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Abstract—Knowledge engineering for information systems is a long-term, multi-person task that requires
tight control and memorization not only of what knowledge is acquired but also of why and how it is
acquired, We propose a software process data model as the foundation of a knowledge-based software
information system that emphasizes control, support and documentation of design decision-making and
tool integration in information systems environments.

The model is developed along two dimensions. Firstly, it defines how to represent and integrate design
objects (what), design decisions (why) and design tools (how). Secondly, it exploits the abstraction
mechanisms of the extensible hybrid knowledge representation language CML/Telos to manage the
evolution not only of particular software projects, but also of the software development environment in
which these projects operate. Modular aggregation relates design-in-the-small and design-in-the-large
support, Besides motivating and formalizing the model, we describe an operational prototype implemen-
tation called ConceptBase and report intitial application experiences in the DAIDA ESPRIT project.
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base management systems,

1. INTRODUCTION

Knowledge engineering has been publicized as
a technology to build and maintain the knowledge
base of so-called expert systems, systems intended
to mimick the performance of human experts in
specialized domains of diagnosis, design, medical and
business decision support, etc. An expert system uses
a narrow set of specialized algorithms, the “inference
engine”, to work on a generalized data structure
or “knowledge base” that represents the expert’s
domain knowledge and problem-solving strategies.
Expert system “shells” have evolved as a technology
to support knowledge engineering but knowledge
engineering has also been considered as a new kind
of human profession similar to software engineering.

While the last few years have seen strong interest
in integrating knowledge-based systems and infor-
mation systems technologies [1], the relationships
between knowledge engineering and information sys-
tems have captured less attention. One way to address
this problem is to view expert systems development as
a special case of information systems development in
which the target software emvironment (an expert
systems shell) offers richer data structures and differ-
ent kinds of processing methods. In particular, rapid
prototyping, expert knowledge consistency checking
and evolution support are often emphasized in expert
systems development methodologies.

In this paper, we shall be more interested
in another way of relating knowledge engineering
with information systems. Building large information
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systems, and maintaining them over long periads of
time, has been shown to be a knowledge-intensive
activity [2]. Engineeting an information system
requires many design decisions. They involve
knowledge about functional and non-functional
requirements, about conceptual, architectural and
physical designs, about implementation languages
and strategies, and most importantly, about the
relationships between all these levels of knowledge.
Recording the knowledge used for decisions—
especially important for maintenance and reusabil-
ity—requires the construction and management of a
large knowledge base, and can thus be legitimately
viewed as a special case of the knowledge engineering
idea. Starting with early work on languages such as
TAXIS [3] and RML [4], specialized languages,
methodologies and tools for information systems
development and maintenance have evolved {rom this
“IS knowledge engineering” paradigm. Of course,
these languages, methods and tools must be firmly
grounded in results gained earlier in areas of data
engineering and software engineering research such
as semantic data models, data model mappings, view
integration, relational design theory, automatic pro-
gramming, formally verified refinement, etc.

In this paper, we analyze the data modelling
(or—here synonymously—knowledge representation)
requirements of such a paradigm and propose a
software process data model, together with an associ-
ated knowledge base management system, to deal
with these requirements. The proposed data model
can be viewed as a substantial extension of
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an entity-relationship approach which emphasizes
process orientation, design decision support and
integration of heterogeneous active objects into the
software process knowledge base.

There have been a number of efforts to deal
with the data management problems of large-scale
development and maintenance environments. In the
software engineering area, the most popular tools
have been enhanced file systems which address the
problems of version and configuration control [5].
Traditional database systems have proven less suit-
able [6] but several projects have extended their
concepls by complex objects, versions, redundant
derived data (such as compiled programs) and the
like [7]. However, there still seem to be several
shortcomings of these systems:

e They typically deal with documents rather than
with conceptual design objects.

o Many of them consider dependencies among
documents as a development history. Hardly any
systems document the design decisions underlying
these dependencies or the fools used to create
them; this, however, is important knowledge for
maintenance and reusability. Even fewer control
the choice among applicable decisions or tools by
enforcing organizational or project methodologies.

o Software databases are typically not concerned
with ool integration and project management
issues although these are important with long-
term software processes.

A more comprehensive approach should therefore
stress the process aspect of software development,
and must provide more flexibility. Knowledge repre-
sentation languages which have already been shown
to be useful for requirements modelling purposes [4],
appear as a good starting point. In essence, software
development is seen here as a knowledge engineering
process to be supported by a knowledge base man-
agement system (KBMS) [8].

Maintenance and reusability are considered crucial
knowledge engineering tasks in long-lived infor-
mation systems. In the context of ESPRIT project
DAIDA [9], we have been developing a KBMS called
ConceptBase which provides a semantic theory of
objects, processes and tools in a heterogeneous infor-
mation systems development and usage environment,
together with the computational facilities of a soft-
ware database. Together with a semantic theory of
the application domain and of the system require-
ments (expressed in the same knowledge represen-
tation language), such a KBMS is intended to control

tIn this paper, we shall not discuss prototyping further
although it is part of the DAIDA project. Therefore, we
usually simplify the model so that the process model is
described at the metalevel, an environment at the class
level, and a software project at the instance level.

and document a historical account of:

—what the information system knows about the
world,

—how the information system fits into the world,

—how and why these two kinds of system require-
ments were mapped into the design and implemen-
tation of an information system,

We wish to maintain this information to facilitate
maintenance and reusability of software objects
not only at the code level, but also at the levels of
user requirements or conceptual designs. Indeed, we
intend to reuse design process experiences rather than
just their outcomes.

The model described in this paper represents a first
step towards such a goal. Formally, it can be viewed
as an extension of the entity-relationship model in
databases [10]), of Petri net structures [11], or of
incremental and iterative design methods proposed in
Al and software engineering [12, 13]. Specifically, the
main ideas are:

e To represent the evolution of design objects by
tool-aided design decisions:

—covering conceptual design objects as well as
software documents,

—viewing design decisions as special kinds of
design objects that are explicitly represented,
can be justified by other decisions, and may
evolve over time,

—viewing design rools as reusable design de-
cisions, intended to support the execution of
other design decisions;

¢ To exploit the instantiation hierarchy of an exten-
sible knowledge representation language for inte-
grating heterogeneous languages, methodologies
and tools:

—defining the process model at the metametaclass
level,

—defining a particular soflware development en-
vironment at the metaclass level,

~documenting a particular software development
project at the class level,

—prototyping a particular design at the instance
level, T

o To integrate design-in-the-large with design-in-
the-small issues:

—offering modularization of the knowledge base,
in particular of design decisions, while provid-
ing semantic descriptions at all levels,

—allowing flexible precision of software process
control, potentially ranging from pure database
functionality (no semantic description) to rather
detailed temporal and/or predicative assertions.

After a brief overview of the DAIDA project as a
whole (which also relates our work to that of others),
Section 2 studies detailed requirements for a decision-
centered approach to conceptual software process
modelling. Section 3 briefly reviews the conceptual
modelling language CML, viewed in our system as a
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hybrid knowledge representation mechanismm which
integrates semantic networks, rule-based systems
and frames. Section 4 then applies this language to
formalize the softwire process model, using the same
example as in Section 2. Section § bricfly describes
the ConceptBase prototype implementation. Finally,
Section 6 presents several applications in the DAIDA
context, in particular the representation of mapping

come up with a specialized design KBMS which can
take maximum advantage of this application knowl-
edge. A decision-based documentation methodology

is chosen

to  support consistent maintenance,

reusability and configuration of multi-layered de-
scriptions. The architecture, summarized in Fig. 1, is
based on the following concepts and observations:

requirements to design and design to implementation, 1. Multiple levels of representation—DAIDA views
as well as use of the process mode! in the Concept- an information system as a multi-layered de-
Base implementation jtself. seription of requirements analyses, designs and
implementations [8]. The layers are represented
2. REQUIREMENTS OF A in similar but distinct languages: the knowledge
DECISION-BASED SOFTWARE representation language CML/Telos [14, 15] for
PROCESS MODEL requirements analysis; a purely declarative ver-
sion of the language Taxis [3], called TaxisDL
This section w devoted to analyzing the require- [16], for conceptual design and predicative
ments for o KBMS that supports an environment for specification; and the database programming
information system evolution. First, we characterize language DBPL [17] for implementation design
the concerete context in which we are working, i.e. the and programming, Note that there is a break in
DAIDA system, Then, we give a simple development paradigm in the middle; CML and TaxisDL are
and maintenance example o provide an intuitive object-oriented  conceptual models of the
fecling of what ki of support is peeded, Finally, we world, and of the system embedded in it, but
outlineg and justdy reguirements for o coneeptual have to be transformed into a sct-theoretically
model whivh refates the design objects and documents motivated database programming language.
generated inosoltware enviconment o the tools used 2. Extensible set of interrelated transformation
to generate them by o notion of design decision. 1t assistants—The literature has developed a rich
is sketehed how the combintion of this decision- set of transformation rules for refining and
centred approach with ohject-oriented construction implementing specifications. For example, the
principles may sddress o farge number of problems CIP [18] and REFINE [19] projects proposec
arising in ditaduese softwaee evolution, user-guided formal transformation strategies,
, WIS et ohiveives w}wreas the Programmer’s Apprentice . 120]
20 DAID A project ohjectives views a program as a puzzle of adaptable clichés
I is the goal of DAIDA to exploit some specilic which must be maintained in a consistent state
propertics ol dati-intensive information systems to in case of changes, using dependency-directed
Specificstion GKBMS
Assistant Design
System ML, World Model N Object
Analyst sﬁ;ﬁ‘ Knowledge
Mapping
Assistant i
Design Design
Assistant
Process
System TAXIS-DL i Conceptual |  Knowledge
Desi Design
csigner Mapping
Assistant | 0T 7T T
Programming Design
Assistant Tool
Knowledge
Database DBPL ! O'h Database o
Programmer Programs

Fig, 1. DAIDA architeeture.
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backtracking strategies. Most of these tools
have been successful only for programming
in-the-small, whereas information systems are
often quite large, Therefore, DAIDA provides a
flexible “open” environment which can support
a range of development situations from (almost)
manual to (almost) automatic, depending on the
currently available set of transformation tools.
To achieve this, transformation tools are em-
bedded in a fairly large number of small “expert
systems™, called assistants, which communicate
via the common knowledge base to be described
below; due to the multi-layered structure of
DAIDA, language assistants for each level must
interact with mapping assistants between the
levels. The application domain of DAIDA,
data-intensive information systems, cannot only
exploit general software development expertise,
but also the special representations, theoretical
results and methods of database design re-
search. Moreover, certain mathematical trans-
formation methods, as e.g. expressible in Z [21],
appear particularly suited for this application
domain. Specifically, the need for assistants in
three major transformational tasks results from
the above-mentioned levels of languages:

o embedding a CML system model in the CML
world model, and narrowing it to a TaxisDL
conceptual design, remaining in the object-
oriented framework [22],

o validating the CML and TaxisDL models by
prototyping (in DAIDA, this is done in an
object-oriented extension of Prolog [23)),

e refining the object-oriented specifications to-
wards set-theoretic database programming,
using Abrial's set-theoretic substitution cal-
culus and B-tool [24].

. Formalization of information systems require-

ments—Most formal software development
methodologies start with a formal specification
of system functionality. Formalizing the re-
quirements analysis which leads to these specifi-
cations, has been traditionally considered
difficult or even impossible. Again, the concen-
tration on data-intensive information systems
improves the situation. Database schemata
naturally represent a system model of the rele-
vant world domain; the analysis underlying the
development of the initial database schema can
be reused as a starting point for the require-
ments analysis of new applications. However,
a knowledge representation language more
powerful than traditional data definition
languages, even for semantic data models, is
required to describe the relationship of the
system model (as in the database schema) to the
world model, and the development of this re-
lationship over time. The conceptual modelling
language CML [14, 15], evolved from the re-

quirements modelling language RML [4], off¢€
an object-oriented model with an embedd-
time component to support this task.

4. Integrated decision-based documentation kno ¥
edge base—Representing multiple layers of 53
tem description as well as their relationship
a description of the underlying real world c#
offer powerful development and maintenaxy
support for information systems but requiz”
itself a knowledge base management syste:
for maintaining the different descriptions co1
sistent over time: the DAIDA global KBMW1
(GKBMS). Rather than just modelling (ve
sions of) development objects, the GKBMWI
views the software development and mair
tenance process as a history of tool-supporté
decision executions. These decision executior
are directly represented, they can be planne
for, reasoned about and selectively backtracke
in case of errors or requirements changes. £
ante, the GKBMS can be seen as an integrativ
tool server which helps users in selecting task
and tools within a large development project; .
post, it plays the role of a documentation servic
in which development objects are related to thr
decisions and tools that created or change«
them (i.e. justify their current status). Mar:
recent ideas from design database research [25
apply to the implementation of such a system
applying the DAIDA philosophy to thie¢
GKBMS (viewed as a data-intensive infor-
mation system about the history of “software
worlds”), a dialect of CML is chosen as the
knowledge representation language. Concept-
Base is a prototype system that implements both
CML itself and the GKBMS model on top of
it

2.2. A DAIDA example

Based on the architecture in Fig. 1, Fig. 2 illustrates
a simple DAIDA development process, using the
example of an information system for project meetin g
support [26]. A CML world model starts from the
activity, Meeting, within a project and describes its
related activities and entities in a real world with time .
Among other things, meeting preparation, conduc-
tion and follow-up is different for people in differennt
roles, namely organizers and other participants.
Based on this observation, the CML system model is
positioned in the world model in two functional parts
(also called system activities or views), one support—
ing an organizer, the other a participant within the
same, given organization.

The combined world and system models are
mapped to a TaxisDL design model. The role of the
system model within long-term world model activities
is represented by a script, office-internal meeting
schedule certain aspects of other activities and data
are mapped to data classes, transaction classes and
their corresponding constraints. Within the TaxisDLL
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LEVEL

EXAMPLE OBJECTS

MAIN TASKS

employece
World Model ‘ Person database domain description
{CML) M Qrganization
Letlers
role of system
in the world
Systemn Model visitor support organizer support functional system
(CML) function function specification
tempo;a!
mapping
Conceptual Design
(TaxisDL) document document igfg‘;‘fﬂ data and transaction
databise —= processing meeling integration
hierarchy hierarchy schedule
structure | transaction
mapping
Database Design
(DBPL) relational document modular
document e processing software
database transactions development

’i

Fig, 2 Oserview af the development example.

model, data clss  hivwrchies and  corresponding
transdetion hivearchios st he syathesized from the
mapping results, o achivve an integrted voneeptaal
design: this could be called a particubar stritegy for

dasign objects

Fiew atesration, W be supporied by the TaxisDL
knowledpe-hased design assistant. Tn our example, we
detected that from the various outpuls of mecting we
vould compose o coneeplual oflice document data-

2

TDL design objects

satity classas

Invitmtions
Minules
Papare

trangaction cluagses
[ TenerseInvitations

LS 18045

Fig. % Browsing design objects vian /v nerarchy of the coneeptual design.



90

o

Display TDL classes

ENTITY CLASS Papers

PROPERTIES
date: ...
author: ...
content: ..

1splay classes

ENTITY CLASS Invitatio|
ISA Papers
PROPERTIES

receiver: ...

sendcr.: .

Code Frame Editor

TYP
InvitationType = RECORD
pa key: Surrogate;
daz%?rDme'l‘ype;
author: NameType;
content: Text;
receiver: SET OF OrganizationType;
meetloc: AddressType;
END;
InvitationRelType =

RELATION _paperkey
OF InvitationType;

VAR
InvitationRel: InvitajonRel Type

Fig. 4. Graphical display of dependencies

base, consisting of expense notes, working papers,
invitation letters, minutes and the like.

The design is mapped to a DBPL database struc-
ture and transaction design, Decisions involved in
mapping the TaxisDL generalization hierarchy of
papers and the related transaction hierarchy to
a modular DBPL program with relations, views,
integrity constraints and database transactions [24],
are presented below in a highly simplified manner to
elicit GKBMS requirements.

In Fig. 3 (screens simplified for readability in this
section), the developer has employed a hierarchical
text browser to determine unmapped TaxisDL ob-
jects. He has further decided to focus on the mapping
of entity structures, in particular, invitations and
their generalization, papers. This selection causes the
display of a menu with applicable decision classes and
tools. There are several possible mapping strategies
[27, 28); distribute would generate one relation
per TaxisDL entity class, whereas move-down only
generates relations for leaves of the hierarchy and
represents the other ones by view definitions (called
constructors in DBPL [29]),

The graph in Fig. 4 shows dependencies created by
the decision for move -down, relating the new objects
to existing ones and to a representation of the applied
tool. Then, selection of the node InvitationRel causes
display of the corresponding sources (type and vari-
able definitions).

Invitation Type contains a set-valued attribute; a
normalization decision is therefore offered in the
menu, leading to the extended dependency graph in
Fig. 5. The new selector expresses the referential
integrity constraint among the two relations, whereas
the new constructor allows the reconstruction of the
initial, unnormalized invitation relation; for details,
see [26]. Additionally, Fig. 5 demonstrates how

MATTHIAS JARKE et al.
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' move-down 1
.
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and code frames generated by mapping rules.

automatic and manual execution of decisions coui
interact. Observing that the system contains on.
Invitations and no other Papers, the developer decid:
to “make the system more user-friendly” by replacir
the artificial paperkey attribute (initially required t
map the object-oriented TaxisDL model which dos
not have keys) with date, author. Of course, th
change also implies adaptation of the correspondin
constructor, selector and possibly transaction defin
tions (outside the editor window in Figs 5 and 6

Unfortunately, the assumption that Invitations ar
the only kind of Papers leads to an inconsistency a
soon as the mapping of Minutes, the second subclas
of Papers, is considered (Fig. 6). Therefore, th
decision to choose associative keys must be rerractec
together with all its consequent changes, withou
redoing all the rest of the design; supporting thi
consistent, selective backtracking is one main purpos
of introducing the explicit documentation of desig:
decisions and dependencies. In the example, th
inconsistency can be resolved by selectively back
tracking to the state before the introduction of as
sociative keys; in other cases, or if the granularity o
representation in the dependency graph is insufficient
additional manual or tool-aided corrections ma:
become necessary. Note that the graph in Fig. 6 onl:
highlights the objects to be changed when introducin;
Minutes; the actual correction would need a mor
detailed representation—the GKBMS must haw
some kind of zooming facility for both design object
and design decisions.

2.3 Requirements for a process-oriented softwar.
information system

Although the above example is highly simplifiec
compared with real-world software projects, a num
ber of requirements for effective KBMS suppor
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B Display '

1 ENTITY CLASS Paped
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a; Dal H
author: NameType;
content: Toxly
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END;
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date: DataTypo;
u.ut?mn Nuumyp"l," s
WD‘;W COrganizatio
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¥
2

S

H
]
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f
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InvitdoaRal Type =
RELATION ¢ NIV T
OF InvitationT ypo;

InvRecelvRelTypo =
RELATION ﬁn‘m«mkmulm
OF Inv RoceivTypo;

i & Dependency graph and code Trames after normalization and key substitution,

should have become obvious, First, we have a need
for representing design ehjeets or documents at differs
ent levels of abstraction, wd at any of the DAIDA
language layers. Second, the GKBMS must know
about teals For supporting intra-lunguage refinement
(e.g. normalization within DBPL) and inter-language
mapping (¢.g. generalization hierarchy mapping),
Third, a usage eavironnent must offer interfuce tools,
including object and task dependent menus, and the

documentation of design object interrelationships,
both embedded in some methodology 1o aid in the
process of software development and, especially, soft-
wire maintenance {e.g. retraction of user-defined
keys in Fig, 6).

In fact, process support is the central concern of
our approach. In our view, the software process is
based on human design decisions, When cxecuted,
these decisions lead to certain trangformational oper-

ENTITY CLASS Papors
PRGPERTIES

date: ..

author: ...
content; .,

R T o R T
splal " ™ T \

ENTITY C\Irove-down ,
do Frame tditor

TYPE
InvitationType » RECORD
paperkey: Surrogalc;

date: DalaType;
author: NameType;
content: Text;
meatloc: AddressTyne;
BEND;

InvRecelvType » RECORD
rkey: Sumrogate;
%vcny(hgmﬂgmlon‘l’ypc:

InvitationRel Type =
RELATION paperkey
OF InvitsdonType;

l »
l;:lyic%vlgﬁ /m;hy- raceiver
OF InvRecclyType; =

77 w;&mﬁ

5tapla s Bependency Cirph

Papers :

Invitations

T Rde T T

-
. g \normnuu
hE & Invitationltcl 4 w e
0'.. v -
» Ad

- -

U '
onstr .
i I}
InvReocelvRe)
)

Selector ]omlt.r .
> .
Invluunnl H A Conalnvitat on

Fig. 6. Code frames and dependency graph after bucktracking the decision on key substitution,
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Fig. 7. Design object knowledge base structure,

ations in the software environment; transformations
establish relationships between design objects and
may be supported by tools. However, in a large
software project, software developers may not be
allowed to select arbitrary tools from, say, a toolkit
[30], to work arbitrarily on arbitrary objects. Rather,
a methodology with associated standards should be
enforced, constraining working sequences and tool
applications in a meaningful, theory-based manner,
as far as possible without impeding developer creativ-
ity. To allow the KBMS such a flexible definition of
methodology which could range from very open to
very formal, we introduce the notion of decision class
of which any design decision execution must be an
instance. Thus, we propose to couple object-oriented
construction principles with the notion of design
decision; in contrast to usual object-oriented systems
like SmallTalk [31], tools (called methods therein) are
not directly associated with object classes but only
indirectly via decision classes. In the following, the
requirements for the approach sketched above will be
outlined in more detail,

Although our main focus is the representation of
software processes, it appears best to start with
discussing the representational requirements for

tHowever, there is al least a possibility to activate and
control these external design objects (e.g. DBPL pro-
grams) and their building environments automatically.
This is in contrast to CAD applications relating to
non-computer projects [32], but similar to CIM appli-
cations where the developed designs control and activate
flexible manufacturing equipment.

design objects. The term design object
software object and document involved
system modelling, system design or d:
gramming. Note that in a heterogenec
environment like DAIDA, design object
side the GKBMS and are represented

not understandable for the GKBMS.t ]
external and unintelligible design obj
simple configuration managers [30] ju
source references. This prevents any deeg
about design object semantics and inter:
with other design objects, decisions and t
a knowledge management view, design ol
not only have a source reference but als
knowledge about the sources, and of
decisions that influenced their evolution.
of such a representation requires at least
abstraction (Fig. 7):

(a) management of specific design ol
(software documents), often resid
system such as UNIX under simj
ation control;

(b) knowledge about specific design obje
to document the sources in a forr
to reason about their interrelati
configurations, versions);

(¢c) knowledge about design object clas.
powerful structuring mechanism w
the possible objects appearing in
software environment (e.g. world
tem model, TaxisDL and DBPL ¢
DAIDA),
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(d) a system-understandahle terminology to talk
about design objects, defining formally the
GEBMS approach o modelling  softwure
objeets;

(e} a knowledge representation langase 1o realize
all of the levels above,

This five-level model can be used to characterize
the flexibility of software databuses (e.g. [33.6]). In
particular, the knowledge representation language
defines how precisely knowledge about objects cun be
deseribed, and how easily the object schema at level
(d) can be adapted to other languages and tools. Since
new languages, methods, theories and tools for soft-
ware development are continuously sppearing, exten-
sibility of the language ax well as of the object schema
is of great importance; it is well-known that this
jmplies the use of generalization (fsef) hierarchies of
object ¢lasses [34-30]. We experience the need for
extensibility in the DAIDA project where languages
and tools evalve rapidly, as our research progresses.

Despite the farge amount ol knowledge that can be
made available in such o sehema, design object
representation really only covers the static aspects,
i.e. the autcomey ol deselopment processes, There-
fore, we introduce conceptual maodels of design de-
cistons as first-class  objects intended  to control
and document directly the development procesy that
creates, alters and justities design objeets. As indi-
cated before, desipgn decisions pluy multiple roles in
our approach amd must be aduptable to multiple
levels of granularity (ranging [rom programming-
in-the-small o programming-in-the-large 0 pro-
gramming-in-the-muny [ as well as o multiple
methodologies. A single set of evolition rules for a
predefined object schema, as given e, in [37), is very
useful in a well-understood task but not enough for
a heterogencous environment; moreover, we want (o
preserve human discretion in making decisions about
software cvolution, rither thun preseribing rigid
rules. As a consequence, the same five-level represens
tational requirements as for design objects apply to
the modeliing of design decision knowledge:

(a) design decisions made and executed in the
external world, possibly collaboratively by
{groups of ) humian designers and computerized
problem solvers;

(b) knowledge about executed dosign decision in-
stunces, possibly including limited documen-
tation of the decision-muking process;

(¢) knowledge abour feasible classes of  design
decisions wecording o known  development
theory, standards or methodologies:

(d) a terminology and associated enforcement sys-
rem for design decisions that formully defines
the GKBMS madel of design decision control
and documentation;

(€) & knowledge representation language Lo repre-
sent knowledge at all of the above levels.

The same remarks as before apply with respect to
the need for extensibility of language (e) and schema
(d). For cxample, in an evolving software en-
vironment such as DAIDA, this extensibility allows
developers to use the GKBMS initially as a simple
documentation tool where all transformations are
made manually, and recorded and controlled accord-
ing to very simple decision class definitions, basically
just distinguishing between three kinds of decisions:
refinement within o language, mapping between
languages and retraction of existing decisions to start
new versions. This distinction is closely related to a
versioning model described in {32}, and can thus serve
as a basis for certain programming-in-the-large tasks,
As theory and tools for the mapping tasks sketched
in Section 2.2. are further developed, the same
schema can support an almost automated software
development and maintenance process.

Finally, design tools employed to execute decisions
can be deseribed in a fashion similar to design
decisions, namely, at u class Jevel which describes
what the tools can guarantee to do in general, and at
an instance level which deseribes what it guarantees
in executing a specific decision. The role of tool
modelling is best understood by studying the inter-
refationships between design ohjects, design decisions
and toels. Tigure § extends Fig. 7 o illustrate these
interrelutionships, For example, at the class level, a
design decision cluss should be related to object
classes and tool specifications as follows:

o Design object classes this decision can be applied
to (FROAM)

s Design object classes allowed as outcomes
achieved by performing this decision (T0)

s Associated tools supporting the exccution of a
decision (BY)

o A formalized description decomposing a decision
in subdecisions, and finally into primitive de-
pendencies among incoming and outgoing design
ohjects

o A decision-procedure deseription (maybe just a
kind of comment) capturing developers' beliefs
not expressible in the above representation.

Furthermore, both decision class and tool specifi-
sations come with constraints that define the relation-
ships between inputs and outputs. For decision
classes, the semantics of such a constraint is similar
to that of an integrity constraint in a database
transaction [38]: the constraint must be satisfied for
any completed instance of the class, For tool specifi-
cations, the semantics of a constraint is that of a
warranty the tool gives to ils users; in particular,
sutisfuction of constraints already guaranteed by the
supporting tool need not be checked any more in the
instantiation of a decision class (so to speak, at
transuction end), unless there was a chance for the
user to invalidate the tool results in between. The
implementation of such an approach requires a
theorem-proving approach to integrity checking [39].
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For simplicity, the decomposition and decision-
procedure components of the model are not shown in
the figure; the former will be discussed when elaborat-
ing the formal maodel of design decisions in Section
4.3, whereas we have only begun to explore the latter.
Another important requirement is the modelling of
time, an important aspect of any process-oriented
model. We argue that an interval-based maodel of time
[40] should be chosen since it models aspects such as
versioning of design objects, or embedding of validity
intervals for design decisions—as implied by the
decision decomposition approach mentioned above.
Finally, it may be useful to add another level
of abstraction 1o the model, in order to represent
example data for prorotyping in the model; this would
make the levels (b—d) above into classes, metaclasses
and metametaclasses, respectively. Since we do not
discuss prototyping further in this paper, we shall
stick with the simpler form although ConceptBase
supports this extension as well.

So far, we have focussed on representational re-
quirements for a decision-oriented GKBMS. In order
to get a feeling for the functional requirements, we
now discuss how a typical mapping task such as
illustrated in Section 2.2, could be supported by the
structure shown in Fig. 8. First of all, different
exploration facilities are required to exploit the docu-
mentation of design object and design decision repre-
sentation during the development and maintenance
phases:

e Exploration of hierarchical structures such as
taxonomies of design object or design decisions
classes, possibly also of documented instances and
their static relationships, starting from a given
focus; e.g. input/output relationships between

DBPL transactions and data structures (hrow-.s#3%!
of outcomes)

Exploration of dependency graph structuare.
following chains of design decision instances #&
various levels of granularity from a given foe i
e.g. finding requirements and design decisiorzs ¢
relation attribute was derived from (browsirss e+
processes)

Predicative restriction of a set of design objere ¥
and design decisions (e.g. for setting a focus or feay
reducing the complexity and size of a display )
Combined navigation in graphs starting at a gi vers
focus; e.g. explore the design object space ut thisr
level of system design, then explore possible im gy fez =~
mentation decisions.

From this list, it is obvious that a combiryesel

predicative and direct-manipulation style of interg-
action is needed for the KBMS usage environmezgyy
Exploration of the existing schema and instances ¢«
required both during the initial development & f" 4
system and in the maintenance phase. In a typic;si
development step, the interplay of design objocis, .
decisions and tools could proceed as follows:

1. Explore (versions of) design objects and ¢ .
cisions (instance level).

2, Select a design object to work on (instance levexg
and finds its class (class level). ‘

3. Explore decision classes applicable to this obje . ¢
class and select one (class level).

4. Select a tool associated with the selected «¢fes..
cision class or one of its predecessors in Lhyes
generalization hierarchy of decision clas&;{:?i
(class level).

5. Make a decision within this class, execute it Wi th



A software process data model 95

? represenialional

requiremenis
Laxonemic schemes foe
denign ohjocts and deoeaions

specilication of decisiona
snd ool suppont

uniform roprosentation
of various kinds of
design ohjects

wrnporal docurnentation
of deaign objects and
derign dotisiom

sciess 10 external
OUrGon

uxplocation of

process
domumentation

tme caloulus
sedictive querying
&
integrity checking
extonwibility at the leval of

schemyes o incorpoeate new
theoriss and tools

Reason Malntenance Syatem
e TTERIE COnMIonco

required tools
ard (echniijues

guidanca in
thoary and tosd ™" executed doclsions “
selection

control of localization of design '

objocts in case of

(Lo, process control) modification

functional

requirements

Fig. 2 Summary of KBMS requirements for soltware process support,

the selected tool, generating new design object
sources (external world level) and their represen-
tations it the knowledge base (instance fevel),
testing it these instuntiate existing design object
classes (clasy level),

6. Try to ecreate an instance (or the previously
chosen decision cliss, testing the correctness of
the execution with respect to the class definition
and. i suceesstul, documenting the execution
with its assacited objecty and tools (instance
amd eluss levedy,

Introducing design decisions as a mediating con-
eept between objects and tools guides the user to-
wards applicable tools in w given Lask context (defined
by the theory or methadolagy embedded in a decision
cluss definition), controls the correet application of
these (ools in o lexible way (using weaker or stronger
constraints  for  decision  elasses) and  docunienis
the development provess Tor subsequent explanation,
critique (maintenunce) and rease. In the long range,
it would be desirable if the system would extend
its known set of decision clisses by inducing new
subclasses from instinces [2, 41, 42).

Summarizing, three dimensions of reguirements for
modelling and supporting software processes in a
knowledge base have been pointed out:

~representational reguirements Tor a soflware pro-
cess data model (GKBMS data model)

=funetional reguivements {operational interface of

the GKBMS)

~~required tools and teehmiques (implementation of
the GKBMS).

The details of these dimensions are repeated in
Fig. 9. Tn the remainder of this paper, we present our
approich to satisfy these requirements, The know!-
eedge representation language mentioned at level ()
above for modelling both design objects and design
decisions must combine object-oriented abstraction
with multiple levels of instantiation, one or more
assertion languages for expressing object and process
canstraints, natural concept visualization with pre-
dicative as well as navigational exploration, an em-
hedded (preferably interval-based) model of time,
and object identity as a basis [or configuration man-
agement, Tuken together, these requirements look
very similar to those needed for world and system
maodelling in DAIDA; indeed, a software environ-
ment can be seen as a “software world” whose
structures, laws and history have to be represented in
the GKBMS. As a conseguence, we choose a dialect
of CML, the world and system modelling language of
DAIDA (ef. Section 2.1), as the knowledge represen-
tation language for the GKBMS.

The next seetion preseats a definition of this CML
dialect. Then, the level (b-d) representational require-
ments are addressed by defining formal constructs
for design objects and design decisions. Continuing
the example of Section 2.2, our approach to the
functional requirements is also briefly demonstrated.
Finally, we present the rools and techniques aspects by
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giving an overview of the ConceptBase prototype
implementation, and relate the model to specific
applications.

3. THE CONCEPTUAL MODELLING
LANGUAGE CML/TELOS

This section provides a brief review of the knowl-
edge representation language CML which will serve
as the basis for formalizing and implementing our
software process knowledge base. CML (and its
minor variants SML and Telos [15]) was derived
in several iterations [14,43] from the requirements
modelling language RML [4], and has been aug-
mented in DAIDA with special features for modelling
system requirements and external naming for system-
generated object identifiers.

CML combines structurally object-oriented prin-
ciples such as object identity, classification, general-
ization and aggregation, with a predicative assertion
language and a built-in time calculus. Major features
distinguishing CML from other similar knowledge
representation languages include:

e attributes as first-class objects which can be in-
stantiated, specialized and have attributes of their
own,

e potentially infinite hierarchy of metaclass levels,
thus ensuring extensibility of the language;

e validity intervals for world objects described in the
system, as well as for the system’s knowledge
about them,

e flexible hypertext-like syntax that allows for
arbitrary combination of semantic network and
frame-based views.

The remainder of this section sketches the network
(proposition) and the frame (object) levels of
the system as well as their interrelationships. A

CLASS

4

knowledge-level formalization of the basic language
can be found in [43].

3.1. The network syntax

In CML, knowledge bases are seen as semantic
networks. A link (which is synonym to object in
CML) is interpreted as the proposition stating that
there is a connection between two nodes. A node
represents the proposition that there is such an
object. The object-oriented paradigms of classifi-
cation, generalization and aggregation [34] appear as
links, too, where a set of six language axioms defines
the well-formedness of the network. For example,
each object has to be an instance of at least one object
(its class). The uniform data-structure for prop-
ositions is:

id = {source, label, destination, interval}.

Each proposition makes a statement about objects
and is itself an object. On the left stands the name (id)
of the statement, and on the right the definition: the
object “‘source™ has a link labelled “label” to object
“destination” during time “interval”. Nodes are seen
as self-referential links, so-called individuals, denoted
by id = id,.id,interval’>, where the underscore
stands for an arbitrary label. Obviously, individuals
make no statement about other objects but only
about themselves; more exactly, they state that there
is an object with name “id.”

To support rule-based deduction and integrity
control, CML offers specialized object classes to
express constraints and rules. For example, a prop-
osition can link a class object to an object of class
“ConstraintClass” to express that the constraint has
to be satisfied for all instances of that class object.
Note that this method of introducing assertions
leaves the freedom to attach arbitrary assertion
languages and associated provers to the system [44].

EntHierMapMoveDownJ

tdlentities

— | TDL EC DO

\

PROPOSTTION

4 4 £t

lﬂplnvitationﬂ

— I Papersl

entityl

I Invitations l

Fig. 10. Propositional representation of maplinvitations (unlabelled links stand for *instance) of
propositions.
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3.2, The frame syntax

By grouping u set of propositions together with
their clags propositions around 4 common source, we
obtain a CML frame, For example, a piece of a
frame-tevel ohject mapinvitations that documents the
design decision shown in Fig. 4, can be written as:

PROPOSITION maplnvitations at version7
IN EntHierMapMoveDown WITH
tdlentitics

entity]: Papers
entity2: Invitations

END (* mapInvitalions *)

This states that mapInvitutions is an instance of
the classes PROPOSITION and EntflierMapMove-
Down (the decision class activated in Fig, 3). Tt has
attributes entity ! and entiny2 with values  Papers
and Invitations which are instantiated from an at-
tribute category labelled wllentivies (defined in class
EntHier MapMoveDown). Ferston 7 denotes the time
during which the frume shall be regarded as valid.
Part of the network of propositions representing the
frame is shown in Fig. 10

Figure 10 also illustrittes one of the CML axioms.
The attribute labelled entievd (entity2) is declared
to be an instance of the tdlentities attribute of
EntHierMapMuore Down, The instantiation axiom of
CML demands that its source maplavitations must be
an instance of the source of its class EnrflierMap-
Move Downy, also, Papers (Invitations) must be in-
stances of THL.EC. DO,

The time components of the propaositions are not
shown in the figure: for example:

mapinvitations = ¢maplnvitations, -, mapInvitations, version7)
Pl s cmuplnvitations, *instanceol, PROPOSITION, version7)
P Finstanceol, InstangeQfF, 21-Mar-1989 4 3

P2

P = Cmapinvitations, entity2, Invitations, version?)
Py PR, *instanceof, K1, version?)
PUHY s ¢ PO, ¥instaneeof, InstanceOf, 21-Mar-1989 4+

whery

InstanceOf = (PROPOSITION, *instanceof, CLLASS, Always)

%

K1 = EntHierMapMoveDown, tdientities, TDL.EC..DO, Always)

The first propostion declares mapineitations us an
individual. 1t last component, version7, holds the
“valid time" of the object; the knowledge base re-
gards mapincitations as valid during the time interval
version?7. Pl instantiates maplnvitations o the class
PROPOSITION. The next proposition makes P2 an
instance of the class InstaneeOf (the class of all
instantiation links). Its time component is used to
store the “belicl time" of maplnvitations and P1: the
knowledge base knows of them since 2/-Mar-1989,

CML ureats all propositions (individuals, at-
tributes, instantiation and specialization links) as
objects. Since many object identificrs like those
for attributes and instantiation links are system-

generated, we extend the frame syntax by operator
expressions that reference links by their source
and label components. For example, the identifier
P8 can be referenced by the expression maplni-
tationslentity 2, The operator 1™ can be iterated for
accessing more distant finks: the name of the instan-
tiation link of the entity? attribute can be described
as maplnvitationslentity 2P instanceaf. At any given
point in time, this naming convention yields unique
identifiers since the CML aggregation axiom says that
there may be only one link with a given label at a
given time,

3.3, Querying and updating knowledge bases

Due to the close relationship between the two
syntax variations of CML, queries and updates can
be addressed to either of themy; for simplicity, we
assume for the moment that internally, all {rame
structures are converted to network structures, as
indicated in the example above [45]. Following [46],
CML views the knowledge base as an abstract data
type with two operations:

tell (s)
ask (g, a)

“tell™ tests s for consistency with the knowledge
hase and stores those propositions of *'s” not already
retrievable. Applied to some knowledge base, “ask”
provides the answer *“a" to query “*q". In accordance

with the hypertext-like structure of the language,
queries can be asked and answers can be displayed as
text {frame) objects, networks or combinations of
both, “*q" can either be a closed predicative formula
over the knowledge base in which case “a” takes
one of the values yes, no or unknown; or *¢" can
be considered a class definition of CML and “a”
contains all the objects classified as salisfying this
definition {(¢f. Section 5.1

The following query asks for all attribute vaues of
all instances of the class EntHierMapMoveDown
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which are valid during version?7:

INDIVIDUALCLASS AttributeQuery IN QueryClass WITH

computedattributes

solution: TDL_EC._DO

query

ql: $ each x/EntHierMapMoveDown
AttrValue (x, tdlentities, solution, version7) $

END

Since maplnvitations is one of the candidates, the answer is:
INDIVIDUAL answerl IN AttributeQuery/WITH

solution
sl: Papers
s2: Invitations

END

4. FORMALIZATION OF THE
SOFTWARE PROCESS MODEL

In this section, the software process model
sketched in Section 2.3 will be formalized in terms of
the CML language. Recalling the example of Section
2.2, we first formalize the design object hierarchy and
then address the modelling of design decisions
and methodologies; finally, a discussion of tool
specification is provided. In developing this model,
especially for design decision control and documen-
tation, we make extensive use of the “!™ operator
introduced in Section 3.2 to access system-generated
attribute identifiers in CML’s network syntax. This is
shown to yield not only a very compact represen-
tation of detailed dependencies among design object

from

DesignObjec

— =

tdlentities

r— \

—

properties but also to be directly usable as input to
reason maintenance facilities such as [12, 47].

4.1. Overview of the model

As discussed, the software process model repre-
sents three basic kinds of objects, namely design
objects, design decisions and design tools. The intro-
duction of design tools gives the model an “active
database” flavor that distinguishes it from ap-
proaches such as entity—relationship [10]. The explicit
modelling of design decisions distinguishes it from
most previous software databases, and the use of
CML’s abstraction mechanisms from design process
modelling in AI [13]. We first define the metaclasses
(actually metametaclasses if prototyping is con-
sidered as well) for the three basic kinds of objects (cf.,

]

4 ] 1] b
|

Y tool
l EntHierMapMoveDown I-—ﬁ—blﬁappinglxssis\:antZ ]

nonfirstrelations

entityl

!

rell

InvitationRel 0 mapInvitations —-?o—mﬂ—b

4 4

Fig. 11. Overview of the model and example.
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also Figure 11); examples of the lower abstraction
jevels are developed in the remaining subsections,

At the top level, Fig. 11 shows the three meta-
classes  DesignChject. DesignDevivion and Design-
Tool. Example of design  object  classes  are
TDL.EC. D (representing so-called TaxisDL entity
classes) and DBPL.Rel DO which can be mapped
from the first ones. The tool MuppingAssistant2
helps with such tasks. The fowest level represents
actual design objects, decisions und tools, In this cuse,
the mapping of two TaxisDL entity classes to a
DBPL. relation ealled Invitation Rel .0 is documented.
Note that not all tinks are included in the figure. The
following frame definitions offer o more complete
description,

Design objects must be justified by some design
decision. Furthermore, the representation ol these
objects should contain a reference where the source
gbject can be found, us well us a CML deseription of
that object. Finally. a design ohject may be recur-
sively configured from smuller ones. These require-
ments are formalized in the CML metaclass:

INDIVIDUALCLASS DesignOhject

N MetaClass WIETH
altribute
Jjustification: DesignDecision
objectsource; ExternalReference
objectsemantic: CLASS
puart: DesignOhject

ENID

Instinces ol DesignChject are specialized design
object classes corresponding to construets available
in the languages of the chosen environment, in
DAIDA CML, TaxisD] and DBPL. In tuen, their
instances are tokens tepresemting  actual  design
objects defined in vne of these limguages.

Following the approach of Section 2.3, design
objects evolve due o the toolaided execution of
human design decistons under the control of some
methodology expressed by deeision clusses. Pesign
decisions themselves can also be considered us design
objects that are worked upon by the design group
through other devisions. The CML sub-anguage
for talking abowt design decisions is defined by the
metaclass:

INDIVIDUALCLASS DesipnDecision

IN MetaCluss 1ISA DesignOhject WITH
attribute
from: DesignObject
to: DesignObject
deeisionsemantic: DecisionDeseription
by: DesignTool
part: DesignDecision

END

Each instance of DesignDecision defines a decision
class whose instances in turn record actual decisions,
Attribute “from™ references the input objects and
attribule *to" the resulting objects; time stamps are
implicit in the CML language. The “by" atiribute

refers to the GKBMS representation of the applied
design tools, *“Part” facilitates the decomposition of
design decisions in a modular way. For instance, all
specific mapping decisions during a mapping task can
be aggregated to a single one covering the whole task.

Our model considers design tools as design de-
cisions that implement other design decisions classes.
The language for talking about tools is defined as a
specialization of the metaclass DesignDecision where
the input to the decision is the design decision class
to be supported by the tool, and the output is a
procedure that executes the decision:

INDIVIDUALCLASS DesignTool [N MetaClass
ISA DesignDecision WITH
altribute
from: DesignDecision
to: BehaviourObject
END
This method of tool integration is intended to
consider tools as reusable software objects that
should, in principle, have been developed with the
same methodology as any other software. In the
following subscctions, the above melaclasses are
discussed in more detail.

4.2, Semantic descriptions for design objects

If we wish to know more about u design object than
that it exists and where it exists, a semantic deserip-
tion in CML can be given, Note that these descrip-
tions are not cquivalent to the sources in the
corresponding environments; this is true cven for the
world and system model (see Fig, 1) where the same
language, CML, is used. Nevertheless, the abstract
deseription of design objeets in CML helps utilize the
structural integrity mechanism of CML for soltware
process control. In the example, we need al least
two such classes, TaxisDL entity classes and DBPL
relations, for the schema of our software database
(containing the objects) respectively knowledge repre-
sentation (containing object descriptions defined at
any CML metalevel):

INDIVIDUALCLASS TDL..EC.DO
IN DesignObject WITH
justification
created. by: TDIL..Decision
objectsouree
tdisource: String
objectsemantic
dlentitydescer: TDL..EntityClass
END
INDIVIDUALCLASS TDL_EntityClass
IN MetaClass 1SA TDL._Dataclass WITH
attribute
changing: TDL_DataClass
unchanging: TDL_DataClass
unique: TDL._DataClass
invariant: TDL.DataClass
setof: TDL.-DataClass
END
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INDIVIDUALCLASS DBPL..Rel.DO
IN DesignObject WITH
justification
created..by: DBPL._Decision
source
dbplsource: String
objectsemantic
dbplreldeser: DBPL.Relation
END

INDIVIDUALCLASS DBPL._Relation
IN MetaClass WITH
attribute
keyattr: DBPL. SimpleType
nonkeyattr: DBPL._SimpleType
setvaluedattr: DBPL_SimpleType
ENI

Thus, an instunce of DAPL Rel DO specifies «
DBPL_Deeision Tor its justification, a llename {or
pointing to its source file, and a description summar-
izing the attributes of the relation:

INDIVIDUAL Papers IN TDL.EC. DO WITH
created by
decision: mappdee!?
tdlsource
filename: “TDL/PAPERS udl”
tdlentitydeser
deseribedby: Papers dl
END

INDIVIDUALCLASS Papers..tdl
IN TDIL..EntityClass WITH
unigue
date: Date . tdl
author: String
changing
content: String
END

This specifies thut there is an design object Pupers
justified by mappdect 7 in the TaxisDL. environment
and that this design object hus two unchanging and
one changing attributes, Figure 12 completes the
design objects of our example, The left side contains
the TaxisDL. design ohject Papers and its specializ-
ation Jnwvitarions. In the middle, a non-first-normal-
form DBPL relation implementing this conceptual

l llap&ufnuwulr:lal
) 8 e Bt LERGRIENAR B,

i o LA S

vbjectsomantic

[tanle lunvncrlelan

apm T o d

Fig. 13. Metaclass model of semantic descriptions ol design
objects and design decisions,
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design is presented, The two design objects on the
right represent the normalized version of Invitation-
Rel.0 used in Figs 5 and 6, They specify for their
Jjustification two design decisions which are explained
in detail in the next subsection.
4.3, Semantic description of design decisions

The semantics of design decision (at a given level
of abstraction) is defined by relating descriptions of
design objects to cach other, The “decisionsemantic”
attribute of metaclass DesignDecision is based on
special properties of the class “CLASS™

INDIVIDUALCLASS CLASS WITH
attribute
attribute; CLASS
dependson: CLASS
END
The CML system class CLASS defines  that
clusses may have attributes, Above, we extend this
definition by so-called dependencies: CML objeets
may depend on (the existence ol) other objects.
This can be individuals, attributes, instantiation and
specialization relations because they are all objects.
When used for the design objects we are able to
express how the “object semantic™ of the “from™
design objects was mapped the object semantic of the
“to™ design objects.
The class DecisionDescription aggregates such
dependencies:

INDIVIDUALCLASS DecisionDescription
IN MetaClass WITH
attribute
dependencies: CLASS!dependson

END

The semantic network syntax for the extended
metaclass model is shown in Fig, 13, Returning to our
running example, instances of DesignDecision define
how to map TaxisDL entity hierarchies to normal-
jzedd DBPL relations. Recall from Section 2.2,
that this requires two steps (or part decisions). The
decision class  EntHierMupMoveDown shows  1he
general knowledge of the GKBMS about how to map
a TaxisDL entity hicrarchy (like Pupers and [npi-
tarions in the previous section) to & DBPL relation
which is in general not in first-normal-form. The
mapping of the attributes is described by three state-
ments on how the resulting DBPL relation looks:

e the key autributes derive from certain “unchang-
ing" attributes of the TDL entity,

o the non-key attributes are mapped [rom the other
attributes, and

o the set-valued attributes come from the corre-
sponding “setof ™ attribules.

These constraints are simplified; their full form
should include 4 lot ol knowledge about mapping of
semantic data models {27] or even complex theories
ol transaction refinement [24):
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Below, the CML formalization of this class is side shows how detailed knowledge about software
given. It instantiates the metaclass scheme of design  evolution is represented. The design decision map-
decisions. Formal attributes and dependencies be-  Invitations is an instance of the class EntHierMap-
tween them are denoted by the ““!”* operator:

INDIVIDUALCLASS EntHierMapMoveDown IN DesignDecision WITH
from
tdlentities: TDL_EC_DO
to
nonfirstrelations; DBPL_Rel_DO
decisionsemantic
mappingdescription: EntHierMapMoveDownDescription
by
tool: MappingAssistant2
END

INDIVIDUALCLASS EntHiermapMoveDownDescr IN DecisionDescription
WITH
dependencies
keydep: DBPL_Relationlkeyattridependson
nonkeydep: DBPL_Relation!nonkeyattridependson
nonfirstdep: DBPL_Relationlsetvaluedattridependson
END

ATTRIBUTECLASS DBPL_Relationlkeyattr WITH
dependson
dependson: TDL_EntityClasstunchanging
END

ATTRIBUTECLASS DBPL_Relation!nonkeyattr WITH ... END
ATTRIBUTECLASS DBPL._Relation!setvaluedattr WITH ... END

For a visualization of this formalization and its
internal compactness, Fig. 14 shows the correspond- MoveDown. It records the actual mapping of the two
ing semantic network representation. On the left side, TaxisDL entities Papers and Invitations to the unnor-
the scheme of the software database is defined by the malized DBPL relation InvitationRel_0. The corre-
design object and design decision classes. The right sponding instance of EntHier MapMoveDownDescr

Software database Software knowledge
scheme representation
atof
4
tdlentitydescr unchangin
TDL _EC DO # |TDL EntityClass ‘VL TDL DataClass
4 4
changin
tdlentities o
ncnf’-“ty'
ljntHie:MapMoveDow;] moppinggescription o, [enthier., .Deser ~EoydeR Ly
na;::;::;..“-
nonfirstrelations --~T
dependson
v onkeyattr
dbplreldescr
DBPL Rel DO & [DEPL Rel &
. T —
i reyatir DBPL_SimpleType
aetvaluedattr

Fig. 14. Design decision class and related object classes with their descriptions.
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aggregates the dependencies:

INDIVIDUAL maplnvitations IN EntHierMapMoveDown WITH

tdlentities

entityl: Papers

entity2: Invitations
nonfirstrelations

rell: InvitationRel 0
mappingdescription

describedby: maplnvitationsDescr

tool
doneby: MA_execl
END

INDIVIDUAL maplnvitationDescr IN EntHierMapMoveDownDescription WITH

nonfirstdep

depl: InvitationRel_0_dbplireceiver!depon

nonkeydep

dep2: InvitationRel_0_dbplimeetLocldepon

dep3: InvitationRel_0_dbplidate!depon

ATTRIBUTE InvitationRel 0_dbplireceiver IN DBPL_Relation/nonkeyattr

END
WITH
dependson
depon: Invitations_tdl!receiver
END

... {same for other attributes}

ATTRIBUTE InvitationRel_0_dbpl'date IN DBPL_Relation!nonkeyattr WITH

dependson
depon: Papers_tdlldate
END

Figure 15 shows the design object tokens Papers,
InvitationRel_0. The description of maplnvitations
contains the dependencies between attributes of the
InvitationRel_0. The description of maplnvitations
contains the dependencies between attributes of the
participating design objects which must be instances
of the model shown in Fig. 13; following chains of
such dependencies determine repercussions of design
modifications, as discussed in Section 2.2.

4.4. Decision modules and methodologies

To summarize the discussion so far, each design
decision is characterized by its inputs, outputs and
a semantic description, as well as by a pragmatic
(tool) characterization of the detailed input-output

tAccording to the DAIDA methodology, constraints at the
CML level relate the implementation to the interface,
and the parts to each other. Typically, the decompo-
sition of a design decision is itself a design decision. This
could be supported by Al-based planning and schedul-
ing tools, also considering the goals of the design in a
decision support setting [13]. The implementation of a
module from the imported pieces is only characterized
by constraints since the CMI. model just modularizes the
requirements; typically, a TaxisDL script would be used
to design the actual implementation.

relationships. While this may be sufficient for small
examples and uniform-language situations, it is not
enough for large-scale, multi-layered information sys-
tems development and maintenance. For this kind of
problem, we need a mechanism to aggregate minor
decisions to larger ones, or, conversely, to decompose
complex decision problems into smaller ones.

The traditional approach to achieve such a de-
composition is the introduction of a modularization
abstraction. In our model, the above-mentioned at-
tribute categories (from, to, by, decisionsemantic)
characterize the interface of a conceptual decision
module, whereas the “part” attribute not discussed so
far characterizes the import interface of the decision
module.t

In the planning phase of software development,
modular decomposition is used for assigning system
development work. In the usage phase of the infor-
mation system, modular composition may be used for
configuration management. A category of complex
design decisions of particular interest to the DAIDA
methodology are implementation hierarchies that re-
late a reasonably isolated world submodel, subsystem
specification or conceptual design to its completed
implementation. When generalized to a class defi-
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nition by introducing parameters [48], such a compo- INDIVIDUAL mapandnormalizelnvitations
nent can be reused by re-instantiation; even IN StrucMapMoveDown WITH
incomplete hierarchies (e.g. requirements together tdlentities
with an associated design blueprint but no implemen- entityl: Papers
tation) can be useful reusable objects [49]. entity2: Invitations
In the following, we demonstrate the decompo- normalizedrelations
sition of design objects by introducing the complex rell: InvitationRel 1
decision class mapandnormalizeInvitations which ag- ‘ rel2: InvReceivRel
gregates the two decision instances introduced earlier. hiermap
It takes as input the two TaxisDL entity classes ‘ stepl: maplInvitations
Papers and Invitations and produces two normalized normalize
DBPL. relations InvitationRel_.1 and InvReceivRel step2: normalizelnvitations
(see Section 4.1). The first part has already been END
done by mapping the TaxisDL design objects to a
non-first-normal-form relation InvitationRel_0. The The decomposition of design decision olbyjewts

missing part is the mapping of ImvitationRel_0 to allows for the definition of complex methodolo i€+
normalized relations. For this purpose we define and reduces the size of dependency networrk -«
a decision class DBPL_RefNormalization which combining ideas from programming-in-the-large (- #-
models such mappings, and use this class for record- configuration management) with those for prog sz ¥¥1-
ing the normalization of InvitationRel_0:

INDIVIDUALCLASS DBPL_RefNormalization IN DesignDecision WITH
from

nonfirstrelations: DBPL_Rel_DO f

to :

normalizedrelations: DBPL_Rel_DO

description !

normalizationdescr; NormDescription :

155 g g

END

INDIVIDUAL normalizeInvitations IN DBPL_RefNormalization WITH :
nonfirstrelations
nfrel: InvitationRel_0
normalizedrelations
normrell: InvitationRel_1
normrel2: InvReceivRel
END

Finally, we aggregate the two parts to a complex  ming-in-the-small, such as constraint propagatiory oy
decision class StrucMapMoveDown. The constraint requirements or design modifications.
expresses that for each instance, the part decisions Note, that complex decision objects can also hzwe
must talk about the same objects as the complex one.  descriptions, and thus dependencies relating thesiy
One can easily see that it is fulfilled for the instance parts directly to each other, rather than having to gro
mapandnormalizelnvitations:

INDIVIDUALCLASS StrucMapMoveDown [N DesignDecision WITH
from
tdlentities: TDL_EC_DO
to
normalizedrelations: DBPL_Rel_DO
part
hiermap: EntHierMapMoveDown
normalize: DPBL._RefNormalization
constraint
properdecomposition:
$ hiermap. tdlentities = tdlentities &
hiermap . nonfirstrelations = normalize .nonfirstrelations &
normalize . normalizedrelations = normalizedrelations $
END
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Fig. 15. Design object and decision modelling at the instance level.

via all subdecisions. In this way, design-in-the-large
can use a derived, more compact dependency net-
work for configuration, constraint propagation and
search than the detailed recording of small-scale
design decisions would allow. Another important
advantage of the modularization is that decision
classes can be used to define design-in-the-large
methodologies such as the overall DAIDA meth-
odology of decomposing the software development
process in CML-based requirements analysis,
CML-TaxisDL mapping, TaxisDL conceptual de-
sign, TaxisDL~-DBPL program design and DBPL
coding: ¥

INDIVIDUALCLASS DAIDAMethodology IN DesignDecision WITH

from
requirements: CML_DO
to

databaseprogram: DBPL_DO

description

implementationconstraint: DatabaseprogramSatisfiesRequirements

by

globaldaidenvironment: GKBMS

part

system_embedding: RequirementsAnalysis
requirements._to_design: CML.TDL_Mapping
design_consolidation: TDL_Integration
design_to_program: TDL_DBPL_Refinement

END

Besides the vertical aggregation of decisions to
development histories (at the instance level) respect-
ively methodologies (at the class level), we also need

TIn contrast 1o standard modularization approaches, how-
ever, it may be necessary to have multiple modulariz-
ations (or views) of the same structure; a deep discussion
of the problems associated with such a multiple-
viewpoint mechanism, often intended to support group
work, is beyond the scope of this paper [50, 5.

LS, 15/1—H

a horizontal configuration, composing design objects
and decisions from smaller ones, respectively decom-
posing complex tasks into more manageable ones.
McMenamis and Palmer {52] provide some guidelines
of how to do this (e.g. event based or data centered
partitioning).

For example, when talking about the mapping of
the generalization hierarchy of Papers and Invi-
tations, we may wish to view this hierarchy as a single
complex object, used as an input to a common
decision. If more than one relation should result from
the first subdecision (e.g. with the distribute strategy

to use one relation per class), normalization could be
performed in two separate subdecisions for the next
step. An extension currently under development
handles not only this case but also addresses the
question of source configuration management, i.e.
what happens if the desired conceptual configuration
of objects does not coincide with physical file
boundaries.
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4.5. Design rool modelling

If all software were developed by the DAIDA
methodology, a design tool would be simply a
reusable implementation hierarchy to be described at
the levels of its CML systems requirements, TaxisDL
conceptual design, implementation in some program-
ming language, and possibly executable object code
{(derived automatically by compilation and thus not
shown in Fig. 1).

At the CML level, the requirements of a tool are
those of the design decision the tool is supposed to
automate, typically a subdecision expected to occur
in many design tasks. Thus, the class structure of
design decisions can be used for describing the re-
quirements of design tools. At the TaxisDL level,
simple tools would be designed as transactions,
whereas more complex ones would be specified as
scripts for interactive problem-solving. In DAIDA,
the CM L~TaxisDL mapping assistant would help in
generating these kinds of designs [9, 22]; the TaxisDL
specification could also serve as a user guide through
a complex tool.

In a real environment, of course, we wish to
integrate pre-existing tools written in any program-
ming language, as well as to develop new ones.
We therefore have to construct CML and TaxisDL
“envelopes” to make such tools known to the
GKBMS (cf. [30] for the concept of envelopes in tool
integration for software environments). The inter-
action with such tools can then be accomplished in
several ways: a purely documentative one in which
the user is just given information about the tool and
then invokes it manually; an embedded procedure-
call mechanism as in active databases (e.g. Postgres
[62]); or a distributed message-passing protocol where
GKBMS and tools are communicating active objects
[53]. The current implementation only supports the

normalize (], -).

first one while the second one is being implemented
for the second prototype.

Of course, we assume that it has been estaplistred
during the tool development process that the “to”
object is a correct and complete implementation of
the “from” object, i.e. that the tool does what it
promises. Moreover, the description of any design
tool relates the “from/to” parameters of the “fro1m’”
DesignDecisionObject to the interface parameters of
the called procedure, thus clarifying the meaning ©Of
these parameters in terms of the tool requiremer1ts.
Note that, while ExecutableProcedureCalls basically
introduce the active database functionality provided
by object-oriented languages such as SmaliTalk [31],
the GKBMS approach embeds the use of these
methods in the pre-/postcondition controls define<d by
the calling decision classes to provide some knowl-
edge about the semantics of the methods. This also
defines something like (nested) design transactions.

Instances of DesignTool are specifications of to©ls
available in a concrete software engineering environ-
ment. The corresponding tool objects normally hhave
system-generated identifiers; therefore, we allow to
substitute some surface representation of the pro-
cedure call in the same way we introduced the “<1"
notation for naming attribute objects implicitly . In
fact, the user would normally only see these surface
representations while the input-output information
would be internal information generated and used by
the system. This information hiding can be used
to identify applicable tools in an efficient way by
linking them physically directly to object classes (i.e.
storing redundant derived information), or for other
optimizations.

As an example, assume that the “mapping assist-
ant” supporting the normalization sub-decisiorn in
Section 4.2 is a Prolog procedure whose highest lewel
might be defined roughly as follows:

normalize ([firstel|_restinput], [_firstrel| _restoutput]):-

hasnosetvaluedattr (_firstrel),

normalize (_restinput, _restoutput).

normalize ([_firstrel|_restinput], _restoutput):-
hassetvaluedattr (_attrlistl, firstrel),

haskey (_atrlist2, _firstrel),

formrel (_attrlist2, _attrlist], _newrel),

append (-newrel, _restinput, _newrestinput),
subtractattributes (_firstrel, _attrlist], _firstrelreduced),
normalize {[_firstrelreduced|_newrestinput], _restoutput).

The corresponding tool object might look like this:

INDIVIDUALCLASS $normalize (nonfirstrelations, normalizedrelations)$

IN DesignTool WITH
from

toolspec: DBPL_RefNormalization

to
toolexec: PrologCall
END
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Fig. 16, Tool embedding in the GKBMS software process model.

Figure 16 gives the semantic network structure for
this example. This tool model is also used to describe
the tools for the ConceptBase environment itself, in
particular, the user interface tools, the inference
engines and consistency checkers for rule and con-
straint processing, and the secondary storage man-
agement (see Section 6.3).

S. CONCEPTBASE: A PROTOTYPE
IMPLEMENTATION

Like other data-intensive information systems con-
structed with the DAIDA approach, the software
process data model should be realized with the
DAIDA tools sketched in Section 2.1. However, since
these are far from completed and would themselves

need support from the GKBMS, the initial GKBMS
implementation is based on a simpler support system
named ConceptBase (Conceptual Model Base Man-
agement System) from which more efficient imple-
mentations for very large knowledge bases will be
bootstrapped.

ConceptBase implements a CML kernel and usage
environment based on the definitions in Section 3,
augmented with features to describe multiple views
of knowledge, system behaviours, complex object
configurations and display facilities. This kernel can
also serve as an implemented semantic specification
for other implementations. A first prototype has been
operational since spring 1988 [45]; a second one is
scheduled for completion in April, 1989 [64]. The
system runs on SUN-Workstations under Unix and
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currently (February 1989) comprises about 40,000
lines of BIM-Prolog, C and interface code; the second
prototype also runs on VAX under VYMS.

The ConceptBase architecture, shown in Fig. 17,
follows the three language levels of network, frame
and conceptual model, offering extensibility and opti-
mization strategies at each level to achieve efficiency.
In the figure, strong boxes indicate modules which
have been implemented and integrated into the sys-
tem, whereas dotted boxes indicate modules either
not yet integrated or not even fully implemented. Our
software process data model can be considered one
particular conceptual model; others, e.g. for team
support (design conversation base) are being studied.

5.1, The ConceptBase kernel system

The interface of the Praposition Processor repre-
sents CML propositions at the network level by
Prolog 5-tuples:

propval ( id, source, label, destination, interval ).

which are internally further subdivided and repre-
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sented as a knowledge base graph with efficient main
memory-oriented database access. To work on these
objects, three operations are provided:

e create_proposition(_p)—create the proposition _p
in the knowledge base,

o retrieve._proposition(_p)—search for a proposition
matching _p,

o store.proposition(_p)—create _p if not already
existent and

e delete_proposition(_p)—delete the proposition

-p.

The client of the proposition processor, the Object
Processor, configures sets of propositions according
to certain criteria, usually around a common source
to build a frame. A frame object is internally repre-
sented as a CML-fragment which resembles the parse
tree of the frame-level syntax; the exact translations
between frames and fragments, and between frag-
ments and propositions is described in [45]. The tell
and ask operations of the frame-level interface are
translated to corresponding updates and queries at

Global
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Fig. 17. ConceptBase architecture and implementation status.
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the fragment level. The feasibility of an object-level
update transaction is verified by the Consistency
Checker which utilizes information of the proposition
processor. A special feature of ConceptBase, pio-
neered by the KRYPTON system [46], is that the
consistency checker has to integrate several kinds of
integrity checking: enforcing the above-mentioned
CML axioms, taking into account temporal con-
sistency, and supporting one or more predicative
assertion languages (subclasses of attribute class
“constraint”). Recently proposed simplification
algorithms for deductive databases (e.g. [54, 39]) only
support the assertional part of this problem; since a
whole set of operations may be passed to the prop-
osition processor together, set-oriented optimization
of the consistency check is being studied,

The Inference Engines may support various proof
strategies for querying object properties via first-
order logic expressions over CML objects. Since the
same assertion language is used in rules (see rule
propositions above), the inference engines are also
capable of evaluating deduction rules. Several time
calculi, e.g. Allen’s interval calculus {40] may be
supported as well,

In the first prototype, the Query Processor is mostly
geared towards a focusing/browsing style of search;
the second prototype also contains full rule-based
querying facilities. The interface is implemented by
the operation, ask_objproc(~q,-a), where —q stands
for the query and _a for the answer. Possible values
for _q are:

exists (_x)
The answer is “yes” if there is an object
with identifier _x in the proposition processor.

get_object(_x)
Information connected to _x is collected
and returned as a frame data structure (called
CML-fragment).

get_links(...), get_ids(...)
A list of connected links (nodes) with
common properties is computed and returned.

[each, _pattern, where, _11. ..., .In]
The answer contains all terms matching
—pattern which satisfy the conjunction of the
literals _11,..., In,

The second operation of the object processor,
tell_objproc(_i,_r), passes new information to it. The
parameter _i contains the information as a list of
CML-fragments. If there are no syntactic or semantic
errors, the object transformer translates the infor-
mation into a set of equivalent propositions which is
stored in the proposition processor and returned in
parameter _.r, Otherwise, .t holds the value “error”.

3.2. The ConceptBase usage environment

The ConceptBase usage environment is intended to
make the hypertext-like style of CML practically

available to the user. As a consequence, browsing,
viewing and editing of knowledge bases should be
possible symmetrically on the network as well as on
the textual frame representation. In a typical knowl-
edge engineering process for information systems
development, an initial sketch of the knowledge base
is obtained with graphical tools, then the details are
worked out using textual tools.

Formally, the interface tools are tools as described
in Section 4.4, relating the content of the knowledge
base to a (screen) view of it, according to a view
definition that characterizes both the content and the
layout of the view. By restricting the possible view
definitions, most views can be made updatable; more-
over, to gain different perspectives on the software
process knowledge base, different symbols can be
associated with objects of particular classes, thus
mimicking well-known representational views such as
data flow diagrams, entity—relationship diagrams, etc.
In the following, we give a brief overview of the tools
that are available for the current prototype [45].

The Conceptual Model Processor uses the object
processor to combine tools for the manipulation of
models which consist of all objects relevant to
an application of ConceptBase, e.g. the GKBMS.
Models constitute highly complex multi-level object
structures which are maintained in hierarchies.
Different models may share some objects or (sub-)-
models. Configuring a model for a specific appli-
cation means the activation of the corresponding
nodes in the lattice, i.e. making their objects access-
ible for the proposition processor. This work is done
by the Model Configuration module which corre-
sponds to a complex object database; to date, only a
simple main memory version of this component has
been implemented.

The Display and Interaction module integrates
man-machine communication into ConceptBase ob-
jects and models; individual frame objects can be
displayed and modified interactively, and models can
be displayed, browsed and possibly reorganized in
textual and graphical style.

For the sake of modularity, the display and inter-
action module is implemented in two layers. The
bottom layer provides a set of interface tools which
process uninterpreted strings (e.g. object identifiers)
and structures; these interface tools do not know
anything about the semantics of displayed objects
and structures. The usage environment relates these
interface tools to the object processor by requesting
object identifiers to be used in the interface tools. The
current ConceptBase prototype offers the following
interface development tools:

o declaration of menus and associated tools;
textual and graphical editing of CML objects with
syntactic and semantic checking;

o relational display with selection facilities;

e textual and graphical browsing of tree-like struc-
tures (also with selection);
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e interaction to obtain text commands from a user;
e crror window to record and display error messages
of ConceptBase.

These tools are embedded in a usage environment
accessible through the ConceptBaseToolBar, which
itself is realized by the menu declaration tool. Three
main kinds of interaction with the knowledge base
are currently offered:

e textual browsing of user-defined sub-networks
(TextBrowser),

e graphical browsing of user-defined sub-networks
(GraphBrowser),

e syntactically and semantically controlled object
display and update (Editor).

Additionally, a system menu offers internal system
operations (bulk-loading CML objects stored on
external files, executing Prolog calls and stopping
the system) and a configuration menu supports
composition of conceptual models from submodels
(invoking the Model Configuration moduie).

The TextBrowser queries the user for a specifi-

assageiinaod :  mapinvitations

Graphsize +s maximal |
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cation of the structure to be browsed by calling 1
interaction tool. Basically, such a specification <<€
sists of two parts, The first one specifies the focus, i
the root of the hierarchical structure. The other ©
specifies how to compute the lower levels. The lat
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tation of CML in the PropositionProcessor, 1
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3 viclatas InstanceOf constraint 1
kacsuss 1t {2 not a proper

instance of propomition 7140362+
EntHisrMapMaveDoun, nonfirstrelations,
DBPL_Re1_DO,Alweys),

Fig. 18. Interaction of ConceptBase kernel and usage environment (mapping example).
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Fig. 19. Interaction of ConceptBase kernel and usage environment (hierarchical browsing).

mars [56]. Thus, the editor can be easily adapted
to a modified syntax or ObjectProcessor interface.
Semantic integrity is checked by the ObjectProcessor
during the tell operation. Each detected error is
reported to an error window.

The screendump in Fig. 18 illustrates the inter-
action between (graphical) browser, editor and
ObjectProcessor, using a small subproblem from the
mapping example in Section 2.2, First, the user
invoked the GraphBrowser to display all instances
of DesignDecision and all instances of these
instances (the object maplnvitations is an instance
of EntHierMapMoveDown which is an instance of
DesignDecision, cf. Fig. 10). The user query was
transformed into an appropriate call of ask_objproc
returning a list of edges ready for layout by the graph
browser,

In the next step, the user mouse-selected the map-
Invitations node, and chose the editor tool from the
displayed menu to zoom into and document the
execution of this design decision (cf. also Fig. 3 and
Section 2.3). The editor obtained the object frame
{as known before the execution of the decision)

by asking the ObjectProcessor for the existence of
maplnvitations and, since it existed, for the cotre-
sponding CML fragment (shown at the top of the
session protocol in the “shelltool” window). Then,
the user added the output attribute for maplnvitations
and pressed the “tell” button. After successful
parsing (shown in the upper part of the editor
window), the corresponding CML-fragment was
passed to the Object Processor which stored it tem-
porarily and checked the structural integrity of the
new information. In this example, an error was
detected and reported in the error window: attribute
“rel1” does not match its category “nonfirstrela-
tions” since the design object InviteSelector is not an
instance of DBPL_Rel.DO (it represents a DBPL
selector rather than a DBPL relation).

Subsequently, the screen dump in Fig. 19 demon-
strates the use of the hierarchical TextBrowser for
obtaining an overview of the work done so far. It
shows the situation after the first sub-decision of
our example; the pop-up menu option “applicable
decisions” is just being activated, ostensibly leading
to the second sub-decision (normalization).
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6. APPLICATIONS

The software process data model exploits the
combination of the design decision idea and object-
oriented construction principles to offer sufficient
extensibility so that not only new tools but also new
theories can be continuously added to the environ-
ment and can be made reusable with little effort. Most
importantly, of course, this should apply to the
knowledge-based development support theories and
tools developed in other subprojects of DAIDA. At
least for the two mapping tasks from SML to
TaxisDL, and from TaxisDL to DBPL, as well as for
the requirements analysis task within SML, exper-
iments have already started to classify and formalize
these sub-environments so that they can utilize the
GKBMS fully. Additionally, we are using the model
extensively in the design and implementation of the
ConceptBase system itself.

6.1. Requirements modelling and design mapping

CML and TaxisDL are formally rather similar
languages, however, with different tasks in the
DAIDA methodology. The CML level is concerned
with collecting and organizing the requirements for
the system to be developed. In doing so, it also has
an important function in steering the subsequent
design process, especially by considering design goals
which can later be used for helping users choose
among applicable decision classes [13]. So far,
DAIDA has mostly considered functional goals as the
driving force for the decision classes (this is also what
the first ConceptBase prototype supports) while other
goals (performance, modularity,...) were at best
treated as constraints or only as comments. Recently,
experiments with integrating goal-oriented multiple
criteria decision support into the model have begun
[57].

Within the requirements level, decisions have to be
made what views of the world model to represent in
the system model. Assuming this has been done, the
CML-TaxisDL mapping [22] then decides how to
represent the system mode! specification in TaxisDL
terms, especially considering how much to represent
the system model specification in TaxisDL terms,
especially considering how much of the historical
information present in the CML model should be
retained for the TaxisDL model. Furthermore, class
hierarchies can be reorganized with a view on efficient
implementation, e.g. defining a new subclass for
current information and storing the rest in another
subclass that the TaxisDL-DBPL mapping could
then relegate to a slow storage medium.

A first attempt at classifying the kinds of decision
classes to be made at these levels has given rise to the
hope that an orthogonal combination of the follow-
ing two kinds of decision classes could represent a
structured and fairly complete coverage:

o Ontology—Design objects at both levels come
as informations about either entities, activities,
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constraints or goals. Thus, we need classe
(a) developing requirements for these; (b) de
which of them to represent in the systerx
(c) to what degree and with what methoc
pecially concerning time) to map them be
CML and TaxisDL. The choice between the
ible decisions should be governed by the .
goals specified in the requirements analysis
o Epistemology—CML and TaxisDL p;
(slightly different versions of) abstraction
ciples like aggregation, generalization and ¢l
cations, together with their reverse operatic
decomposition, specialization and instart;
Each of these six abstraction (resp. specific.
operators corresponds to a decision class
specifies a relationship between smaller and
objects or subtasks, For example, aggregatic
be used to relate the mapping of a whole cl.
the mapping of its attributes; similarly, ma
of IsA relates the mapping of a complete hier
of objects (as in our TaxisDL-DBPL examp
that of its individual members. Goal deco
sition as a strategy for elaborating requirer
within the CML level is another example
aggregation class, whereas (as in our sof
process model definition) classification ca
provided to define suitable application-sg
sublanguages for a mapping task. Note
classification differs between CML and Taxi
a CML metaclass heirarchy has to be flatten
the mapping to TaxisDL, using metalevel am
mation similar to the one proposed in [58].

Ideally, there should only be a small set of
mapping decisions for each of the above types, r:
than separate rules for all conceivable combina
or even sequences of combinations. Using orthog
aggregation of such decision classes, more con
methodologies for the mapping can be formed.
would clarify the structure of dependencies a
description level as well as facilitating communic:
between the individual tools and the GKBMS.

6.2. TaxisDL-DBPL mapping

In the examples of this paper, the mapping
from the object-oriented knowledge represent:
language TaxisDL to the set-based, module-orie
database programming language DBPL has
highly oversimplified. Indeed, we only consic
some of the data structure aspects; the mappin
transactions turns out to be much more difficult
requires full support by formal software develop1
methods. The method used in DAIDA exploit:
perience with mathematical specification technic
using the language Z and its derivatives [21]. In
approach, design objects correspond to so-ci
abstract machines that represent data struct:
operations and constraints of a particular applice
module; decisions correspond to formal tran:
mations supported by theorem-proving assist
tools.
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Based on these experiences, the TaxisDL-DBPL
mapping s intended to proceed in three steps with
corresponding decision classes [24)

e (ransfution of TaxisDL model to abstract muchine
a la Abrial,

o refinement of abstract maching towards eflicient,
maodular implementation,

o translation of final machines to DBPL program,

Disregarding the initial and tinal steps (which are
automated translations), the intermediate design of-
Jjeets are abstract machines whose deseriptions have
roughly the Tollowing structure:

INDIVIDUALCLASS AbstractMachine
IN DexipgnObject WITH
attribute
vontext: DutaObjects
viriable: Name
invariant: FunctionadConstraintClass
aperations: FunctionText
END

The decivion elasses of this mapping correspond
to generahized substitutions in abstruct machines;
in contrast to the CML TuxisDI. mapping, such
substitutions consider entity, activity and ¢onstraint
mapping simultancously. Amonyg the abstraction
operations mentionsd above, aggregation of such
objects plays the central role. There is no generaliz-
ation (although the notion of substitutions is closely
rehited 1o that of inheritunce) while metaclass-like
notiation extensions are simulated by import from
other abstract machines. An important aspeet of
decision semantivs in the sense of owr model is the
docamentation and management of proof obligations
and already proven lemmata

6.3, Concept Base development

The softwire process data model has also played
a major role o designing and implementing the
ConceptBase system itself. The main emphasis has
heen on dealing with very large software knowledge
hases, and on providing multiple views with user-
friendly interaction Gaeilities in a uniform framework.
In (4], three specific application areas ore deseribed
in detuil.

Efficient deductive query processing and integrity
checking - CM1. rules und constrainty are modelied
internally as  particulur  (deterministict)  decision
clusses for which tools triggered query processors
and constraint checkers -are automatically gener-
ated by tools associated with the predefined meta-
classes RuloClasy and ConstrainiClass, Luckily, the

tThere is an interesting relutionship between the design
decision concept in general with non-deterministic data-
base update operations as discussed in {59). This rela.
tionship could serve as the foundution of @ theory of the
power of particular design decision ¢lass languages but
we have hardly begun to study this idea,

decision class structure turns out to provide exactly
the kind of graphs needed for the plethora of algor-
ithms proposed for deductive yuery optimization [60]
and integrity control [54, 39]. Specialized graph
structures can be defined by specialized attribute
categories for the input-output attributes. Thus, the
structure is independent of a particular style of rule
or optimization algorithm; specific optimization ideas
can be defined at the metalevel as in rule-based
optimizer generators, thus serving as a testbed for
various optimization procedures. An extension of the
algorithm in [54] is currently being integrated into the
second ConceptBase prototype [61]. Note that, using
redundant design object and design decision classes
together with the dependency structures defined in
their deseriptions, we can also integrate the redun-
dant storage and maintenance of derived data to
increase efficiency.

Version and confiyuration management — Configur-
ations are viewed as composile objects put together
acecording to canfiguration decisions. The use of the
decision-based version and conliguration model has
substantially simplified the portation of the initial
SUN-UNIX prototype to the VAX-VMS version,
Commercial configuration tools such as MAKE in
UNIX or MMS in VMS support such decisions al the
source level and administer the ConceptBase system
components {currently about 80 system modules, plus
many example applications). In combination with a
conceptual configuration decision model under devel-
opment in our group, version and configuration
munagement  will become  possible  even  across
heterogencous  hardware  and  system  soltware
environments [63].

Knowledge base perspectives and user interfaces-—
The above models can be applied o the handling of
multi-window interactions with the system in a hyper-
text-like style. A window is viewed us a particular
configuration of derived objects which corresponds to
a configuration of internal knowledge base objects,
thus giving a clean semantics 10 window-based up-
dates. For this purpose, the configuration model hud
Lo be extended by equivalent representation mapping
decisions.

Summarizing, the software process data model
provides us with a way to deseribe o large number of
important implementation issues not just with ob-
scure internal languages but with the surfuce knowl-
edge representation language of the system itsell, thus
facilitating experimentation with, and extensibility of,
the system.

7. CONCLUSIONS

In this paper, we proposed o data model which
represents software development as a process of
tool-supported design decisions operating on abstract
design ohjects. This model is different from other
attempts in that it explicitly considers the functional-
ity of tools, but at the same time emphasizes the
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non-deterministic nature of human design decisions.
Moreaver, the way how tools are attached to design
decisions seems to point a way out of the integrity
control problems associated with freely usable
methods in some object-oriented languages and
databases.

Although the experience with various experimental
applications is quite encouraging, several extensions
appear useful or even necessary.

Firstly, we would like to broaden the scope of
development paradigms beyond the initial DAIDA
approach, One alternative method, followed in the
new ESPRIT project ITHACA, is to strengthen the
emphasis on reusability beyond the context of tool
meodelling; based on a requirements model, existing
building blocks are selected from a software library
and configured to application systems, rather than
developing new programs each time. Another alter-
native, currently being studied for environmental
protection applications in collaboration with the
FAW Institute in Ulm, West Germany, is the loose
coupling of independently developed software sys-
tems under the common conceptual umbrella of a
“competence model”. Here, the idea is to make
organizational knowledge available to users even
if no coherent requirements analysis has been
conducted.

The second group of extensions concerns more
explicit support for the decision-making process. In
particular, we wish to take seriously the Is4 link
between the metaclasses DesignDecision and Design-
Object in our model, i.e. design decisions are objects
that can evolve, be talked about, justified by other
decisions, etc. On the one hand, this requires a better
understanding of decision support methodologies for
goal-driven design. On the other, we have to set up
a design conversation network among the stake-
holders and workers in a software project. This
involves the conceptual representation of agents,
structural messages, negotiation positions, commit-
ments and the like, but also the introduction of group
support tools such as multi-media real-time confer-
encing support. Corresponding extensions of our
model and of the ConceptBase prototype are
implemented in the second prototype [64).

A final set of research questions is concerned with
broadening the scope of application areas to design
and maintenance tasks beyond the information
systems domain, Co-authoring of technical natural
language documents (e.g. user documentation for
software) is a typical candidate we are currently
beginning to investigate [65].
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