules and constraints to distinguish the two. Deductive rules
and integrity constraints are described in a restricted first-order
logic syntax, where all variables must be bound to classes with finite
extensions. Subsequently, we use ConceptBase’s textual syntax to
denote deductive rules and constraints. For example, axiom (4) is
written in O-Telos as a deductive rule:
forall t1,t2,t3/Proposition
(t3 in t1) and (t1 isPowerTypeOf t2) ==> (t3 specializes t2)

"Proposition" is the most general class in O-Telos. It subsumes
all objects [14]. Deductive rules must have a single conclusion
predicate and all variables in this predicate must be universally
quantified and bound to finite extensions in the rule body. Integrity
constraints do not have this restriction. They are internally trans-
formed to rules for deriving the "inconsistent" predicate. Besides
rules and constraints, ConceptBase also supports query classes [17].
They are syntactically sugared-up representations of deductive
rules. Safe negation is supported with the following restrictions:
First all, variables in a negated predicate must be bound by a posi-
tive predicate in conjunction to the negated predicate. Second, if
negated predicates occur in recursive deductive rules, then the rule
set must be stratified [3] to avoid non-unique minimal models. We
do not discuss this further since MLT-Telos does not contains such
rules.
3A more precise statement is: The model violates at least one explicit integrity con-
straint. Logical consistency is a broader concept than deductive integrity constraint
violation.

Figure 1: Example O-Telos model

Figure 1 shows a simple example of a model in O-Telos. The
class "Proposition" has all explicit objects as instance, including
classes. Refinement of attributes/relations is expressed by a spe-
cialization link, here between the owner relation of "Car" and the
owner relation of "Product".

Model 1: O-Telos code for figure 1

EntityType end
Product in EntityType with attribute owner: Person end
Person in EntityType end
AdultPerson isA Person end
Car isA Product with attribute owner: AdultPerson end
mary in AdultPerson end
marysCar in Car with owner o: mary end

The textual syntax for O-Telos code is a syntactic sugar for a list
of facts such as (Product in EntityType), (AdultPerson isA
Person) and so forth. Details are explained in the user manual [17].
Note that the grey instantiation links to "Proposition" in figure 1
are derived by O-Telos axioms.

3.2 Definition of MLT-Telos
We follow the MLT* axiomatization described in [1] and discuss
here the main design decisions for MLT-Telos since the mapping to
O-Telos is not lossless.

3.2.1 The basic constructs of MLT*. MLT* defines "Entity" (any
object), "Type" (objects that have instances) and "Individual" (objects
that have no instances) bymeans of axioms. To avoid confusionwith
predefined O-Telos objects, we shall use all-caps labels in MLT-Telos
for these concepts. All subsequent declarations are incremental.
We use the ConceptBase frame syntax for declaring MLT-Telos
objects. It is a more compact representation of facts expressed in
the predicates (x in c), (c isA d), and (x m y). The first step
is to define classes for the three predefined types:

Listing 1: MLT-Telos predefined types

ENTITY in TYPE end
TYPE in TYPE isA ENTITY end
INDIVIDUAL in TYPE isA ENTITY end

http://conceptbase.sourceforge.net/mlt-telos/GELs/TelosExample1a.gel

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada M.A. Jeusfeld et al.

All three concepts are types4, hence they are declared here as
explicit instances of "TYPE". Types can be powertypes of other
types and they can specialize other types:

Listing 2: Powertype and specialization

TYPE with
irreflexive,antisymmetric,single,revsingle
isPowerTypeOf: TYPE

reflexive,antisymmetric,transitive
specializes: TYPE

attribute
properSpecializes: TYPE

end

The attribute categories "irreflexive", "antisymmetric", "symmet-
ric", and "transitive" come with predefined deductive rules and
integrity constraints in ConceptBase. The same holds for the cardi-
nality categories "single" (at most one filler), "revsingle" (at most
one object has this value), and "necessary" (at least one filler).
Transitivity is supported by deductive rules due to its minimal
model semantics. For instance, the "specializes" relation is defined
to be reflexive, antisymmetric and transitive. The rules and con-
straints associated to the attribute categories are made available
at http://conceptbase.sourceforge.net/mlt-telos/SOURCES/System-
oHome.sml.

3.2.2 Mapping of MLT* axioms. Deductive rules and integrity con-
straints in Datalog-neg must be "range-restricted", i.e. all variables
must be bound to finite extensions. For this reason, the MLT* defi-
nition of "Entity"

(5)∀𝑥 Entity(𝑥)

cannot be matched in MLT-Telos. Instead, MLT-Telos defines "En-
tity" to subsume all instances of "TYPE" and "INDIVIDUAL". These
two classes shall have either explicit instances or instances derived
by rules. At any point of type, the extension of "ENTITY" is finite in
MLT-Telos, unlike as in MLT* which allows infinite interpretations.
Subsequently, we follow the MLT* axiom definitions from [1]. The
type "Individual" in MLT* is defined by axiom (6).

(6)∀𝑥 Individual(𝑥) ↔ ¬∃𝑦 iof(𝑦, 𝑥)

In MLT-Telos, this is mapped to two constraints. The difference
is not so much in the syntax but in the semantics. In MLT-Telos,
any of the finitely many instances of "INDIVIDUAL" must fulfill the
condition. Further, the variable "y" in the first constraint is bound
to "ENTITY", which has a finite extension in MLT-Telos.

Listing 3: Individual objects

forall x/INDIVIDUAL not exists y/ENTITY (y in x)
forall x/INDIVIDUAL not (x in TYPE)

The MLT-Telos constraints may look syntactically similar to the
corresponding MLT* axiom 6. However, the MLT* axiom makes a
statement about all interpretations that satisfy the MLT* theory.
The logical equivalence operator can also be read in both directions.
In MLT-Telos, the constraint is checked only against the unique

4We shall uses the terms type and classes as synonyms in MLT-Telos, because MLT-
Telos types can only have a finite extension of explicit and derived instances.

minimal Herbrand model of the current database5. The database
consists of deductive rules, integrity constraints, and facts. The lat-
ter can also be viewed as deductive rules with no body. InMLT-Telos,
instances of the class "INDIVIDUAL" need either to be declared
explicitly, e.g. (mary in Person) or derived by deductive rules. In
both cases, the number of instances is finite and all objects occur
as constants in the database. We could add a rule like

forall x/Entity not exists y/ENTITY (y in x)
==> (x in INDIVIDUAL)

This rule would return all (finitely many) instances of "ENTITY"
that currently have no instance. Such a rule would not be very useful
for modeling purposes since a new definition of a type initially has
no instance in the MLT-Telos database and would consequently be
classified as an individual object.

The next MLT* axiom demands that each type must have at least
one individual as transitive instance. The axiom uses the predicate
"iof_trans" to denote the transitive closure of "iof":

(7)∀𝑡 Type(𝑡) → ∃𝑥 Individual(𝑥) ∧ iof_trans(𝑥, 𝑡)

In MLT-Telos, we first define "iof_trans" as the transitive closure
of the explicit instantiation :(x in t): and then a so-called query
class that returns all types that have no individual as transitive
instance:

Listing 4: Transitive instances

ENTITY in Class with
attribute,transitive iof_trans: ENTITY
rule h_1: $ forall x/INDIVIDUAL t/TYPE :(x in t):

==> (x iof_trans t) $
end

TYPEwithoutINDIVIDUAL in QueryClass isA TYPE with
constraint
a_1: $ not exists x/INDIVIDUAL (x iof_trans this) $

end

The variable "this" in listing 4 stands for any instance of the
superclass "TYPE" of the query. The definitions in listing 5 allow
to temporarily have types in MLT-Telos that have no individual
as transitive instance. This approach is suitable for modeling en-
vironment since a newly defined type initially has no extension
in the minimal model semantics of MLT-Telos. Instances must be
declared explicitly or must be derived from other explicit facts in
the database.

The next two axioms defines the "specializes" and "properSpe-
cializes" predicate in MLT*.

(8)∀𝑡1, 𝑡2 specializes(𝑡1, 𝑡2) ↔ (Type(𝑡1) ∧ ∀𝑒 iof(𝑒, 𝑡1)
→ iof(𝑒, 𝑡2))

(9)∀𝑡1, 𝑡2 properSpecializes(𝑡1, 𝑡2) ↔ specializes(𝑡1, 𝑡2) ∧ 𝑡1 ̸= 𝑡2

In MLT-Telos, we only implement the direction from left to right,
i.e. if a type specializes another type, then the supertype inherits
the instances of the subtype. This is achieved by the following two
deductive rules:

5Datalog stems from the database discipline. A deductive database consists of rules,
constraints (the latter are also mapped to rules) and facts (tuples in relational databases).
Facts can be regarded as rules with no body.

http://conceptbase.sourceforge.net/mlt-telos/SOURCES/System-oHome.sml
http://conceptbase.sourceforge.net/mlt-telos/SOURCES/System-oHome.sml

Deductive reconstruction of MLT* for multi-level modeling MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Listing 5: Semantics of specializes

forall t1,t2/TYPE e/Proposition (t1 specializes t2) and
(e in t1) ==> (e in t2)

forall t1,t2/TYPE (t1 specializes t2) and (t1 <> t2)
==> (t1 properSpecializes t2)

The range "Proposition" for the variable e is subsuming all stored
objects in an MLT-Telos database. This is another case where MLT*
allows infinite extensions and MLT-Telos only considers the finite
minimal model semantics. The "specializes" predicate of MLT-Telos
has virtually the same semantics as the pre-defined O-Telos predi-
cate "isA". We still define it here because O-Telos forbids for tech-
nical reasons user-defined rules deriving "isA" relations. Having a
dedicated "specializes" predicate allows controlling its definition
independent from such restrictions.

(10)
∀𝑡1, 𝑡2 Type(𝑡1) ∧ Type(𝑡2) → ((𝑡1 = 𝑡2)

↔ ∀𝑥 (iof(𝑥, 𝑡1)
↔ iof(𝑥, 𝑡2))))

Axiom (10) defines type equality based on the extension of the
types. While two classes in O-Telos can be checked in whether they
have the same extension in the minimal Herbrand model, the axiom
cannot be translated since two objects in O-Telos are the same if and
only if they are identical, i.e. have the same name. Consequently,
axiom (10) is not supported in MLT-Telos.

The next MLT* axiom codifies the meaning of the "isPower-
TypeOf" relation as discussed in the previous section.

(11)∀𝑡1, 𝑡2 isPowertypeOf(𝑡1, 𝑡2) ↔ type(𝑡1) ∧ ∀𝑡3(iof(𝑡3, 𝑡1)
↔ specializes(𝑡3, 𝑡2))

In MLT-Telos, this axiom is implemented in the same way as for
DeepTelos by deductive rules:

Listing 6: Semantics of isPowerTypeOf

forall t1,t2,t3,m/TYPE (t1 isPowerTypeOf t2) and
(t3 in t1) and not (t3 isA t2) ==> (t3 specializes t2)

forall t1,t2,t3/TYPE (t1 isPowerTypeOf t2) and
(t3 specializes t2) ==> (t3 in t1)

The first deductive rule derives new specializations when a pow-
ertype is instantiated. The second derives instantiations to the pow-
ertype if the target type "t2" of the powertype is specialized. Note
that axiom (11) uses the equivalence to define the "isPowerTypeOf"
relation. All substitutions [𝑣1/𝑡1,𝑣2/𝑡2] that satisfy the right-hand
side

type(𝑡1) ∧ ∀𝑡3(iof(𝑡3, 𝑡1) ↔ specializes(𝑡3, 𝑡2))
also satisfy isPowertypeOf(𝑡1, 𝑡2). MLT-Telos only supports the di-
rection from left to right and even more, only derives new solutions
for the "specializes" predicate. The rationale for this restriction is
that we assume that the modeler declares "isPowerTypeOf" facts
rather than deriving them from a given instance model.

Basic types in MLT* are establishing a stratified order of types
based on the instantiations and specialization predicates. The cor-
responding axioms can also not be mirrored exactly in O-Telos.

Listing 7: Approximation of BasicType

BasicType in QueryClass isA TYPE with constraint
a_1: $ exists x/TYPE (x isPowerTypeOf this) or

(this isPowerTypeOf x) $
end

Instead, we approximate the meaning by a query class that is
solely based on "isPowerTypeOf". Note that the corresponding
MLT* predicate is defined by an equivalence, while it is declared
by explicit facts in MLT-Telos.

The powertype construct in MLT-Telos is the inverse as the
most-general-instance construct in DeepTelos. DeepTelos does not
constrain the cardinalities. MLT-Telos follows MLT* by imposing a
1:1 cardinality constraint for the powertype construct. This appears
to be the more solid approach since it avoids undesired duplicate
types that always have the same extension. Unlike DeepTelos, MLT*
defines categorizations of types, such as disjoint and/or complete
decomposition of types. These constructs are implemented in MLT-
Telos by first declaring them and then defining their semantics by
a combination of rules and constraints:

Listing 8: Categorization constructs

TYPE with single
categorizes: TYPE; disjointlyCategorizes: TYPE;
partitions: TYPE; completelyCategorizes: TYPE

end

The five deductive rules in listing 9 related the four categorizes
constructs to each other and to the "specializes" relation. The last
rule is not mentioned as a formal axiom in the MLT* specification
but is described in words the written elaboration of categoriza-
tion in [11]. It becomes a deductive rule in MLT-Telos to handle
categorizations correctly.

Listing 9: Categorization semantics

forall t1,t2/TYPE (t1 disjointlyCategorizes t2)
==> (t1 categorizes t2)

forall t1,t2/TYPE (t1 completelyCategorizes t2)
==> (t1 categorizes t2)

forall t1,t2/TYPE (t1 partitions t2)
==> (t1 disjointlyCategorizes t2)

forall t1,t2/TYPE (t1 partitions t2)
==> (t1 completelyCategorizes t2)

forall t1,t2,t3/TYPE (t1 categorizes t2) and (t3 in t1)
==> (t3 specializes t2)

The two integrity constraints in listing 10 relate categorizations
and powertypes. The constraints demand that the complete catego-
rization of a type must take place at the subtype level of the types
participating in an "isPowerTypeOf" relation. The two constraints
could also have been realized as deductive rules that derive the
required subtype relations. However, we prefer encoding them as
integrity constraints and thereby require the modeler to use the
two constructs in the correct way. Defining them as deductive rules
would potentially lead to cyclic subtype relations, which would be
captured by the generic "antisymmetric" constraint of the "special-
izes" construct.

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada M.A. Jeusfeld et al.

Listing 10: Specializations deduced from categorization

forall t1,t2,s1,s2/TYPE (t1 isPowerTypeOf t2) and
(s1 completelyCategorizes s2) and (s1 specializes t1)
==> (s2 specializes t2)

forall t1,t2,s1,s2/TYPE (t1 isPowerTypeOf t2) and
(s1 categorizes s2) and (s2 specializes t2)
==> (s1 specializes t1)

Incorrect categorizations are analyzed via query classes. The first
query class in listing 11 returns types that are declared as complete
categorizations but that are in fact incomplete (there are instances
of the type that are not instance of a proper subclass of the type).
The second query class in listing 11 returns non-disjoint decom-
positions. The example in figure 3 shows how to use the queries
during modeling. As discussed earlier, the use of query classes al-
lows violations of the constraints by returning the "violators" as the
result of the query. In a modeling environment one would only call
the query when the model is considered to be complete. Violations
during the modeling is not causing an integrity constraint violation.

Listing 11: Completeness and disjointness

IncompleteCategorization in QueryClass isA TYPE with
computed_attribute entity: ENTITY
constraint isIncomplete : $ exists t1/TYPE

(t1 completelyCategorizes this) and (~entity in this) and
not (exists t2/TYPE (t2 properSpecializes this) and
(~entity in t2)) $

end

NondisjointCategorization in QueryClass isA TYPE with
computed_attribute entity: ENTITY; type: TYPE
constraint isNondisjoint: $ exists t1,t2/TYPE

(t1 disjointlyCategorizes t2) and
(this properSpecializes t2) and
(~type properSpecializes t2) and (this <> ~type) and
(~entity in ~type) and (~entity in this) $

end

The complete sources of MLT-Telos plus example models and fur-
ther documentation are available fromhttp://conceptbase.sourceforge.
net/mlt-telos/.

4 MLT-TELOS BY EXAMPLE
The rules, constraints and queries listed in the previous section can
directly be used in the ConceptBase system to define and analyze
example MLT-Telos models. We use the standard examples of MLT*
as provided in [11] to test the implementations and discuss its
limitations.

Figure 2: Simple powertype relation with basic types

The example in figure 2 declares a powertype relation between
"PersonType" and "Person". The reverse instance-of relation is cor-
rectly derived6 by MLT-Telos via the second rule of listing 6. The
classes "Woman" and "Man" are declared as explicit instances of
"PersonType". They are thus derived specializations of the class
"Person" via the first MLT-Telos deductive rule of listing 6. The
instances "Bob", "John" and "Ana" are declared as explicit instances
of "Woman" and "Man", respectively, and are consequently derived
instances of "Person". The query class "BasicType" classifies all
types/classes that participate in powertype relations as discussed in
the previous section. The source code of the example is in model 2.
Note that the individuals need to be declared explicitly here because
of the minimal model semantics of Datalog-neg. Likewise types
need to be instantiated to the class "TYPE".

Model 2: Listing for figure 2

Person in TYPE end
PersonType in TYPE with isPowerTypeOf type: Person end
Man in TYPE,PersonType end Woman in TYPE,PersonType end
John in INDIVIDUAL,Man end Bob in INDIVIDUAL,Man end
Ana in INDIVIDUAL,Woman end

Figure 3 shows an example of the partitions construct. The
classes "Woman" and "Man" are declared as explicit instances of
"PersonByGender", which specializes "PersonType". Hence, "Woman"
and "Man" are both derived instances of "PersonType", which is
the powertype of "Person". Consequently, "Woman" and "Man" are
then derived specializations of "Person".

Figure 3: The partitions construct

Model 3: Listing for figure 3

Person in TYPE end
PersonType in TYPE with isPowerTypeOf type: Person end
PersonByGender in TYPE with specializes t1: PersonType

partitions t2: Person end
Man in TYPE,PersonByGender end
Woman in TYPE,PersonByGender end
John in INDIVIDUAL,Man end Bob in INDIVIDUAL,Man end
Ana in INDIVIDUAL,Man,Woman end Data in INDIVIDUAL,Person end

The instances of "Woman" and "Man" are chosen to expose viola-
tions of both the disjointness and completeness criterion. The two
criteria are realized as query classes "IncompleteCategorization"
and "NondisjointCategorization". They are correctly exposing the
6Black links are explicit facts in the figures. Grey links are derived by rules. All figures
are screendumps made with the ConceptBase user interface from graphical views of
the model database.

http://conceptbase.sourceforge.net/mlt-telos/
http://conceptbase.sourceforge.net/mlt-telos/
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example1.gel
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example2.gel
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example1.sml.txt
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example2.sml.txt

Deductive reconstruction of MLT* for multi-level modeling MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

violating types. For example, the answer to the query "Nondisjoint-
Categorization" is
Man in NondisjointCategorization with

entity _: Ana type _: Woman end
Woman in NondisjointCategorization with

entity _: Ana type _: Man end

There are two violators because both classes violate the crite-
rion for disjoint decomposition. Query classes in ConceptBase are
treated as classes: answers to the query are (derived) instances of
the query. This explains the instantiation link to the query classes
in figure 3.

Figure 4: Partition under powertype

Figure 4 shows how to define a partition to a subclass of a pow-
ertype. The powertype relation is between "LivingBeingType" and
"LivingBeing", whereas the partition relation is declared between
the subclasses "PersonByGender" and "Person". The two classes
"Woman" and "Man" are explicit instances of "PersonByGender".
The partitions relations implies a categorization relations between
"PersonByGender" and "Person", which then implies that "Woman"
and "Man" are specializations of Person. The MLT-Telos source code
of the example in figure 4 is:

Model 4: Listing for figure 4

LivingBeing in TYPE end
LivingBeingType in TYPE with isPowerTypeOf type: LivingBeing end
PersonType in TYPE with specializes t1: LivingBeingType end
Plant in TYPE with specializes t1: LivingBeing end
Person in TYPE with specializes t1: LivingBeing end
PersonByGender in TYPE with specializes t1: PersonType

partitions t2: Person end
Man in TYPE,PersonByGender end
Woman in TYPE,PersonByGender end
John in INDIVIDUAL,Man end Bob in INDIVIDUAL,Man end
Ana in INDIVIDUAL,Woman end Data in INDIVIDUAL,Person end

Figure 4 shows that the MLT-Telos implementation of MLT* can
derive instantiations to the powertype from explicit specializations.
For example "Person" and "Plant" are explicit specializations of "Liv-
ingBeing". Their instantiation to the powertype "LivingBeingType"
is derived via the second rule in listing 6. Compare in contrast
the example in Figure 2. There, "Man" and "Woman" are explicit
instances of "PersonType" and their specialization to "Person" is
derived via the first rule of listing 6. The source code in model 4

corresponds to the explicit facts in the database. All other facts
are derived by rules of O-Telos and MLT-Telos. The high ratio of
derived facts versus explicit facts confirms that MLT-Telos sup-
ports the modeler in creating concise and redundancy-free models.
Derived facts do not need to be declared.

MLT* supports types with more than one supertype. Figure 5
shows that this feature is also available in MLT-Telos. Here, the ob-
ject "John" is instance of "AdultMan" and via inheritance of "Adult"
and "Man". "AdultMan" is a derived instance of "PersonType" via
the second rule for the "isPowerTypeOf" construct in listing 6. The
classes "Man" and "Adult" are in contrast explicit instances of the
powertype "PersonType". Hence, their specialization to "Person" is
derived via the first rule in listing 6. MLT* distinguishes ordered
types (types that are specializing basic types) from order-less types
(all other types). Order-less types are then simply all types that are
not ordered types.

Figure 6 shows the instances of "OrderedType". The types "2ndOT",
"1stOT" and "INDIVIDUAL". are instances of "BasicType". MLT-
Telos approximates "OrderedType" by a query class:
OrderedType in QueryClass isA TYPE with constraint

d_8: $ exists b/BasicType (this specializes b) $
end

Arguably, this is only a roughly approximation of the MLT*
concept of ordered types since the query class does not demand
that the chain of powertype relations ends in "INDIVIDUAL".

Figure 5: Multiple generalization in MLT-Telos

Model 5: Listing for figure 5

Person in TYPE end
PersonType in TYPE with isPowerTypeOf type: Person end
Man in TYPE,PersonType end
Woman in TYPE,PersonType end
Adult in TYPE,PersonType end
AdultMan in TYPE with specializes type1: Man; type2: Adult end
John in INDIVIDUAL,AdultMan end
Bob in INDIVIDUAL,Man end
Ana in INDIVIDUAL,Woman end

Having "INDIVIDUAL" as end of the powertype chain removes
the need to explicitly declare an object as an instance of "INDI-
VIDUAL" if the class of the object is an instance of "1stOT". For
example, the object "John" in model 5 is declared as an explicit

http://conceptbase.sourceforge.net/mlt-telos/GELs/Example4.gel
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example5.gel
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example4.sml.txt
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example5.sml.txt

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada M.A. Jeusfeld et al.

Figure 6: Ordered types

instance of "Man". Via specialization, it is then a derived instance of
"INDIVIDUAL". This completes the pure MLT-Telos examples. We
have shown that all MLT* constructs could be represented. The con-
cepts of basic types and ordered types are only approximated due
to the limited power of Datalog-neg compared to first-order logic.
Some of the definitions of MLT* are stated as logical equivalences,
see for example the axiom (11) for "isPowerTypeOf". The original
MLT* axiom allows to derive "isPowerTypeOf" facts by reading
the formula from right to left. In MLT-Telos, we only support the
direction from left to right, i.e. "specializes" facts are derived from
"isPowerTypeOf" facts.

Model 6: Listing for figure 6

1stOT in TYPE with isPowerTypeOf type1: INDIVIDUAL end
2ndOT in TYPE with isPowerTypeOf type1: 1stOT end
PersonByGender in TYPE, 2ndOT with partitions type: Person end
Person in TYPE, 1stOT end
Man in TYPE,PersonByGender with end
Woman in TYPE,PersonByGender with end
John in Man end Bob in Man end Ana in Woman end

All figures in this paper are screendumps of the ConceptBase
user interface displaying graphical views on the models stored in
the ConceptBase database. O-Telos treats classes as objects. So, the
database also contains the O-Telos class definitions of MLT-Telos as
presented in the listings of this paper. The graphical user interface
was configured to use the graphical symbols familiar with UML
with adaptions for MLT*.

5 MLT-TELOS VERSUS DEEPTELOS
This research was started because the authors wanted to under-
stand how DeepTelos and MLT* are related, being both based on
the powertype pattern. We tackled the problem by implementing
MLT* in the same way how DeepTelos was implemented, i.e. as
extension of O-Telos within the Datalog-neg framework provided
by ConceptBase. DeepTelos has just five rules and one constraint.
So, is MLT-Telos a proper super-set of DeepTelos? We answer this
question by mapping DeepTelos models to MLT-Telos models via a
few deductive rules.

MLT-Telos uses the dedicated class "TYPE" to define the con-
structs "isPowerTypeOf" and "specializes". The corresponding Deep-
Telos constructs are defined at the omega class "Proposition":
Proposition with

attribute ISA: Proposition; IN: Proposition
end

This has the advantage that any object can use them while MLT-
Telos requires the objects to be instances of "TYPE". Section 2 found
that the MLT* construct "isPowerTypeOf" corresponds to the in-
verse of the DeepTelos construct "IN", and the MLT* construct
"specializes" can be identified with the DeepTelos construct "ISA".
The deductive rules in listing 12 realize a mapping of a DeepTelos
model to MLT-Telos.

Listing 12: Rules for mapping DeepTelos to MLT-Telos

forall x,y/TYPE (x IN y) ==> (y isPowerTypeOf x)
forall x,y/TYPE (x ISA y) ==> (x specializes y)

forall x,y/Proposition (x IN y) ==> (x in TYPE)
forall x,y/Proposition (x IN y) ==> (y in TYPE)
forall x,y/Proposition (x ISA y) ==> (x in TYPE)
forall x,y/Proposition (x ISA y) ==> (y in TYPE)
forall x,y/TYPE z/Proposition (x IN y) and (z in y)
==> (z in TYPE)

forall x/Proposition y/TYPE (x isA y) and (x <> y) and
not (x in QueryClass) ==> (x in TYPE)

The first two rules map the constructs from DeepTelos to MLT-
Telos. The remaining rules make sure that the participating objects
are instance of theMLT-Telos class "TYPE". The predicate "isA" is the
regular O-Telos specialization. Query classes need to be excluded
for technical reasons only.

Figure 7: DeepTelos model interpreted as MLT-Model

Figure 7 shows the running DeepTelos example used in [18]. The
powertype relations in the model are now derived from the rules of
listing 12 based on the facts of example 5. Note that the attributes
and relations defined at the classes "CarModel" and "Car" can be
used for the instances "Porsche911" and "marysCar", respectively.
The mapping rules do not cover the mapping of objects to the MLT-
Telos class "INDIVIDUAL". This is a certain limitation but is not

http://conceptbase.sourceforge.net/mlt-telos/GELs/Example6.gel
http://conceptbase.sourceforge.net/mlt-telos/GELs/DTExample2.gel
http://conceptbase.sourceforge.net/mlt-telos/GELs/Example6.sml.txt

Deductive reconstruction of MLT* for multi-level modeling MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

harmful for this example model since DeepTelos has no notion of
an individual object. The DeepTelos code for figure 7 is given in
model 7.

Model 7: DeepTelos code for figure 7

ProductCategory end
ProductModel with IN c: ProductCategory end
Product with IN c: ProductModel end
CarModel in ProductCategory end Car with IN c :CarModel end
Person end ProductCategory end
ProductModel with attribute listPrice: Integer end
CarModel with attribute numberOfDoors: Integer end
Car with attribute owner: AdultPerson end
AdultPerson isA Person end
Product with attribute owner: Person end

Porsche911 in CarModel,Class with numberOfDoors d: 2 end
mary in AdultPerson end
marysCar in Porsche911 with owner o: mary end

A limitation of DeepTelos andMLT-Telos is the lack if integration
of the "ISA" and "specializes" constructs with the O-Telos "isA". The
latter is defined and constrained by a number of O-Telos axioms,
in particular about refining attributes and relations for subclasses.
Since the axioms for the O-Telos "isA" predicate are hard-coded
into the ConceptBase system, a full integration of the specialization
predicates requires some changes to the ConceptBase code.

6 DISCUSSION
This paper has investigated how MLT* and DeepTelos are related.
The investigation started by comparing the main constructs of the
two approaches. We then mapped the MLT* axioms to a set of MLT-
Telos rules, constraints, and queries. The resulting specification
was tested with standard MLT* examples. Finally, DeepTelos was
mapped to MLT-Telos to test whether it is a proper subset. The
results are as follows:

(1) MLT* and DeepTelos are both based on Cardelli’s powertype
construct [6].

(2) MLT* uses first-order predicate logic with classical interpre-
tation to completely define the semantics of this multi-level
approach. In contrast, DeepTelos constrains the construct
by deductive rules and integrity constraints that are then
interpreted by the unique minimal Herbrand model.

(3) MLT* can be used to prove theorems onmulti-level modeling
satisfied by all models that satisfy the theory. MLT-Telos can
check a given model on whether it violates the constraints.

(4) MLT-Telos is an approximation of MLT* by rules, integrity
constraints and queries. All MLT* constructs were covered.
The definition of the predicates "isPowerTypeOf", "special-
izes" and "categorizes" is incomplete by only realizing one
direction of the MLT* equivalences. Specifically, the "isPow-
erTypeOf" relation is declared in MLT-Telos, not defined as
in MLT*.

(5) The examples from the standard MLT* papers were encoded
in MLT-Telos. MLT-Telos can detect constraint violations
such as incomplete or non-disjoint decompositions.

(6) The mapping rules for DeepTelos expose DeepTelos as a
proper subset of MLT-Telos. DeepTelos models can directly
be viewed as MLT-Telos models, but not vice versa.

(7) The 1:1 cardinality constraint for "isPowerTypeOf" in MLT*
should also be applied to DeepTelos to exclude redundant
classes that always have the same extension.

(8) DeepTelos showed that it can cover the standard multi-level
modeling challenges [16]. Since DeepTelos is a proper subset,
MLT-Telos and MLT* can easily pass the same challenges.

We did not yet discuss the issue of linguistic versus ontological
instantiation [19]. One can argue that the classes "ENTITY", "INDI-
VIDUAL", and "TYPE" make up the linguistic level in MLT-Telos.
Historically, O-Telos almost exclusively used the linguistic instan-
tiation for creating domain-specific languages. Since MLT-Telos
extends O-Telos, both usages of instantiation are available and can
be mixed, see also [18].

6.1 Implementation Considerations
The implementation of MLT-Telos revealed some limitations of
the ConceptBase system. First, the inability to create deductive
rules deriving the O-Telos specialization predicate "isA" limits the
extent to which the MLT-Telos predicate "specializes" can be used
for refining attributes at subclasses. This restriction is due to the
legacy implementation of the "isA" by software code rather than
user-defined deductive rules. A solution requires adaptions to the
ConceptBase code. A second restriction is on the rule compiler
of ConceptBase. If a rule contains predicates (x in c) with a
variable "c", then certain existentially quantified sub-formulas are
not compiled. Since all rules are range-restricted [5] and can be
mapped to Datalog-neg [20], this restriction can be overcome by
generating auxiliary rules for the subformulas.

Instead of the ConceptBase system, we could also have used
another Datalog engine such as DLV [2]. DLV uses Prolog-style
clauses for deductive rules, augmented by disjunctive heads. Con-
ceptBase offers a first-order syntax for deductive rules and integrity
constraints and internally translates them to Datalog rules. A prag-
matic reason for ConceptBase is the support of the O-Telos axioms
that are the basis for both MLT-Telos and DeepTelos. A certain
disadvantage of ConceptBase is the cumbersome way to define
predicates other than the instantiation, specialization and attribu-
tion/relation predicates.

ConceptBase implements an incremental integrity checker based
on the simplification method [5]. This method partially evaluates
rules and constraints at compile time with patterns for insertions
and deletions of facts. A similar technique is employed to partially
evaluate formulas that have variables at the class position of instan-
tiation predicates. The latter technique is also needed to provide
an effective stratification test for complex recursive rule sets. MLT-
Telos is an example of such a complex rules set.

6.2 Future Work
The focus of this paper was to compare two powertype-based
approaches to multi-level modeling. A thorough comparison of
powertype-based approaches with potency-based approaches, such
as [10, 12], is subject to future work. Powertype-based methods
create instantiation levels via chains of powertype links. Hence,
the abstraction levels of types and individuals can be derived from
their relation to such chains. An open question is how to trans-
late potencies of attributes and relations from a powertype-based

http://conceptbase.sourceforge.net/mlt-telos/GELs/DTExample2.sml.txt

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada M.A. Jeusfeld et al.

multi-level model, and how to map a potency-based model to a
powertype-based model.

MLT* does not explicitly define how to handle attributes and
relations of multi-level objects (despite some treatment of those in
the first version of the theory [7]). In traditional conceptual mod-
eling languages, attributes and relations are distinguished from
objects (entities). O-Telos and DeepTelos materialize attribute and
relations, i.e. explicit attributes and relations are objects. Conse-
quently, DeepTelos allows to specify powertype relations between
attributes and relations. Does it make sense to define this feature
in MLT* as well, and then pass it over to MLT-Telos?

We plan to apply MLT-Telos to a greater number of multi-level
models to test its ability to identify modeling errors, in particular for
industrial product and process modeling. Additional queries may
be added to MLT-Telos to identify sub-optimal model fragments.
On the implementation side, a full integration of the specialization
constructs of DeepTelos with the O-Telos specialization is desirable.
Further, we plan to test the approach with large multi-level models
to evaluate the performance of the deductive implementation in
ConceptBase.

7 CONCLUSIONS
MLT-Telos is an implementation of MLT* that allows to identify
modeling errors via integrity constraint violations. MLT-Telos is
able to leverage MLT* rules to automatically derive a number of
elements of the multi-level model. As shown in this paper, a signifi-
cant number of elements of the multi-level model can be derived
rather than explicitly defined. This deductive capability can be
employed to support the designer in an intelligent multi-level mod-
eling environment. We have shown that MLT-Telos is a proper
superset of DeepTelos. It realizes the powertype constructs in the
same way as DeepTelos but adds the categorization construct. The
definition of MLT-Telos can be included in a ConceptBase database,
resulting in a (limited, but focused) implementation of MLT*. The
sources of MLT-Telos and all example models are made available at
http://conceptbase.sourceforge.net/mlt-telos/.

ACKNOWLEDGMENTS
João Paulo A. Almeida is funded by CNPq (grants 312123/2017-5
and 407235/2017-5) and CAPES (23038.028816/2016-41). Manfred A.
Jeusfeld is partially funded by KK Stiftelsen (grant VF-KDO, HIS
DNR 20180011).

REFERENCES
[1] João Paulo A. Almeida, Claudenir M. Fonseca, and Victorio Albani de Carvalho.

2017. A Comprehensive Formal Theory for Multi-level Conceptual Modeling.
In Conceptual Modeling - 36th International Conference, ER 2017, Valencia, Spain,
November 6-9, 2017, Proceedings (Lecture Notes in Computer Science), Heinrich C.
Mayr, Giancarlo Guizzardi, Hui Ma, and Oscar Pastor (Eds.), Vol. 10650. Springer,
280–294. https://doi.org/10.1007/978-3-319-69904-2_23

[2] Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer,
and Giorgio Terracina. 2010. The Disjunctive Datalog System DLV. In Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-
19, 2010. Revised Selected Papers (Lecture Notes in Computer Science), Vol. 6702.
Springer, 282–301. https://doi.org/10.1007/978-3-642-24206-9_17

[3] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. 1988. Towards a Theory
of Declarative Knowledge. In Foundations of Deductive Databases and Logic
Programming, Jack Minker (Ed.). Morgan Kaufmann, 89–148. https://doi.org/10.
1016/b978-0-934613-40-8.50006-3

[4] Freddy Brasileiro, João A. Almeida, Victorio A. Carvalho, and Giancarlo Guizzardi.
2016. Applying a Multi-Level Modeling Theory to Assess Taxonomic Hierarchies

in Wikidata. In Proceedings of the 25th International Conference Companion on
WorldWideWeb. InternationalWorldWideWebConferences Steering Committee,
975–980. https://doi.org/10.1145/2872518.2891117

[5] François Bry, Hendrik Decker, and Rainer Manthey. 1988. A Uniform Approach
to Constraint Satisfaction and Constraint Satisfiability in Deductive Databases.
In Advances in Database Technology - EDBT’88, Proc. International Conference on
Extending Database Technology, Venice, Italy, March 14-18, 1988 (Lecture Notes
in Computer Science), Joachim W. Schmidt, Stefano Ceri, and Michele Missikoff
(Eds.), Vol. 303. Springer, 488–505. https://doi.org/10.1007/3-540-19074-0_69

[6] Luca Cardelli. 1988. Structural Subtyping and the Notion of Power Type. InConfer-
ence Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, USA, January 10-13, 1988, Jeanne Ferrante and
P. Mager (Eds.). ACM Press, 70–79. https://doi.org/10.1145/73560.73566

[7] Victorio A. Carvalho and João Paulo A. Almeida. 2018. Toward a well-founded
theory for multi-level conceptual modeling. Software and Systems Modeling
(2018), 1–27. https://doi.org/10.1007/s10270-016-0538-9

[8] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted
to Know About Datalog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng.
1, 1 (1989), 146–166. https://doi.org/10.1109/69.43410

[9] Juan de Lara and Esther Guerra. 2010. Deep Meta-modelling with MetaDepth.
In Objects, Models, Components, Patterns, 48th International Conference, TOOLS
2010, Málaga, Spain, June 28 - July 2, 2010. Proceedings (Lecture Notes in Computer
Science), Jan Vitek (Ed.), Vol. 6141. Springer, 1–20. https://doi.org/10.1007/978-3-
642-13953-6_1

[10] Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. 2014. Ex-
tending Deep Meta-Modelling for Practical Model-Driven Engineering. Comput.
J. 57, 1 (2014), 36–58. http://dx.doi.org/10.1093/comjnl/bxs144

[11] Claudenir M. Fonseca, João Paulo A. Almeida, Giancarlo Guizzardi, and Victo-
rio Albani de Carvalho. 2018. Multi-level Conceptual Modeling: From a Formal
Theory to a Well-Founded Language. In Conceptual Modeling - 37th International
Conference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings (Lecture Notes
in Computer Science), Juan Trujillo, Karen C. Davis, Xiaoyong Du, Zhanhuai
Li, Tok Wang Ling, Guoliang Li, and Mong-Li Lee (Eds.), Vol. 11157. Springer,
409–423. https://doi.org/10.1007/978-3-030-00847-5_29

[12] Ulrich Frank. 2014. Multilevel Modeling - Toward a New Paradigm of Conceptual
Modeling and Information Systems Design. Business & Information Systems
Engineering 6, 6 (2014), 319–337. https://doi.org/10.1007/s12599-014-0350-4

[13] Matthias Jarke, Rainer Gallersdörfer, Manfred A. Jeusfeld, Martin Staudt, and
Stefan Eherer. 1995. ConceptBase - A Deductive Object Base for Meta Data
Management. J. Intell. Inf. Syst. 4, 2 (1995), 167–192. http://dx.doi.org/10.1007/
BF00961873

[14] Manfred A. Jeusfeld. 2005. Complete List of O-Telos Axioms. On-
line: http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-
Axioms.pdf.

[15] Manfred A. Jeusfeld. 2009. Metamodeling and method engineering with Concept-
Base. In Metamodeling for Method Engineering, Manfred A. Jeusfeld, Matthias
Jarke, and John Mylopoulos (Eds.). MIT Press, 89–168.

[16] Manfred A. Jeusfeld. 2019. DeepTelos for ConceptBase: A Contribution to the
MULTI Process Challenge. In 22nd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion, MODELS Companion 2019,
Munich, Germany, September 15-20, 2019. IEEE, 66–77. https://doi.org/10.1109/
MODELS-C.2019.00016

[17] Manfred A. Jeusfeld. 2020. ConceptBase.cc User Manual - Version 8.1. Online:
http://conceptbase.sourceforge.net/userManual81/.

[18] Manfred A. Jeusfeld and Bernd Neumayr. 2016. DeepTelos: Multi-level Model-
ing with Most General Instances. In Conceptual Modeling - 35th International
Conference, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings. 198–211.
https://doi.org/10.1007/978-3-319-46397-1_15

[19] Arne Lange and Colin Atkinson. 2018. Multi-level modeling with MELANEE. In
Proceedings of MODELS 2018 Workshops co-located with ACM/IEEE 21st Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS
2018), Copenhagen, Denmark, October, 14, 2018 (CEUR Workshop Proceedings),
Regina Hebig and Thorsten Berger (Eds.), Vol. 2245. CEUR-WS.org, 653–662.
http://ceur-ws.org/Vol-2245/multi_paper_3.pdf

[20] John W. Lloyd and Rodney W. Topor. 1984. Making Prolog more Expressive. J.
Log. Program. 1, 3 (1984), 225–240. https://doi.org/10.1016/0743-1066(84)90011-6

[21] John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis Koubarakis.
1990. Telos: Representing Knowledge About Information Systems. ACM Trans.
Inf. Syst. 8, 4 (1990), 325–362. https://doi.org/10.1145/102675.102676

[22] James J. Odell. 1998. Advanced object-oriented analysis and design using UML.
Cambridge University Press, Chapter Power types, 23–32.

[23] Alain Pirotte, Esteban Zimányi, David Massart, and Tatiana Yakusheva. 1994.
Materialization: A Powerful and Ubiquitous Abstraction Pattern. In VLDB’94,
Proc. 20th International Conference on Very Large Data Bases, September 12-15,
1994, Santiago de Chile, Chile, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo
(Eds.). Morgan Kaufmann, 630–641. http://www.vldb.org/conf/1994/P630.PDF

http://conceptbase.sourceforge.net/mlt-telos/
https://doi.org/10.1007/978-3-319-69904-2_23
https://doi.org/10.1007/978-3-642-24206-9_17
https://doi.org/10.1016/b978-0-934613-40-8.50006-3
https://doi.org/10.1016/b978-0-934613-40-8.50006-3
https://doi.org/10.1145/2872518.2891117
https://doi.org/10.1007/3-540-19074-0_69
https://doi.org/10.1145/73560.73566
https://doi.org/10.1007/s10270-016-0538-9
https://doi.org/10.1109/69.43410
https://doi.org/10.1007/978-3-642-13953-6_1
https://doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1093/comjnl/bxs144
https://doi.org/10.1007/978-3-030-00847-5_29
https://doi.org/10.1007/s12599-014-0350-4
http://dx.doi.org/10.1007/BF00961873
http://dx.doi.org/10.1007/BF00961873
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
https://doi.org/10.1109/MODELS-C.2019.00016
https://doi.org/10.1109/MODELS-C.2019.00016
http://conceptbase.sourceforge.net/userManual81/
https://doi.org/10.1007/978-3-319-46397-1_15
http://ceur-ws.org/Vol-2245/multi_paper_3.pdf
https://doi.org/10.1016/0743-1066(84)90011-6
https://doi.org/10.1145/102675.102676
http://www.vldb.org/conf/1994/P630.PDF

	Abstract
	1 Introduction
	2 Foundations of MLT* and DeepTelos
	2.1 MLT*
	2.2 DeepTelos

	3 MLT-Telos defined within O-Telos
	3.1 ConceptBase as implementation of O-Telos
	3.2 Definition of MLT-Telos

	4 MLT-Telos by Example
	5 MLT-Telos versus DeepTelos
	6 Discussion
	6.1 Implementation Considerations
	6.2 Future Work

	7 Conclusions
	Acknowledgments
	References

