
pos
tpr

int

This is a postprint. Original paper published in Proceedings 42nd Int. Conf. on Conceptual
Modeling (ER 2023), Lisbon, Portugal, 6-9 November 2023, Springer-Verlag, pp. 162-180, DOI
https://doi.org/10.1007/978-3-031-47262-6 9.

Sanity-Checking Multiple Levels of Classification

A Formal Approach with a ConceptBase Implementation

Thomas Kühne1 and Manfred A. Jeusfeld2

1 Victoria University of Wellington, Wellington, New Zealand
thomas.kuehne@vuw.ac.nz

2 University of Skövde, IIT, Skövde, Sweden
manfred.jeusfeld@acm.org

Abstract. Multiple levels of classification naturally occur in many do-
mains. Several multi-level modeling approaches account for this and a
subset of them attempt to provide their users with sanity-checking mech-
anisms in order to guard them against conceptually ill-formed models.
Historically, the respective multi-level well-formedness schemes have ei-
ther been overly restrictive or too lax. Orthogonal Ontological Classifi-
cation has been proposed as a foundation that combines the selectivity
of strict schemes with the flexibility afforded by laxer schemes. In this
paper, we present a formalization of Orthogonal Ontological Classifica-
tion, which we empirically validated to demonstrate some of its hitherto
only postulated claims using an implementation in ConceptBase. We
discuss both the formalization and the implementation, and report on
the limitations we encountered.

Keywords: multi-level modeling · well-formedness · integrity con-
straints

1 Introduction

Modeling languages intended to support conceptual modeling differ to the ex-
tent by which they support modeling domains with multiple classification levels;
specifically how explicitly they represent such domain classification within mod-
els. A long history of modeling mechanisms that attempt to support the modeling
of multiple classification domain levels includes materialization [29] and power-
types [27], both implying concepts that go beyond individuals and their types.
Telos [25] pioneered support for an unbounded number of classification levels
and DeepTelos [18] added support for deep characterization [6].

Unfortunately, having to manage more than two classification levels increases
the potential of creating ill-formed models, i.e., models that cannot be given a
sound interpretation. It has been argued that the complexity of contemporary
conceptual modeling is akin to the complexity of programming large computer
systems and therefore analog complexity management strategies are needed [14].
A well-known discipline within the area of multi-level modeling [8] for enforcing
sound models is “strict metamodeling” [3], which is widely accepted to be highly
selective, but has been equally widely criticized for being too inflexible [13,24,12].

https://doi.org/10.1007/978-3-031-47262-6_9
https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

2 Thomas Kühne and Manfred A. Jeusfeld

Multi-dimensional multi-level modeling (MDM), based on the notion of “Or-
thogonal Ontological Classification” [21], has been proposed as a multi-level
modeling paradigm that claims to enjoy the same selectivity as “strict meta-
modeling” but without incurring the latter’s downside of requiring modelers to
employ workarounds for several commonly occurring modeling scenarios. How-
ever, to this date, MDM has only been described informally, making it difficult
to verify or validate its claims.

Since ConceptBase had been successfully used to formalize the multi-level
modeling approaches DDI [26], DeepTelos [18], and MLT∗ [16], we set out to

– develop a formalization of MDM,
– investigate whether ConceptBase’ specification language is sufficiently ex-

pressive to support this formalization,
– examine ConceptBase’s efficiency when supporting MDM, and
– empirically validate some of the MDM claims.

In this paper, we first further motivate the need for well-formedness check-
ing of models featuring multiple levels of domain classification and then briefly
compare two existing approaches to MDM [21] in Section 2. We subsequently
present an MDM formalization using many-sorted first-order logic in Section 3
and follow with a description of an implementation of the formalization using
ConceptBase in Section 4. We finally, before concluding, discuss the formaliza-
tion, its implementation, and lessons learned in Section 5.

2 Sanity Checking

Enforcing well-formedness requirements on models or programs is a well-estab-
lished technique to ensure that the latter have a sound semantics. In partic-
ular, well-formedness requirements have been effectively used as preconditions
to the analysis, interpretation, execution, etc., of models, protecting semantics
implementations to trip over problematic structures such as circular or dangling
references, to name just two of many sources for ill-formed scenarios.

Beyond serving this purpose, however, well-formedness constraints may also
be used to alert users to structures that would not necessarily create problems
for semantics implementations, but instead contain conceptual issues such as
performing a category mistake. Multi-level models, in particular, provide a richer
source for conceptual issues in user models, compared to traditional two-level
counterparts. In general, such conceptual issues are harder to find than violations
of straightforward structural requirements since they involve the semantics of
concepts.

Providing respective solutions is becoming increasingly important due to the
dependence of societies on reliable data and the significant amount of higher-
order concepts naturally arising not only in specialized domains such as biology,
or process metamodeling, but also in such commonplace domains as covered by
UNICLASS classifications [28] and Wikidata [9,10]. Brasileiro et al. report that
in 2016 Wikidata contained 6,963,059 elements involved in instantiation chains
of lengths three [9].

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

2. SANITY CHECKING 3

2.1 Detecting Ill-Conceived Conceptualizations

Profession

Scientist

Tim

Berners-Lee

Fig. 1. Semantically
Flawed Model

Consider Figure 1 which shows a condensed version of a
modeling scenario that was part of Wikidata in 2016 [9,
Figs. 3 & 4]. The rightmost “instance-of” relationship can
be derived from two Wikidata claims: First, that Tim
Berners-Lee is a scientist and, second, that “Scientist” is
a subtype of “Profession”. From these claims one can con-
clude that Tim Berners-Lee is a profession, which obviously
does not make sense. Dadalto et al. observed that Wiki-
data no longer supports this particular incorrect inference,
but that this is not a result of applying a general solution
to eradicate all such issues. Equivalently ill-formed model
fragments, e.g., a certain “Frank Hilker” being inferable
as a “Position” are still pervasive in Wikidata, affecting
many areas including biology, gastronomy, awards, profes-
sions, and sports [10]. Regarding the three “Anti-Patterns”
Brasileiro et al. identified as characterizing ill-formed model
fragments, they found that 15,177 Wikidata elements were
involved in “Anti-Pattern 1”, and 7,082 were involved in “Anti-Pattern 3” [9].

In general, such nonsensical inferences cannot be mechanically detected with-
out attaching semantics to the concepts involved and, based on those semantics,
computing that a claim is made involving incompatible concepts.

Fortunately, however, nonsensical models like that in Figure 1 can still be
mechanically detected without having to attach rich semantics to the concepts
involved. For instance, by associating “order”-values to the concepts, e.g., by
categorizing Tim Berners-Lee as an order-0 concept and Profession as an order-2
concept, it becomes apparent that the former cannot be a direct instance of
the latter. Likewise, a specialization relationship between an order-1 concept
Scientist and an order-2 concept Profession is equally unsound with respect to a
set-theoretic interpretation of the model fragment.

Having to manually assign order values to each model element would be oner-
ous, however even in the absence of such information, the scenario in Figure 1 can
still be detected to make unsound claims based on its inconsistent relationships.
The “instance-of” relationship between Scientist and Profession is necessarily in-
compatible with the simultaneous claim that the former is a subtype of the latter,
regardless of the absolute order values associated to these concepts. There is an
inherent contradiction in instantiation requiring the two orders to differ by one
and specialization requiring that the two orders are identical.

The above explains the call for “Ontological Anti-Patterns” that can be used
to detect such ill-formed scenarios [14,9]. In contrast, the approach underlying
this paper was not arrived at by mining data for problematic patterns; rather the
well-formedness constraints we are considering originated from the motivation
to ensure that models have a sound set-theoretic interpretation.



pos
tpr

int

4 Thomas Kühne and Manfred A. Jeusfeld

2.2 Previous Attempts

Corgi1, 0

Susan0, 0

F
a
v
o

rite
 T

h
in

g
1

(a) Linear Hierarchy

(b) Multi-Dimension Hierarchy

Favorite Thing?

Corgi1

Susan0

Fig. 2. Traditional vs
Orthogonal Classification

The original attempt to exclude ill-formed user models
in the context of modeling with multiple levels of ab-
straction was “strict metamodeling” [3,4]. Based on a
single principle, it rules out a huge class of conceptual
errors, including those characterized by anti-patterns
AP1–AP3 in [9]. The downside of its very conserva-
tive nature is that it also forbids users from adequately
modeling a number of naturally occurring domain sce-
narios. These force users to employ workarounds that
lead to “unnatural” solutions [23, section 8.1] or a
duplication of elements [22], which not only add com-
plexity of their own but also necessitate the introduc-
tion of additional constraints.

Many approaches aim to avoid the aforementioned
downsides by using various concepts. The one most
founded on ontological correctness is Almeida et al.’s
MLT∗ which supports the adequate modeling of more
demanding domain scenarios through the use of or-
derless types [2,11]. While a disciplined use of the ap-
proach retains sanity-checking abilities for a large pro-
portion of a user model, the remaining part, involv-
ing orderless types, cannot be fully checked anymore.
Some users may hence unintentionally exploit order-
less types to create unsound models, thus undermining the rigor that MLT∗

otherwise supports.

2.3 Orthogonal Ontological Classification

“Multi-Dimensional Modeling” (MDM) based on the notion of “Orthogonal On-
tological Classification” claims to fully retain the sanity-checking capabilities of
“strict metamodeling” without incurring its downsides, while avoiding to create
loopholes that can be exploited [21]. It claims to retain the same rigor for local
hierarchies, referred to as “classification clusters”, and argues that inter-cluster
relationships cannot give rise to conceptually ill-formed models. It addresses chal-
lenging scenarios in which elements are ostensibly classified by multiple classifiers
of different order (cf. Figure 2(a)), by maintaining that such overlapping clas-
sifications are best understood as occurring from different separate dimensions
(cf. Figure 2(b)), using a “separation of concerns” approach.

Although MDM is inherently focused on precise well-formedness criteria for
models and its description elaborates on a number of constraints to be enforced,
the respective descriptions are informal and to date no complete publicly avail-
able implementation of the ideas has been available. We therefore set out to
investigate the suitability of ConceptBase for realizing an MDM implementa-
tion, both in terms of the expressiveness of its specification language and the
efficiency of its optimized deductive database engine.

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

3. FORMALIZATION 5

3 Formalization

Our formalization of MDM in ConceptBase is based on Telos (see Section 4),
but for better accessibility we present a technology-independent formalization in
this section. It not only covers a deliberately restrictive version of MDM, as out-
lined in [21, section 4.3], but also includes characterization potency [20]. We do
not include well-formedness rules concerning element features (e.g., attributes),
since our focus is on validating MDM’s main principles, which is possible while
making very little reference to element features. In the following, due to space re-
strictions, we only present our formalization of the aforementioned MDM version
without elaborating on the rationales behind the original constraints. However,
wherever we deviated from the original, informally described, constraints, we
state our motivation and reasoning.

The model structures we are concerned with are graphs over elements. The
latter are sometimes referred to as “clabjects” [3], because they can play the role
of a class or an object, or both at the same time. These elements are connected
with relationships, of which we only cover classification and generalization here,
as other relationships are not restricted by MDM. Since elements have potencies
that belong to dimensions (cf. Figure 2) and relationships belong to dimensions
as well, we use the many-sorted signature of equation 1.

Σ = (E,D,A, ρ) (1)

E = {ei | ei ∈ Elements} (2)

D = {di | di ∈ Dimensions} (3)

A = {ai | ai ∈ Attributes} (4)

ρ = {:d,≺d, :≺d, .} (5)

We denote an element e with a potency
p in dimension d as epd . If e2 classifies e1 in
dimension d, we use e1 :d e2. If e2 general-
izes e1 in dimension d, we use e1 ≺d e2. The
combination e1 :≺d e2 is used as a shortcut
for representing that e2 is either a classifier
or a generalization of e1. We use a “+” su-
perscript to denote sequences of relationships of at least length one. For instance,
es :

+ ee represents the scenarios es : ee, es : e1 : ee, es : e1 : e2 : ee, etc.
In the following, we use labels for our well-formedness constraints that corre-

spond to the labels C1-C4 suggested in [21, section 4.3]. Since the latter do not
cover characterization potency, we use a C0 prefix for our respective constraints.

The first characterization potency constraint C0a covers two aspects: First,
upon instantiation potency must decrease, and second, only non-zero potency
elements can be instantiated.

C0a : Instances must have a potency that is strictly lower than that of their
classifiers and classifiers must have potencies greater than zero.

∀ e1,2, p2, d : e1 :d e
p2d
2 → ∃ p1d : e

p1d
1 ∧ 0 ≤ p1d < p2d (C0a)

Note the omission of any potency information on e1 in the premiss. Underspec-
ification with respect to element potency is allowed, however, we deemed it to
be appropriate to enforce the specification of a potency value in case an element
has a classifier with an explicit potency. We thus require all instance-classifier
pairs where the classifier specifies a potency to obey the rules of characterization
potency, not just those where both participants have explicit potencies.



pos
tpr

int

6 Thomas Kühne and Manfred A. Jeusfeld

The second characterization potency constraint C0b requires that subtypes
must not have a potency that is lower than the supertype potency.

C0b : Subtypes must have an equal or higher potency than their supertypes.

∀ e1,2, p1,2, d : e
p1d
1 ≺ e

p2d
2 → p1d ≥ p2d (C0b)

Constraint C1, named disjoint feature sets and informally described in [21],
is designed to avoid having to disambiguate access to element features in case
multiple classifiers of an element define a feature with the same name. In the
constraint definition below, the pattern (e1.a) : e2 represents, w.r.t. e1, the
existence of a feature a with the type e2.

C1 : Elements that classify or generalize the same element, must not define
features with the same name.

∀ e0,1,2,3,4, a1,2 :

(e0 : e1 ∨ e0 ≺+ e1) ∧ (e0 : e2 ∨ e0 ≺+ e2) ∧
(e1.a1) : e3 ∧ (e2.a2) : e4 ∧ a1 = a2 → e1 = e2

(C1)

Even though we exclude multiple classification and multiple generalization
within one dimension (via constraints C3a & C3b), we still need the above con-
straint to account for potential name clashes produced by multiple classifica-
tion/generalizations from different dimensions.

Constraint C2, named bottom-level overlapping in [21], ensures that there is a
unique dimension in which an element that is classified from multiple dimensions
can be instantiated into. We cover this aspect with our constraint C2a.

C2a : Elements with potencies in more than one dimension must not have more
than one non-zero potency value.

∀ e0, p1,2, d1,2 : e
p1d1
0 ∧ e

p2d2
0 ∧ d1 ̸= d2 ∧ p1d1

> 0 → p2d2
= 0 (C2a)

Note that potency values of zero prevent instantiation (cf. constraint C0a), and
that we do not specify a classifier for e0 since we want to allow for e0 to be a
top-level element with a manually assigned potency. We thus deviate from the
“bottom-level overlapping” focus of the original C2 constraint since we deemed
that the constraint was in essence about preventing the potential of instantiation
into more than one dimension, as opposed to only achieving this for elements
that have explicit classifiers.

Since it is possible to omit potency specifications for the purposes of
under-specification, an element could potentially be instantiated into multiple
dimensions without constraint C2a preventing such a scenario, since it (in
combination with constraint C0a) only covers cases featuring explicitly specified
potencies. Constraint C2b below addresses this by ensuring that instantiation
may only occur into one dimension only even in the absence of any potency
information.

C2b : All instantiations from a classifier must be into the same dimension.

∀ e1,2,3, d1,2 : e1 :d1 e3 ∧ e2 :d2 e3 → d1 = d2 (C2b)

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

3. FORMALIZATION 7

Constraint C2c below is not part of the original MDM well-formedness
suggestions, however, we felt that an analog to constraint C2a was needed that
addressed the reception of type facets through specialization, thus complement-
ing the classification focus of the original C2. Since constraint C2a restricts
elements to instantiation into one dimension only, it seemed inappropriate to
allow elements to receive type facets from other dimensions via specialization.

C2c : Elements participating in multiple dimensions must not entertain gener-
alization relationships in their potency-zero dimensions.

∀ e1,2, d1,2 :

e1 ≺d1
e2 ∧ member(e1, d2) ∧

d1 ̸= d2 → ∃ pd1 : e
pd1
1 ∧ pd1 > 0

(C2c)

where member(e, d) =

∃ e1 : (e :d e1 ∨ e1 :d e ∨ e ≺d e1 ∨ e1 ≺d e )

Note that the “member”-predicate does not require an element to have an ex-
plicit potency in a dimension. Dimension membership is solely acquired via re-
spective relationships. This supports the underspecification of potency values,
while simultaneously allowing checking for inappropriate type facet acquisition
from dimensions that an element cannot be instantiated into anyhow.

The C3 constraint, named connected classification clusters in [21] requires all
elements within a dimension to form a single tree-shaped “classification cluster”.
It prohibits disjoint clusters, containing instanceOf relationships, that declare the
same dimension. Since the single cluster needs to be tree-shaped, we rule out
multiple classification within a dimension with constraint C3a.

C3a : Elements must not have more than one classifier within a dimension.

∀ e0,1,2, d : e0 :d e1 ∧ e0 :d e2 → e1 = e2 (C3a)

Note that ruling out multiple classification within a dimension does not represent
nearly as much of a limitation as it would in an approach that did not support
multiple classification from multiple dimensions.

Although the original C3 formulation does not imply it, we also rule out mul-
tiple generalization (aka, multiple inheritance). It acknowledges that our implied
language design currently does not support any merging mechanisms and/or se-
mantics that a useful approach to multiple generalization should feature.

C3b : Elements must not have more than one supertype within a dimension.

∀ e0,1,2, d : e0 ≺d e1 ∧ e0 ≺d e2 → e1 = e2 (C3b)

We take a liberal approach to allowing multiple generalizations of different di-
mensions since they may be regarded as non-overlapping, i.e., do not require
merging mechanisms.

The main “tree-shaped” aspect of the original C3 constraint is taken care of
by our constraint C3c below.

C3c : Within a dimension, there must be only one classification cluster root.



pos
tpr

int

8 Thomas Kühne and Manfred A. Jeusfeld

∀ d : (∃ e3 : (∀ e1,2 : e1 :d e2 → e1 :+d e3)) (C3c)

It ensures that each dimension only has a single classification cluster, by ruling
out classification forests that feature multiple roots.

The final original constraint C4, named sound meta-hierarchies, concerns
general well-formedness requirements that would apply outside a multi-dimen-
sional approach as well and correspond to, in spirit but not as restrictively, the
regiment established by “strict metamodeling”.

The graphs implied by models must be free of cycles with respect to
classification and generalization relationships.

C4a : The graph of instanceOf and specializationOf relations must be acyclic.

∀ e : ¬(e :≺+ e) (C4a)

Note that through the use of :≺+ we require every path with mixed classification
and generalization relationships edges to be acyclic, as opposed to imposing the
constraint only on pure classification and pure generalization paths respectively.
Unlike the original C4 constraint suggests, we do not restrict the context of the
constraint to a single dimension only. In combination, these two choices lead to
the rejection of a wider range of models with circular definitions, which we deem
to be obviously ill-formed.

We do not need a constraint that establishes the level-respecting-property for
classification hierarchies since a prerequisite for establishing respective ill-formed
scenarios, is the ability of an element to be an instance of multiple classes in
the same dimension and we rule out multiple classification scenarios via con-
straint C3a.

An important component of the original C4 constraint is that generalization
relationships must not occur between elements of different order (i.e., of different
set-theoretic classification power). We do not explicitly formalize element order
but can infer when element orders must necessarily be different. If two elements
are in the same classification branch, i.e., related to each other by one or more
classification relationships, they must necessarily have different order values. Any
such pair must not participate in the same generalization hierarchy, regardless
of their relative positions in that hierarchy.

C4b : Elements in a classification path must not share a generalization hierarchy.

∀ e1,2, d : e1 :+d e2 → ¬specConnected(e1, e2, d) (C4b)

where specConnected(e1, e2, d) =

(e1 ≺d e2 ∨ e2 ≺d e1) ∨
(∃ e3 : (e1 ≺d e3 ∨ e3 ≺d e1) ∧ specConnected(e3, e2, d))

Constraint C4b could be generalized to cover all sources of order differences
between elements but here we simply document what we were able to implement
using ConceptBase.

Before sharing our findings on the above eleven constraints in Section 5, we
first present our respective ConceptBase implementation.

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

4. IMPLEMENTATION 9

4 Implementation

4.1 ConceptBase

ConceptBase [15] is a deductive database system for managing models and
metamodels. Its data model is based on the Telos language [19] and its predi-
cative specification language is based on Datalog with negation [1]. The latter
uses a closed world assumption and guarantees terminating evaluations of –

rules: predicates that can infer information, similar to Prolog predicates,
constraints: model integrity conditions which must always be satisfied, and
queries: supporting the identification of instances of custom query classes.

Around 30 rules and constraints in ConceptBase define the Telos semantics
for instantiation, specialization, attribution, and relationships. Telos is similar
to the OMG’s MOF, in that Telos can both be used to (in an extended variant
or as is) directly represent user models, or to support the definition of modeling
languages, which in turn are used to represent user models [7].

4.2 Realizing Multi-Dimensional Modeling with Telos

A fundamental design decision we had to make was to either build on Telos’s
definitions for instantiation and specialization, or to define a new language def-
inition with custom instantiation and specialization relationships. We opted for
the first alternative for the following reasons:

– MDM’s classification and generalization notions are compatible with Telos,
– it minimized the effort, allowing us to focus on MDM-specific rules, and
– it allows a seamless adoption of MDM principles to Telos.

Adding MDM well-formedness to Telos well-formedness criteria can be
achieved cleanly by employing ConceptBase’s module system. A so-called oHome

module, which defines relation semantics, provides the basis on which our Multi-

Dim submodule builds on, to add potencies to elements, dimensions to relation-
ships, rules, constraints, etc.

Early on in our experiments we learned that subjecting all Telos objects to
the MDM well-formedness principles resulted in undesirable performance. This
is due to MDM’s inclusion of classification well-formedness and the fact that
around 50% of predefined facts in ConceptBase are classification-related. To
address the lack of performance, we confined the application of MDM-specific
constraints to MDM-specific elements by letting respective quantified variables
in the constraints range over a custom-defined Element instead of the Telos
type Individual (cf. Section 5.2). Element represents the notion of a Clabject, i.e., a
concept that can be an instance, a type, or both at the same time [3,5].

We use a total of 18 ConceptBase rules to define the relations in Equation 5,
e.g., instanceOf/lab and specializationOf/lab. Note the use of lab rather
than dim which reflects the fact that the dimension properties attached to these



pos
tpr

int

10 Thomas Kühne and Manfred A. Jeusfeld

relationships are dimension labels. These can be user-defined and our validation
scenarios include labels such as Products, Favorites, Activities, Assets,
etc. These are labels of explicit dimension objects Products, Favorites, etc. which
Telos relationships link to (cf. Listing 1.1).

The “member” predicate used in constraint C2c (see Section 3) is defined by
two mdrules, one of which is shown in Listing 1.1, with the other one analogously
taking care of specialization relationships.

1 $ forall inst/InstanceOf x/Element dim/Dimension
2 (inst dimension dim) and (From(inst, x) or To(inst, x))
3 ==> (x memberOf dim) $

Listing 1.1. Rule mdrule1

Fig. 3. C2c-violating
model

The Telos class InstanceOf referenced in line 1 of
Listing 1.1 classifies all explicit instantiation relation-
ships. Likewise, Dimension classifies all dimension ob-
jects. With (inst dimension dim) we establish that
the inst relationship is linked to a dim dimension ob-
ject.

The next two premisses (line 2 of Listing 1.1) establish
that element x participates in the instantiation relation-
ship inst. From these it follows (in line 3) that element
x is a member of dimension dim.

Of the eleven constraints we defined, we show our im-
plementation of constraint C2c in Listing 1.2, since it

– shows a usage of the custom-defined memberOf pred-
icate (cf. Listing 1.1).

– is one of the richer constraints but still nicely demon-
strates how readable ConceptBase constraints are.

– exhibits the slight implementation inelegance of deal-
ing with both dimension objects and dimension labels.

1 c2c: $ forall x,c/Element lab/Label dim/Dimension
2 (x specializationOf/lab c) and
3 (x memberOf dim) and not Label(dim,lab)
4 ==> exists p/Integer (x potency/lab p) and (p > 0) $

Listing 1.2. Constraint C2c

Figure 3 shows a ConceptBase screenshot of a model which is rejected due
to violating constraint C2c. Here, Corgi cannot claim to simultaneously be a
classifier for both the Animals and the Humans dimensions.

The implementation of constraint C4b in Section 3, shown in Listing 1.3,
shows in line 2 how to use an operator like :+ in ConceptBase.

1 c4b: $ forall x,y/Element lab/Label
2 (x instanceOf_trans/lab y)
3 ==> not (x specConnected/lab y) $

Listing 1.3. Constraint C4b

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

4. IMPLEMENTATION 11

Line 2 in Listing 1.3 establishes that an element x is in the same instantia-
tion branch as another element y, through any non-zero number of “instanceOf”
relationships, in which case those two elements must not be in the same general-
ization hierarchy, i.e., must not be connected via any specialization relationships.
The symmetric and transitive specConnected relationship is concisely defined
by rules mdrule17 & mdrule18, each rule fitting in one line.

Fig. 4. Queries in ConceptBase

We separated constraint- from rule defini-
tions by using two separate Telos source files
since it is often desirable to not enforce con-
straints, e.g., when developing models where
intermediate editing states are not well-formed
or when defining negative validation examples.
We were thus able to include constraints only
if and when we wanted to demonstrate that it
passes or fails validation.

We implemented constraint C3c as a Con-

ceptBase query rather than as a constraint
since we wanted to avoid being forced to have
all of our validation scenarios conform to constraint C3c. A query allows one to
check a model for a property on request, and unlike a constraint, can point out
culprits in a visual manner. Figure 4 shows a ConceptBase screenshot in which
our query representing constraint C3c was used to identify multiple classification
cluster roots in a model. From a usability standpoint it can be argued that such
visual support can be helpful compared to having to scan ConceptBase error
messages for the respective Element names.

4.3 ConceptBase Visualization Support

Fig. 5. Explicit dimensions in ConceptBase

Beyond supporting
the representation of
MDM models and
allowing them to
be checked against
well-formedness rules,
we also implemented
some visualization
support. Note the
colored relationships
in the ConceptBase

screenshots (Figures 3
& 4). Modelers can
specify arbitrary RGB
colors when defining
dimensions such as Animals. Element attributes and potencies are rendered
below an Element’s name, instead of the standard ConceptBase approach that



pos
tpr

int

12 Thomas Kühne and Manfred A. Jeusfeld

visualizes every attribute on its own and draws links between them and their
owning elements.

Finally, we support the visualization of dimensions as such, using colored
backgrounds, which are semantics-free but visually structure model content. Fig-
ure 5 shows a sample model featuring three dimensions. We omitted associations
and links but note that these could have of course crossed dimension boundaries.
We have made our ConceptBase implementation source files and a set of mod-
els we used for validation purposes – in source format but also as PNG files –
available at https://conceptbase.sourceforge.net/mdm-er2023/ [17].

5 Discussion

In the following, we first discuss our formalization choices and the consequences
resulting from them. In Section 5.2 we then discuss the merit of ConceptBase

as a supporting tool.

5.1 Formalization Discussion

The MDM paper our work is based on [21], proposes C1–C4 “constraints” that
informally describe one possible realization of the approach and are rather con-
straint categories, each often requiring multiple formal constraints to be covered,
hence the use of our a, b, etc. sublabels. Whenever constraint definitions called for
precision that was not in the informal descriptions or suggested generalizations,
we often were able to improve or expand on the informal design: We

– generalized the exclusion of classifier feature clashes (C1) to include super-
type feature clashes (cf. constraint C1).

– generalized the prohibition to instantiate a “bottom-level” element partici-
pating in multiple dimensions into more than one dimension (C2), to include
elements at any level. For instance, top-level elements may entertain poten-
cies from multiple dimensions and should not be instantiatable into multiple
dimensions either (cf. constraint C2a).

– not only exclude cycles within classification- and generalization hierarchies
respectively (C4), but in general, i.e., cycles comprising mixed relationships
of the former kinds, are excluded as well (cf. constraint C4a).

– explicitly support dimension underspecification, i.e., allow dimensionless re-
lationships and/or elements without explicit potencies.

– eschewed the notions of explicit “levels” and element-“order”, thus mak-
ing our design agnostic to the explicit presence or absence of such notions.
Instead, we inferred order differences from classification relationships.

Note that the latter choice elegantly targets the root cause of soundness vio-
lations and could be regarded as avoiding overspecification in comparison to a
level-based approach. However, this design choice obviously means that we do
not support manual “order” assignments or “level” allocations. Respective val-
ues are always inferred from relationships, i.e., we currently do not support any
modeler-supplied claims about such values that could be checked for accuracy.

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566
https://conceptbase.sourceforge.net/mdm-er2023/


pos
tpr

int

5. DISCUSSION 13

Generality Note that our ConceptBase implementation does not cover all in-
ferable order differences. Constraint C4b identifies order-differences for elements
in the same classification branch but, for instance, does not account for elements
in different branches with known different path lengths to a shared root.

We still have to begin a quite involved investigation into whether Concept-

Base’s expressiveness is sufficient to infer a larger set of elements with order-
differences. It is clear already, though, that the readability and execution effi-
ciency of constraint C4b would significantly suffer. An enhanced version of con-
straint C4b would have to compare edge counts between different paths, which
may be beyond what ConceptBase can provide. The current syntax definitely
does not support an extra edge-count parameter in addition to our“/lab” di-
mension label parameter.

For now, we are satisfied with the coverage our current version of con-
straint C4b achieves for the following reasons:

– The constraint can be concisely formulated and is very readable.
– It does not require the use of ConceptBase queries and/or functions which

are more complex, i.e., require a much deeper skill set to develop.
– Whether ConceptBase supports a better version is unclear at this stage.
– The discrimination power of our current constraint C4b compares very fa-

vorably to approaches based on a small set of anti-patterns and is already
optimal with respect to recognizing specialization connectivity.

(a) Anti-Pattern 1

Food

Waffle

EggWaffle

(b) Anti-Pattern 2

HeavyEquipment Excavator

(c) Anti-Pattern 3

Park

UrbanPark

CentralParkCrawlerExcavator

Fig. 6. Wikidata Anti-Pattern Scenarios (cf. [9, Fig. 6, Fig. 8, Fig. 10])

MDM Well-Formedness vs Anti-Patterns Although our current implemen-
tation does not infer all possible element order differences that could potentially
give rise to unsound generalization hierarchies, it easily covers all scenarios de-
tected by the Anti-Patterns AP1–AP3 defined in [9], plus many more. Figure 6
shows three Wikidata model fragments, which exemplify violations of three Anti-
Patterns Brasilero et al. used to detect ill-formed modeling scenarios. In general,
Anti-Patterns represent schemata, i.e., will detect a wide range of unsound model
fragments, not just very specific configurations. For instance, the generalization
hierarchy involving Food and EggWaffle in Figure 6(a), could involve arbitrarily
many generalization relationships; as long as a classification relationship between
the bottom and top elements exists, the model is not sound.



pos
tpr

int

14 Thomas Kühne and Manfred A. Jeusfeld

Note that there is a single reason as to why AP1 & AP2 appropriately reject
offending models: Elements, that are connected via generalization relationships,
must have the same order; otherwise, no sound set-theoretic interpretation of
the respective model exists. Our constraint C4b simultaneously covers AP1 &
AP2 since it targets the root cause that underlies the validity of these two anti-
patterns. Unlike AP1, for instance, constraint C4b also correctly rejects models
like that in Figure 6(a) where the classification relationship is reversed, i.e.,
where Food is declared to be an instance of EggWaffle.

Our constraint C3a takes care of AP3 violations, again, in a very general
manner, i.e., the constraint is (trivially, in this case) agnostic to the number
of classification edges involved. A less trivial detection, that does not simply
rule out multiple classification, would have required the implementation of the
“level-respecting” property mentioned in [21]. Since this property would require
the comparison of classification path lengths, it belongs to the same “unclarified”
category as the extension of constraint C4b (see above).

We observed that anti-pattern scenario variations we considered in our val-
idation sometimes violated more than one constraint. This appears to testify
to an increased robustness of a sanity-checking approach that covers multiple
soundness principles. For instance, the aforementioned variation of AP1 in Fig-
ure 6(a), violates both constraint C4a & C4b.

We acknowledge that the Anti-Patterns used in [9,10] were solely used as
queries to search for ill-formed model fragments and hence should not be judged
as integrity specifications. However, we note that for the purposes of ensuring the
well-formedness of models, an approach based on constraints that embody fun-
damental soundness principles seems more suited than a collection of schemata
that were devised on the basis of found integrity violations.

Overall, we did not attempt to create a full-fledged language design that
resolves all possible design choices, e.g., we did not impose limitations on gen-
eralizations into multiple dimensions even though the respective semantics are
undefined at this stage. We only attempted, and almost entirely succeeded, to
capture the constraint categories C1–C4. ConceptBase might support a full
coverage but ascertaining whether that is the case is less than trivial and any
respective measures would affect constraint readability and execution efficiency.

5.2 Implementation Discussion

Expressiveness It is remarkable how close ConceptBase constraint implemen-
tations such as Listing 1.3 are to a concise logic formulation (cf. constraint C4b).
There is some contamination due to the need to distinguish between dimension
objects and their corresponding labels but overall the ConceptBase constraints
are very readable and very well supported experimentation with variants.

As mentioned in Section 5.1, we did not implement the “level-respecting”
property of C4 (addressing it trivially by excluding multiple classification) and
our constraint C4b is not as general as it theoretically could be. We plan to in-
vestigate whether there is a real hard limitation of ConceptBase expressiveness
or whether a rather involved implementation may be feasible after all.

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

5. DISCUSSION 15

Efficiency ConceptBase’s evaluation of rules and constraints is not sufficiently
performant to support all MDM constraints at the Telos level. We therefore had
to let our constraints range over a dedicated Element class instead of the Telos
class Individual, and let one rule range over DimensionLabel instead of Label, to
achieve typical evaluation times of less than one second per instance of Element.
Given those domain restrictions, our validation scenarios are checked very swiftly,
in particular when incremental changes to existing models are made.

Usability Our emphasis was on exploring the feasibility of formalizing MDM
constraints using ConceptBase and we therefore paid little attention to usability
concerns. For instance, we could have formulated all constraints as queries, which
would have allowed them to be evaluated on demand only – thus decreasing
model loading times and supporting intermediate invalid models – and produce
visual pointers to offending elements (cf. Figure 4). However, the readability of
our implementation would have suffered as a consequence. As an exception, we
implemented constraint C3c as a query because enforcing it on all models seemed
limiting to users while the benefits of enforcing this particular integrity condition
were not obvious to us.

We also considered implementing part of constraint C0a as a query, giving
users the chance to omit potency values and only providing them with a warning
mechanism in case the underspecification is unintended (cf. Section 3). However,
we eschewed the formulation of an additional query as we deemed the enforce-
ment of the constraint to be appropriate.

Overall, we treated ConceptBase mainly as a user model storage backend as
opposed to an environment with optimal support for interactive modeling. We
support visual presentation of dimensions (cf. Figure 5) but so far did not pursue
further visualization support, e.g., rendering potencies as superscript values.

Utility for Formalization As expected, ConceptBase proved to be invalu-
able for validating our formalization. In many cases, subjecting select modeling
scenarios to our constraints simply confirmed the latter’s adequacy and/or the
claimed properties of MDM. In some cases, however, ConceptBase supported
experimenting with variants, e.g., to explore alternative formulations or achieve
better evaluation efficiency. By defining a validation suite of model scenarios that
target all constraints respectively, we were able to trial tweaks and either confirm
or disprove that they were still reporting ill-formed models and not reporting
sound models and/or measure respective evaluation times.

Note that our suggested amendment to the original C2 formulation in the
form of a slightly wider constraint C2a definition was arrived at during such
constraint validation experiments. While working with respective validation sce-
narios, it seemed odd to forbid the clashing of multiple potency values greater
than zero only for elements that have explicit classifiers (cf. Section 3).

Our regression validation suite (not including further scenarios that we used
in general development) and a log of evaluating the respective models is part of
the data we provided at [17].



pos
tpr

int

16 Thomas Kühne and Manfred A. Jeusfeld

6 Conclusion

The more critical the reliance on the conceptual integrity of a model is, the
higher the need to eliminate avoidable conceptual mistakes. It is concerning
that modeling concepts of societal importance, such as “gene”, “protein”, and
“disease” are used inconsistently in models [10, Table 1]. Ontological sanity-
checking of models is not a novel concept, but for multi-level models, it has
in the past translated to users either needing to complicate their models as a
result of having to work around overly strict well-formedness requirements, or
users being subjected to loopholes that they may inadvertently exploit with ill
consequences.

In this paper, we presented the first formalization of an approach [21] that
reliably and independently of the modeling domain prevents a large class of
ill-conceived conceptualizations without requiring modelers to explicitly provide
semantic descriptions of the concepts they are using, or forcing them to work
around unnecessary limitations imposed by overly strict well-formedness criteria
when modeling naturally occurring domain scenarios. Our formalization does
not rely on explicit “order” or “level” constructs, making it widely applicable,
i.e., a candidate for adoption by other multi-level modeling approaches. While
an implementation challenge has so far prevented us from realizing the full dis-
crimination potential of the MDM paradigm, our implementation is very faithful
to MDM principles and has more discriminative power than the anti-patterns
in [9,10]. Being based on fundamental soundness principles, rather than attempt-
ing to match ill-formed model fragments, our implementation is not dependent
on a comprehensive schematic capturing of such fragments.

We have empirically validated MDM claims and our implementation by using
numerous sample models of which the most essential form a regression valida-
tion test suite that we resorted to any time we explored a constraint variant,
e.g., to increase evaluation efficiency. In many cases we additionally created a
systematic exploration of scenarios, in which, for instance, all combinations of
relationship directions in specific scenarios were explored. Our slight modifica-
tion of constraint C2a and our introduction of constraint C2c were the direct
result of following such a tool-supported, scenario-based exploration approach.

We demonstrated that ConceptBase is capable of supporting a concise, intu-
itive and sufficiently performant implementation of MDM well-formedness prin-
ciples that did not require any coding at any stage. Even without prioritizing
usability, we achieved decent notation support, including the rendering of UML-
like attributes, colored relationships, and explicit dimension containers.

Despite that fact that future work remains with respect to exploring the
expressiveness of ConceptBase, which could potentially improve the coverage
of constraint C4b, we are convinced that our work is a suitable foundation for
a further exploration of the MDM paradigm, allowing richer variants – such as
supporting instantiation into multiple dimensions from a single element – to be
considered and validated. Our formalization and public implementation open up
these avenues not only for us, but also to any other researchers who may want
to extend or adopt the approach to fit their frameworks.

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566


pos
tpr

int

6. CONCLUSION 17

References

1. Abiteboul, S., Hull, R.: Data functions, Datalog and negation. SIGMOD Rec.
17(3), 143–153 (jun 1988). https://doi.org/10.1145/971701.50218

2. Almeida, J.P.A., Fonseca, C.M., Carvalho, V.A.: Comprehensive formal theory for
multi-level conceptual modeling. In: Proceedings of 36th International Conference
on Conceptual Modeling. vol. LNCS 10650. Springer (2017)

3. Atkinson, C.: Meta-modeling for distributed object environments. In: Enterprise
Distributed Object Computing. pp. 90–101. IEEE (Oct 1997)

4. Atkinson, C., Gerbig, R.: Melanie: Multi-level modeling and ontology engineering
environment. In: Proceedings of Modeling Wizards’12. ACM (2012)

5. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Proceedings
of the 4th International Conference on the UML 2000, Toronto, Canada. pp. 19–33.
LNCS 2185, Springer Verlag (Oct 2001). https://doi.org/10.1007/3-540-45441-1 3

6. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transac-
tions on Modeling and Computer Simulation 12(4), 290–321 (Oct 2003)

7. Atkinson, C., Kühne, T.: Concepts for comparing modeling tool architectures.
In: Briand, L. (ed.) Proceedings of the ACM/IEEE 8th MODELS. pp. 398–413.
Springer Verlag (2005)

8. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-
ware and Systems Modeling 7(3), 345–359 (2008). https://doi.org/10.1007/s10270-
007-0061-0

9. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Applying a multi-
level modeling theory to assess taxonomic hierarchies in Wikidata. In: Proceedings
of the 25th International Conference Companion on World Wide Web. pp. 975–
980. WWW ’16 Companion, International World Wide Web Conferences Steering
Committee (2016). https://doi.org/10.1145/2872518.2891117

10. Dadalto, A.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Type or individual?
Evidence of large-scale conceptual disarray in Wikidata. In: Proceedings of Con-
ceptual Modeling - 40th International Conference, ER 2021. LNCS, vol. 13011, pp.
367–377. Springer (Oct 2021). https://doi.org/10.1007/978-3-030-89022-3 29

11. Fonseca, C.M., Almeida, J.P.A., Guizzardi, G., Carvalho, V.A.: Multi-level concep-
tual modeling: From a formal theory to a well-founded language. In: Proceedings
of the 37th International Conference on Conceptual Modeling (ER 2018). LNCS
11157, Springer Verlag (10 2018)

12. Frank, U.: Multilevel modeling - toward a new paradigm of conceptual modeling
and information systems design. Business & Information Systems Engineering 6(6),
319–337 (2014). https://doi.org/10.1007/s12599-014-0350-4

13. Gitzel, R., Merz, M.: How a relaxation of the strictness definition can benefit MDD
approaches with meta model hierarchies. In: Proceedings of the 8th World Multi-
Conference on Systemics, Cybernetics & Informatics. vol. IV, pp. 62–67 (July 2004)

14. Guizzardi, G.: It’s patterns all the way down: Ontological patterns, anti-patterns
and pattern languages for next-generation conceptual modeling. ACM Lecture
(2020), https://speakers.acm.org/lectures/13930

15. Jeusfeld, M.A.: Metamodeling and method engineering with ConceptBase. In:
Metamodeling for Method Engineering, pp. 89–168. MIT Press (2009)

16. Jeusfeld, M.A., Almeida, J.a.P.A., Carvalho, V.A., Fonseca, C.M., Neumayr,
B.: Deductive reconstruction of MLT* for multi-level modeling. In: Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings. MODELS ’20 (2020).
https://doi.org/10.1145/3417990.3421410

https://doi.org/10.1145/971701.50218
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1145/2872518.2891117
https://doi.org/10.1007/978-3-030-89022-3_29
https://doi.org/10.1007/s12599-014-0350-4
https://speakers.acm.org/lectures/13930
https://doi.org/10.1145/3417990.3421410


pos
tpr

int

18 Thomas Kühne and Manfred A. Jeusfeld

17. Jeusfeld, M.A., Kühne, T.: ConceptBase implementation of MDM. Project Web
Site (2023), https://conceptbase.sourceforge.net/mdm-er2023/

18. Jeusfeld, M.A., Neumayr, B.: DeepTelos: Multi-level modeling with most general
instances. In: Conceptual Modeling - 35th International Conference, ER 2016, Gifu,
Japan, November 14-17, 2016. pp. 198–211 (2016). https://doi.org/10.1007/978-3-
319-46397-1 15

19. Koubarakis, M., Borgida, A., Constantopoulos, P., Doerr, M., Jarke, M., Jeusfeld,
M.A., Mylopoulos, J., Plexousakis, D.: A retrospective on Telos as a metamod-
eling language for requirements engineering. Requir. Eng. 26(1), 1–23 (2021).
https://doi.org/10.1007/s00766-020-00329-x

20. Kühne, T.: Exploring potency. In: ACM/IEEE 21th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’18). ACM (2018).
https://doi.org/10.1145/3239372.3239411

21. Kühne, T.: Multi-dimensional multi-level modeling. Software and Systems Model-
ing 21(2), 543–559 (2022). https://doi.org/10.1007/s10270-021-00951-5

22. Kühne, T., Lange, A.: Melanee and DLM: A contribution to the MULTI
collaborative comparison challenge. In: Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings. p. 434–443. MODELS ’22, ACM, NY, USA (2022).
https://doi.org/10.1145/3550356.3561571

23. Lange, A., Atkinson, C.: Multi-level modeling with LML – A contribution to
the multi-level process challenge. International Journal of Conceptual Modeling
17 (Jun 2022). https://doi.org/https://doi.org/10.18417/emisa.17.6, special Issue:
Multi-Level Process Challenge

24. de Lara, J., Guerra, E., Cobos, R., Moreno-Llorena, J.: Extending deep meta-
modelling for practical model-driven engineering. The Computer Journal 57(1),
36–58 (2012). https://doi.org/10.1093/comjnl/bxs144

25. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing knowl-
edge about information systems. Information Systems 8(4), 325–362 (1990)

26. Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual deep instantiation and
its ConceptBase implementation. In: Proceedings Advanced Information Systems
Engineering CAiSE 2014. pp. 503–517. Springer Int. Publ., Cham (2014)

27. Partridge, C., de Cesare, S., Mitchell, A., Odell, J.: Formalization of the
classification pattern: survey of classification modeling in information sys-
tems engineering. Software & Systems Modeling 17(1), 167–203 (2 2018).
https://doi.org/10.1007/s10270-016-0521-5

28. Partridge, C., Mitchell, A., da Silva, M., Soto, O.X., West, M., Khan, M., de Cesare,
S.: Implicit requirements for ontological multi-level types in the uniclass classifica-
tion. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings. MODELS
’20 (2020). https://doi.org/10.1145/3417990.3421414

29. Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T.: Materialization: A power-
ful and ubiquitous abstraction pattern. In: Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB’94). pp. 630–641. Morgan Kaufman
(1994)

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566
https://conceptbase.sourceforge.net/mdm-er2023/
https://doi.org/10.1007/978-3-319-46397-1_15
https://doi.org/10.1007/978-3-319-46397-1_15
https://doi.org/10.1007/s00766-020-00329-x
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1007/s10270-021-00951-5
https://doi.org/10.1145/3550356.3561571
https://doi.org/https://doi.org/10.18417/emisa.17.6
https://doi.org/10.1093/comjnl/bxs144
https://doi.org/10.1007/s10270-016-0521-5
https://doi.org/10.1145/3417990.3421414

	Sanity-Checking Multiple Levels of Classification

