
Software Process Modeling as a Strategy for KBMS Implementation

Matthias Jarke, Manfred Jeusfeld, Thomas Rose
Fakultät für Mathematik und Informatik, Universität Passau

Postfach 2540, 8390 Passau, F.R. Germany

Abstract. Deductive and object-oriented databases should not be viewed as competitors
but as two layers of abstraction (specification and implementation) within an overall
knowledge base management systems (KBMS) architecture. Software process modeling is
proposed as an efficient means to maintain the relationships between the two layers. A
detailed account of experiences with implementing a deductive and structurally object-
oriented system called ConceptBase gives preliminary evidence of the value of our
proposal; ConceptBase may also serve as a basis for bootstrapping an environment for
fully object-oriented databases.

1 Introduction

Several authors have observed an interesting discrepancy between the developments in deductive
and object-oriented databases [YOKO89]. Deductive databases continue the tradition of the
relational model by providing a simple and formally clean declarative mechanism for adding
implicit information to databases. This information can be retrieved by a query language no more
complicated than a relational one, and with equally clean semantics. However, despite a lot of
research, only a limited number of applications were found which can actually make good use of
this extension.

Conversely, object-oriented databases [BANC88] have a large number of immediate applications
because of their seemingly happy marriage of data structure and operations in abstract data types,
combined with the advantages of reusability and overloading gained by inheritance mechanisms.
Yet, the lack of formal semantics for object-oriented databases has often been decried; in
particular, operations are usually black boxes, at best characterized by input and output types, at
worst leaving the user to guess from their name what they do.

This discrepancy becomes less surprising when we consider the functionality of both systems.
Both add implicit information (gained by rules resp. methods) to traditional databases. However,
while object-oriented databases provide full programming power using all the application
experience and cleverness their programmer can muster, deductive databases are much more
limited: all procedural knowledge must be specified declaratively and this declarative description
must be handled automatically by a general deduction mechanism.

This observation is the foundation of our proposal for the implementation of systems that combine
the advantages of formality in deductive databases and of general applicability and efficiency in
object-oriented ones; following [BM86, ULLM89], we call such systems Knowledge Base
Management Systems (KBMS). The basic idea is that deductive and object-oriented databases
should not be viewed as competitors but as two layers of the same system architecture (fig. 1-
1). A declarative specification of data, transactions, and scripts of object interaction in the style of
deductive databases is implemented as an object-oriented database in which the transaction
specifications become procedures realized in some suitable programming language.

This work was supported in part by the European Community under ESPRIT contracts 892 (DAIDA) and 3012
(COMPULOG), and by the Deutsche Forschungsgemeinschaft under contract Ja445/1-1. The authors are grateful for
discussions with John Gallagher, Rainer Haidan, Manolis Koubarakis and John Mylopoulos, and for implementation
work to Michael Gocek, Eva Krüger, Hans Nissen, Martin Staudt, and Thomas Wenig.

structure + deductive specification

structure + attached procedures

software process representation and tools dependencies

Fig. 1-1: Two-layered KBMS architecture with software process model to maintain
dependencies between efficient implementation and deductive specification

1.1 Overview of the Approach

In such a KBMS architecture, ambiguities in the specification, and inefficiencies caused by its
naive interpretation with a general deduction mechanism, must be removed by a design process
that relates the specification to its implementation. Attempts to build compilers for the few
semantic data models that do include procedural components (e.g., Taxis [NCL*87]) have shown
that this process can be only partially automated: it involves choices that only become understood
very slowly. Moreover, changes of specifications may have implications on the mapping between
the two levels. For example, when entering, changing, or deleting a method specification, the
system must first be able to figure out how to keep the change as local as possible with respect to
the implementation layer; second, it must provide an efficient incremental implementation of the
change with as little human activity or disturbance of onging knowledge base usage as possible.

Obviously, incremental mapping from object-oriented specifications to correct and efficient
implementations is a very difficult problem. The need for specifying active DBMS components
has already been recognized the late 1970´s [BR84] and there is some work on incremental
compilation even in the database area [KP81]. Closely related to our task is also the work on
schema evolution [BKKK87]. However, while data structure mapping is relatively well
understood from a decade of research in database design, research in mapping transaction
specifications to efficient code automatically has only recently attracted the attention of
researchers. Only for more restricted specification languages, in particular of course the rules and
constraints of deductive databases themselves, efficient mappings are known [ULLM89] although
the algorithms have not been used this way; this gives us a nice way to maintain efficient
structurally object-oriented deductive databases.

Besides the existence of (preferably incremental) mapping algorithms that implement deductive
specifications, there is a second prerequisite for our two-layered KBMS architecture to work. It is
this second prerequisite that has led to the title of this paper.

If we want to maintain consistency between the declarative and the procedural level, information
about the process of mapping and remapping must be preserved. This involves knowledge about
the specifications, the created data structures and procedures, the mapping decisions that were
made to relate them, and the tools or algorithms used to execute these mapping decisions. A
process knowledge base is needed to manage this information; it thus defines the "software object
development environment" in which the individual algorithms are embedded. In the software
engineering community, the term software process model has recently become popular for such
descriptions of specification-implementation relationships1. The hypothesis of this paper is
therefore that software process modeling may become an important strategy for KBMS
implementation.

1 Actually, software process models cover a larger portion of tasks in software engineering [OSTE87] but we shall

concentrate on this specific aspect here; see, however, [JJR89] for other applications of our model.
1.2 A Case Study: ConceptBase

Over the past few years, we have been involved with the construction of a KBMS called
ConceptBase which we shall use here to provide some backing to the hypothesis of this
paper.ConceptBase supports the knowledge representation language CML/Telos [KMS*89] which
integrates deductive rules and integrity constraints as well as an interval-based time calculus into a
powerful structurally object-oriented framework with full classification, generalization, and
aggregation hierarchies, and attributes as first-class objects. ConceptBase is operational on SUN
and MicroVAX workstations under UNIX resp. VMS. A first prototype containing about 40.000
lines of Prolog/ SUNView code was completed in spring, 1988, and distributed to about a dozen
institutions in Europe and North America for experimental applications [JJR88]. A second
prototype with the functionality reported in this paper has just been finished [EJJ*89]; we are
working on a third one which will handle multimedia objects and coordinate multiple users
through conversation models [HJK*89].

In implementing ConceptBase, we tested the strategy proposed in this paper. First, we set up an
object-oriented kernel system and defined a software process model in it; since Telos does not
allow methods, we had to extend the language by introducing triggered external procedures which
are invisible for the end user of the language. In ConceptBase, the kernel as well as the triggered
procedures are implemented in Prolog1, and parameter substitution follows the Prolog
conventions. This implementation-level model bears some similarity to active databases, such as
Postgres [SHP88] or HiPAC [DBM88]2.

The specification layer of ConceptBase offers the full Telos language. In addition to the same
structural language as at the implementation layer , it includes predicative deduction rules and
integrity constraints, knowledge base version and configuration support, and a usage environment
that supports a hypertext style of interaction. The software process model was used to map these
three components to the kernel representation, as sketched in fig. 1-2.

Telos structure + deduction rules and integrity constraints
 version and configuration decisions
 usage environment description

Telos structure + triggered Prolog procedures
 and commercial tool calls

ConceptBase
implementation

decision

assertion
compiler

structure
mapper

user interface
mapper

rule
dependencies interface

dependencies

Fig. 1-2: Application of software process modeling approach in ConceptBase

The remainder of this paper is organized as follows. In section 2, we describe the implementation
layer kernel of Telos and formalize the software process model in terms of this kernel. Sections 3
to 5 describe the applications shown in fig. 1-2. Section 6 outlines a more general incremental
mapping environment which bootstraps from what we have so far.

1 together with a number of other tools which come with the BIM-Prolog system, e.g., graphics primitives.
2 The HiPAC model also comes closest to our approach in general, in that its input specifications are declarative and

only the actions are programmed; a precise comparison is difficult since, to our knowledge, neither a concrete
language syntax nor experiences with an implementation of HiPAC have been reported.

2 An Object-Oriented Implementation Layer: The ConceptBase Kernel

The "implementation layer" kernel of ConceptBase offers the target (and implementation)
language for the mapping of higher functionalities. Except for the external procedures (called
"behavior objects") which are not part of the visible language but needed for the implementation,
this layer can itself be understood as consisting of a simple specification and of an implementation
in a programming language (Prolog). The kernel implements a simple basic data structure, called a
proposition, a few structural axioms for correct aggregation, classification, and generalization, and
the two basic operations, ASK and TELL [KMS*89]. In this section, we first summarize the main
features of this Telos kernel, and then define the software process model we use for the
ConceptBase implementation within that language.

2.1 The Telos Object Language

The knowledge representation language Telos [KMS*89] evolved in the course of various
application experiments in two ESPRIT projects from earlier work on the semantic modeling
language Taxis [MBW80] and the requirements modeling language RML [GBM86] at the
University of Toronto. Besides our implementation, there have been two others with different
philosophies [GS86, TK89]. Telos´ structurally object-oriented framework generalizes earlier data
models and knowledge representations, such as entity-relationship diagrams or semantic networks,
and integrates them with temporal information and with predicative assertions. This combination
of features seems to be particularly useful in software information applications such as
requirements modeling or software process control. A formal description of Telos can be found in
[KMS*89]. The following example shall be used to illustrate the language:

A company has employees, some of them being managers. Employees have a name
and a salary which may change from time to time. They are assigned to departments
which in turn are headed by managers. The boss of an employee can be derived from his
department and the manager of that department. No employee is allowed to earn more
money than his boss.

The object Employee is declared as an instance of the system object INDIVIDUALCLASS, meaning
that Employee is both a class and an individual. It has four attributes: name, salary, dept and
boss. These attributes are themselves objects that link Employee to other objects. The class
Manager is defined as a specialization of Employee. It inherits the four attributes; moreover, all
instances of Manager are also regarded as instances of Employee:

INDIVIDUALCLASS Employee WITH
attribute

name: String
salary: Money
dept: Department
boss: Manager

END

INDIVIDUALCLASS Manager ISA Employee

INDIVIDUALCLASS Department WITH
attribute

head: Manager
END

Telos represents two kinds of temporal information: the history time and the belief time [SA85].
The history time of an object states during which time interval the proposition is true. The belief
time of an object is the time during which the knowledge base knew that object. The example
below shows both times for an instance of the class Employee. The history time when Bill
earns 20000 is 1988 but the knowledge base learned about this on 11­Jan­1989:

INDIVIDUAL bill IN Employee WITH

name
hisname: "William T. Miller"

salary
earns: 20000 at 1988 believed 11­Jan­1989+

END.

The individual bill also shows another feature : attribute classes specified at the class level do not
need to be instantiated at the instance level. This is the case for the department attribute of
Employee. On the other hand, they may be instantiated more than once:

INDIVIDUAL mary IN Manager WITH
name

hername: "Mary Smith"
dept

currentdept: PR
advises: R&D

salary
earns: 15000

END.

Telos treats all three kinds of relationships (attribute, isa, in) as objects; a small set of basic
axioms hardcoded in the implementation defines their semantics [KMS*89]. Thus, each attribute,
instantiation or generalization link of Employee may have its own attributes and instances; for
example, each of the four Employee attributes is instance of an attribute class denoted by label
attribute but can also have instances of its own. For example, the attribute with label earns of
mary is an instance of attribute salary of class Employee; syntactically, attribute objects are
denoted by appending the attribute label with an exclamation mark to the name of some
individual. The relationship between salary and earns could be expressed as

ATTRIBUTE mary!earns IN Employee!salary.

This powerful property of Telos is enabled by the fundamental data structure of so-called
propositions which also serve for the definition of the Telos semantics [KMS*89]:

propid = <sourceid, label, destinationid, validityinterval>.

The proposition (=object) with identifier propid declares that the proposition sourceid has a
relation called label to destinationid for the time validityinterval. An excerpt of the
propositions for our example shows how the temporal information is represented in the formalism,
and stresses the uniformity of the data structure:

Employee = <Employee,­,Employee,Always>
p4 = <Employee,salary,Money,Always>
...
bill = <bill,­,bill,Always>
...
p100 = <bill,earns,20000,1988>
p101 = <p100,instanceof,p4,1988>
p102 = <p101,instanceof,InstanceOf,11­Jan­1989+>
...

The proposition representation serves as the basis for the language formalization [KMS*89] but
also for the graphical display of Telos models; since proposition and frame representation are
equivalent, a hypertext-like switching between textual and graphical modes of interaction is very
natural (and heavily used in ConceptBase applications).
Figure 2-1 shows a subset of the objects defined so far. Unlabelled links stand for instantiation
relationships, greyed links for specialization. The remaining links are attributes; though not shown
in the figure, all attributes are instances of the attribute link of CLASS. The objects CLASS,
INDIVIDUALCLASS, String and Money are predefined. Time intervals different from Always are
attached to the links. The predefined class InstanceOf holds all instantiation links. The validity
intervals of the instanceof links of instanceof links (like p102) are used to represent belief

times.

CLASS

INDIVIDUALCLASS

attribute

Employee Department

Manager

String

Money

name

salary

boss

bill

20000

"William T. Miller"

earns

hisname
R & D

dept

1988

InstanceOf

11-Jan-1989+

mary

"Mary Smith"
hername

advises

P Rcurrentdept
15000

earns

head

Fig. 2-1: Temporal information and instantiation in Telos´ network syntax

The user interacts with a knowledge base by operations ASK and TELL. Delete and update
operations are not included directly; instead, there are operations RETELL and UNTELL which
end the belief intervals of objects [KMS*89].

The actual implementation of the Telos object language in the ConceptBase kernel system is again
divided into two layers [JJR88]. The upper one is responsible for managing frame structures and
operations, the lower one for physical storage strategies using graph algorithms based on the
network representation. We shall not discuss storage issues in this paper.

2.2 The Decision-Object-Tool (D.O.T.) Model

In this kernel language, we can now formally introduce our model of software development and
maintenance processes. First, we extend the system class CLASS of fig. 2-1 by built-in attribute
categories for dependencies and triggers, and then we introduce the metaclasses that define the
structure of our model: intermediate results or design objects, design decisions that create or alter
the objects, and design tools that support the execution of decisions.
The basic system object CLASS is extended by two additional attribute classes. One induces a
special kind of attributes called dependson. The other introduces a class of trigger links to
externally defined procedures. With these extensions, CLASS is defined as follows:

INDIVIDUALCLASS CLASS WITH
attribute

attribute : CLASS
dependson : CLASS
trigger : BehaviorObject

END

Given the basic axioms of the Telos object language, this says that classes (= instances of CLASS)
may have attribute classes of categories dependson and trigger which in turn lead to other
classes respectively executable procedures. The (built-in) semantics of this is as follows. Classes
which have attribute classes of type dependson contain instances that are derived objects; the
dependency attributes relate these objects to the objects they were derived from. Attribute classes
of type trigger are associated with an activation condition (e.g., a new instance of the class is
created, or an instance link is cut); an instance of the procedure they point to is generated and
executed when the invocation pattern becomes true [KDM88].

Now let us take a closer look at the basic approach shown in fig. 1-1 of section 1 which is repeated
in fig. 2-2 for convenience.

structure + deductive specification

structure + attached procedures

software process representation and tools dependencies

Fig. 2-2: Two-layered KBMS architecture connected by software process model

At first, assume that both the inputs and the outputs of the software process (i.e., the specification
and the implementation) are black box objects. We only know that these two objects exist. We also
assume that an arbitrary semantic description in Telos can be attached to an object, and that the
content of the black box (which need not be understandable in Telos) is pointed to by some
external reference. We call objects so described design objects and define the following metaclass
for them:

INDIVIDUALCLASS DesignObject IN MetametaClass WITH
attribute

objsemantic : CLASS
objsource : ExternalReference

END

Now consider the rounded box in fig. 2-2. There are usually many possibilities how to implement
a specification; design decisions are required to choose among these possibilities, based on general
mapping knowledge and specific situation knowledge. The whole software process can be viewed
as a large design decision which is composed from many smaller ones; execution of these small
sub-decisions creates dependencies among their corresponding input and output components;
taken together, these dependencies form a semantic description of the global decision. At the same
time, they can also be used to identify subdecisions that must be replayed when an incremental
change is intended. The following metaclass definition captures this intuition:

INDIVIDUALCLASS DesignDecision ISA DesignObject WITH

attribute

from, to : DesignObject
decsemantic : DecisionDescription

END

INDIVIDUALCLASS DecisionDescription IN MetametaClass WITH
attribute

dependencies : CLASS!dependson
END

The above metaclass definitions are very general in that the design objects mentioned there can be
arbitrary intermediate results of any development process. Our intuition behind fig. 2-2 is stronger.
Firstly, we expect that the implementation-level system is actually executable, not just an
intermediate design result. Secondly, we expect that the deductive method specification actually
expresses a relationship between input and output information. In other words, the specification
itself has the structure of a design decision. Our two-layered KBMS (or small part thereof) should
consist of a specification which follows the structure of the DesignDecision metaclass, and an
implementation which is a BehaviorObject in the sense discussed earlier. This is captured by the
notion of DesignTool:

INDIVIDUALCLASS DesignTool ISA DesignDecision WITH
attribute

from : DesignDecision
to : BehaviorObject

END

We could call this metaclass "conceptual software object" or "reusable component" since it
captures what a subsystem does, and how its specification is related to its implementation. The
name DesignTool is justified if we apply the above definition not to the deductive specification
of the method but to the mapping task itself. For example, the "assertion compiler" in fig. 1-2,
takes as its specification a methodology how to implement assertions as triggered procedures, and
as its implementation a corresponding procedure. In this case, the dependencies show what has to
happen if assertions are added, deleted, or altered; or if the optimization algorithm implemented by
the compiler is changed.

Fig. 2-3 represents the semantic network view of this software process model, emphasizing the
relationships between objects, decisions, and tools. From the design perspective, the decision-
object-tool model describes where the behaviors come from and what they do. At execution time,
only the trigger attributes attached to object descriptions (CLASS) are needed, and the design
information is needed only when change occurs.

DesignObjectDesignTool

from

by
CLASSDesignDecision to

trigger

isa dependson

DecisionDescription

decsemantic

dependencies

objsemantic

BehaviorObject

to
from

isa

Fig. 2-3: Software process metamodel formalized in Telos kernel language
So far, we have only outlined the basic structure of our model at a very abstract level, that of
metametaclasses. This model can be instantiated with the description of a particular software
environment, consisting of specific classes of design objects, design decisions, and tools; in our
case, this level corresponds to the description of ConceptBase as sketched in fig. 1-2 and
elaborated in the next three sections. This environment model can be instantiated again with a set
of particular specifications (such as rules about Employee), and yet another time to apply them to

actual data (such as those about Bill and Mary).

3 Rules and Constraints as Knowledge Base Objects

We now turn to the first example of how the software process model and the structural kernel
described in section 3 can be exploited for developing efficient implementations. In order to
integrate predicative assertions into the object-oriented kernel, we represent both the assertions
themselves and the way how assertion evaluators are attached to objects with the D.O.T. model.
The assertion model we obtain is similar to the one proposed for HiPAC [DBM88] and its internal
representation lends itself well to the large number of graph-based algorithms for deductive query
processing and integrity checking in the literature [ULLM89]. Interesting features we obtain as
side benefits of our approach include the following:

• In contrast to most other graph-based implementations, the structures needed for
efficient implementation are objects of the language (Telos) itself, rather than
obscurely hidden in implementation code.
• Modeling the development process for rule evaluators in the same manner as the
rules themselves gives us a way to integrate different query optimization and
integrity checking algorithms gracefully in order to obtain an overall efficient
control strategy. It provides an alternative way of structuring extensible DBMS
toolkits [FREY87, GD87] and allows incremental addition/ deletion of assertions.
• The possibility to represent derived data and dependencies in the model provides a
basis for maintaining redundant information. Applied to the assertions themselves,
we can materialize selectively rule-derived views to make, e.g., integrity control
more efficient [BLAK87]. Applied to the design process, it generates bases of
triggered procedures already at assertion insertion time. For example, we have
implemented a design-time time version of the deductive integrity checking
algorithm proposed by [BDM88] to save substantial work during system usage.

We first describe the representation and evaluation of assertion objects, and then only briefly
sketch the design process model since it should be pretty obvious at this point.

At the language surface, predicative assertions are integrated in Telos as special attribute values of
metaclass Assertion which have no further structure known to the user. Their role as either
deduction rules or integrity constraints is defined by the way how assertion objects are attached to
other objects by attribute links. In principle, several different assertion languages can be integrated
in this fashion and this fact is used in ConceptBase to integrate special-purpose theorem-provers
for software engineering. Here, we focus on a first-order language as in deductive databases
[KMS*89]. In our example, consider the rule that deduces an employee´s boss, and the constraint
that no employee should earn more than his boss:

RETELL Employee WITH
rule

bossrule: $ forall e/Employee,d/Department,m/Manager
e.dept=d and d.head=m ==> e.boss=m $

constraint
salarybound: $ forall e/Employee,m/Manager,x/Money,y/Money

e.boss=m and e.salary=x and m.salary=y
==> x =< y $

END
Thus, if bill has the department PR which is headed by mary, then mary is the boss of bill and
bill ´s salary should not be higher than mary ´s.

In terms of Telos´ structural representation, we can view the rule text as labeling an individual
proposition such as

rule1 = < rule1, $forall e/Employee ...$, rule1, time1 >

where time1 determines during which interval the rule should be applicable.

The class Assertion can itself be viewed as a specialization of the metametaclass
DesignDecision of the software process model. For rules, the conditions correspond to the from
design objects, and the conclusion to the to design objects; for constraints, the to object is a
special object class which can take values ´consistent´ or ´inconsistent´. Being a design decision,
each assertion can be associated with a set of tools called assertion evaluators. Moreover, each
input object mentioned in the assertion´s literals can have a trigger attribute that fires these
evaluators under certain conditions (e.g., when it is instantiated).

d.head=m

RuleRuleEvaluator Literal

condition

conclusion

evaluator
ATTRIBUTECLASS

concerns

$ forall e ... =m $

cond1
concernsdept

br_dept(e,d)

call1

e.boss=m
concl1

actrigger

Employee Department
dept

depttrigger

DesignObjectDesignTool

from

by CLASSDesignDecision to

trigger

objsemantic

BehaviorObject

to

from

PrologCall

invocation

e.dept=d

cond2
EvalBossRule eval

Fig. 3-1: Modeling assertion languages as decision classes
Figures 3-1 and 3-2 illustrate the model. Figure 3-1 shows part of the model for assertions as an
instantiation of the generic software process models. As a particular instance of this assertion
model, the structure of the example deduction rule is also sketched. This shows the situation at
compile time: the rule is entered as an instance of metaclass Rule such that its input description
points, e.g., to the dept link.

If there are more rules and constraints, an object such as the dept link may be associated with a
large number of triggers, some to be fired upon instantiation, some upon invalidation of an
instance link, etc. Thus, we have an object with encapsulated procedures; but of course, the
existence of these procedures depends on the existence of the assertions that they implement, and
on the further acceptance of the implementation algorithm (here, a forward chaining technique
proposed by Decker [BDM88]).

Figure 3-2 illustrates the firing of such generated triggers for the deductive integrity optimization
algorithms proposed in [BDM88] of which an incremental design-time version was implemented
in ConceptBase [KRÜG89]. The algorithm generates specialized procedures separately for
insertion and invalidation of each object where this operation could violate the constraint. Forward
evaluation procedures are attached to rules whose consequents generate or delete objects such that
a constraint could be violated. In this way, only the necessary forward operations are conducted
for each update, assuming that he KB was consistent before. Special tests have been added by us
for the addition or deletion of rules and constraints where data already exist.

Employee DepartmentManager

Money

salary
boss dept

head

bill P Rmary

earns
boss1 worksfor

ledby

20000

earns

15000

br_dept(e,d)

sb_boss(e,m)

br_dept(bill,PR)

sb_boss(bill,mary)

INCONSISTENT

depttrigger

bosstrigger

Fig . 3-2: Using the network for deductive integrity checking
When we insert the worksfor attribute of object bill as an instance of the dept attribute of
Employee, the procedure br_dept(e,d) is triggered. The formal parameters are replaced yielding
the actual call br_dept(bill,PR) which can be considered an instance of the procedure. Using
the ledby link of PR the boss of bill is computed and inserted in the KB. Since its class, the boss
attribute of Employee, has a trigger, too, another procedure call sb_boss(bill,mary) occurs. The
two salaries of bill and mary are compared and inconsistency is determined. Note that the
representation of the rule object itself is completely ignored in this cycle; it is reactivated if the
rule or the optimization algorithms change. The following ConceptBase screendump shows the
same situation. In the graph editor window, the specific metaclasses for the algorithm of [BDM88]
are shown; one editor window shows the class definition of Employee, another one the attempted
instantiation with a new employee, bill, who violates the constraint as explained in the error

window.

Fig. 3-3: ConceptBase screendump demonstrating deductive integrity control

4 Knowledge Base Version and Configuration Management

The second application of this implementation strategy concerns version and configuration
management. To limit search space, large-scale knowledge bases have to be partitioned.
Partitioning needs to be done by topic as well as by temporal validity of the knowledge. It requires
configuration management to compose knowledge base views from existing components.
Versioning is intended to provide a temporal or organizational classification.
Thus, each ConceptBase knowledge base is represented by a (possibly recursive) configuration of
subparts representing content-oriented modules and temporal versions. Following the same line of
argument as before, this section discusses how to model versions and configurations conceptually
by design decisions, and how to model the process of implementing these conceptual decisions as
structures and operations on existing software version and configuration management tools which
work at the file level. In this paper, we apply this model to ConceptBase itself; in [RJ89], it is
elaborated in much more detail for general version and configuration management tasks in
software engineering.

4.1 Conceptual Version and Configuration Decisions

In a first step of applying our software process model to this problem, we could view
configurations as a special kind of design decisions similar to deduction rules. In this case,
configurations would be created on demand from these rules and forgotten immediately
afterwards. Of course, this would be rather inefficient. Therefore, we enrich the rule model by
allowing redundant storage of the decision results. In this case, correspondences (possibly many-
to-many) between multiple redundant representations of the same data must be maintained to
ensure their mutual consistency; dependencies enable us to describe these correspondences at a
very detailed level, facilitating incremental change without total recompilation along the lines of
systems such as Cactis [HK87]. At the same time, the model is quite compatible with
version/configuration/equivalence modells as proposed in [KCB86].

The basic concept to structure a knowledge base is a module. A module represents a view of
objects of the knowledge base and comprises two properties: an interface and an implementation.
The interface describes properties visible from the outside of the module. The implementation
represents a configuration of objects satisfying the interface description. Each configuration object
is justified by a configuration decision which takes the components as its inputs and the module
interface as its output. In the following, we discuss two kinds of configuration and their
correspondences in ConceptBase, namely conceptual configurations (which objects belong
together from a content perspective?) and source configurations (which objects are stored together
physically?).

Figure 4-1 shows two versions of a conceptual module Telos_CompanyModel representing the
complete Telos model of a company as presented in section 2.1. The decision Configure­
Company configures a first version of this object from the design objects Telos_Department,
Telos_Manager and Telos_Employee86. These design objects are individuals of the process
model and used to represent the Telos objects Department, Manager and Employee.
Telos_Employee86 represents the individual class Employee before introducing assertions. The
decision description ConfigDescr aggregates the semantic dependencies of this configuration
which only refer to a temporal constraint on the configuration (grey vertical arrows in figure 4-1),
namely that all components of the configuration should be valid during 1986. Consistency and
maintenance of configurations can be handled by such dependencies.

Assume that the rules mentioned in section 3 are added to Employee in 1988. The new version of
Employee is named Telos_Employee88. Telos_Employee88 is not allowed to be part of the
configuration ConfigureCompany because of the temporal dependency. ConfigureCompany88
represents the new version of the configuration decision.

ConfigureCompany 86

Telos_CompanyModel CompanyDescr
1986

Telos_Department

Telos_Manager

Telos_Employee 86

DepartmDescr

ManagerDescr

EmployeeDescr

Always

Always

1986

valDep

valMan

valEmp

ConfigDescr
describeConfComp

fromTelos

toTelos

ConfigureCompany 88

Telos_Employee 88 EmployeeDescr
valEmp_2

1988

CompanyDescr 88
1988

Telos_CompanyModel 88

Fig. 4-1: Configuration of the extended company model

4.2 Representing the Implementation-Level System

The storage of the company model on external devices, i.e. the implementation of the conceptual
configuration, is depicted in figure 4-2. The semantic description of source code design objects
may comprise their allocation, version identifiers, access rights, etc. Similar to conceptual
modules, source codes can be configured to source modules. For instance, a group in a source
code management system like CMS [DEC82] is a set of sources with an associated access
specification. Thus, the decision CompSourceModule represents the configuration of source
module CMS_CompGroup. Solid lines in figure 4-2 show the source configuration for the 1986
version of the company model. In the greyed new version, CompSourceModul 88, the developer
has decided to keep the source object CompanySources unchanged but to store the assertions in an
extra file CompanyAssertions intended to collect all constraints and deduction rules of the model.
Thus, the new version of the source model consists of a source object with the old source text and
an additional file.

CompSourceModule

CompanySources

CompanyAssertions

CompGroup

CompSourceDescr

AssSourceDescr

CompGroupDescr

Source

DISK1$Telos:[Company.Models]

describeSourceComp

Company.Telos

v4711

Assertion.Telos

v5

dirA

fileA

versA

dirC

fileC

versC

Version

CompanySource

FirstPrototype

CompSourceModule88

fromSource

toSource
CMS_CompGroup 88

CMS_CompGroup

DISK1$Telos:[Company.Models]

Fig. 4-2: Configuration of source objects for the company model
4.3 The Conceptual-To-Physical Mapping

Finally, we look at the correspondences between the conceptual and the source view of the
knowledge base, i.e. implementing conceptual configurations by existing implementations. This
implementation process is represented by design decisions (details about process support and
interactive decision assistance in [RJ89]) which map a conceptual configuration of Telos classes to
a reasonable source representation and source configuration.

Figure 4-3 shows the correspondence between the modules Telos_CompanyModel and
CompSourceModule. The semantic descriptions BodyDescr and GroupDescr have as attriubutes
the members of the module configurations. These memberships are derived from the configuration
decisions ConfigureCompany88 and CompSourceModule88. The semantic description of such a
correspondence decision describes the interrelationships among conceptual and source
memberships (grey arrows in figure 4-3), as discussed above. It can be easily seen how this kind
of model could be used to determine which source modules to look at to find information about a
conceptual module for a given validity interval; for instance, if the user is interested in the 1986
version, he has to retrieve only one source module.

Telos_Department

Telos_Manager

Telos_Employee 88

CompanySources

CompanyAssertions

BodyDescr
semBodyDescr

m_1

m_2

m_3

CompSourceModule GroupDescr
semSourceDescr

CompanySourceRep
semSourceCorr

source_1

source_2

SourceCorrDescr

fromTelos_Model

toCMS_Source

Telos_CompanyModel

Fig. 4-3: Correspondence between conceptual model and its source representation

ConceptBase currently employs SCCS/NSE for the SUN-UNIX environment and CMS/MMS for
the VAX-VMS environment for source code management; distributed source code management
becomes possible due to the common conceptual configuration model. The ConceptBase
screendump in fig. 4-4 illustrates this with a larger example: a knowledge base about the
ConceptBase implementation we use to control our own development efforts. The screendump
shows in a hierarchical browser on the SUN (lower right window) a Telos model of the CMS
storage of the DEC version of the ConceptBase implementation. The right upper window shows
actual interaction with this version via remote access to a MicroVAX, whereas the graphical editor
on the left documents the decision instance to put the ConceptBase version on DEC together in the
manner required for this situation (that is, with an ASCII terminal interface since we cannot
emulate DEC graphics on the SUN).

Fig. 4-4: ConceptBase screendump demonstrating configuration management

5 User Interfaces as Configurations of Derived Data

A discussion on usage environments has to cover many topics. A first one concerns the data
integration of usage environment and kernel system, i.e. how to control the consistency among
knowledge base objects and graphical structures displayed on screen. A second topic concerns the
functionality of tools, i.e. one has to determine a graphical presentation and functionality which
supports the representational framework of the knowledge representation language. At first, this
section describes a conceptual approach to represent user interfaces and control their consistency.
Subsequently, it sketches the actual interface tools of ConceptBase; other interface-related issues
such as dialog control can be modeled again with nested design decisions but this is ongoing work
which will be reported elsewhere.

Our configuration model is almost directly applicable to interface management as well. In general,
a screen consists of a set of windows each managed by a tool (e.g. an editor/ browser). Since each
window handles a set of objects derived by some deduction rules, it can be represented as a
configuration module (fig. 5-1) whose interface specifies what objects configure it and how to
present them on the screen. For instance, BrowserConf describes the configuration of those
objects to be displayed by a browser and EditorConf describes the configuration of the editor;
consistency of externally displayed views can be controlled in case of modifications by the kernel
system or an interface tool. Correspondences between different views also allow the propagation
of constraints across windows.

BrowserConf

BrowserScreen

.....

.....

.....

EditorConf

EditorScreen

.....

.....

view on screen

view derivation

knowledge base objects on screen

Fig. 5-1: A screen as a configuration of materialized configurations

DEC / VMS interface

menu
declaration

editor

textual
browsing

graphical
browsinginteraction

set
display

relational
display

error
report

language
utilities

source
management

utilities

BIM-Prolog SUNView interface

Interface Tools

Prolog to UNIX
utilities

Source Management
Tools

Usage Environment

Implementation of the Usage Environment

•	interfacing to appropriate configuration and interface tools

•	interfacing to the interface data structure of the kernel system

•	realizing syntactic features of CML

ConceptBaseToolBar

TextBrowser

GraphEditorEditor

GraphBrowser ApplicableDecisions

InstanceDisplayLoadModels

LoadApplication

Prolog to VMS/C
utilities

Fig. 5-2: Implementation overview of ConceptBase usage environment

To exploit the hybrid nature of Telos, we decided to define views that allow for a hypertext-like
style of interaction. Therefore, the environment allows arbitrary switching between graphical and
textual (frame) modes of display and interaction by attaching a selection and modification facility
to each view. An impression of the interface can be gained from the screendumps of figures 3-3
and 4-4. Rather than explaining each tool in detail [EJJ*89], we just give an architectural
overview.

The ConceptBase usage environment is organized in three layers, as shown in figure 5-2. The
bottom layer provides a box of interface and configuration tools which process uninterpreted
strings (e.g. object identifiers) and structures. These tools implement decision classes on graphical
presentations and may be utilized for different purposes by the usage environment. The usage
environment itself comprises tools for editing Telos objects, browsing classification or
generalization hierarchies, etc. These tools support decisions which can be applied to knowledge
bases. They consist of three parts. The first obtains a view to be displayed by calling a tool to
manage user interaction by panels. The second derives the specified view. The third transforms
this view to a structure processable by the interface objects of the tool box. The middle layer of
fig. 5-2 relates screen-oriented and knowledge base-oriented views by defining correspondences
between windows (screen configurations) and conceptual configurations (e.g., query results to be
displayed).

6 Conclusion: Towards Incremental Object Development in KBMS

We tried to show how a decision-object-tool model of software processes can represent and
support (a) the specification of implicit knowledge, and (b) the implementation of such
specifications by object-oriented databases. Although our experience with ConceptBase has shown
the usefulness of this approach only for relatively simple cases, we believe that it can be extended
to more general cases.

Before pointing out our plans in this directions, we briefly summarize the results of this paper
concerning the three different mapping tasks identified in the ConceptBase implementation.

First, we modeled deduction rules and integrity constraints as deterministic (and therefore
automatable) "design decisions" and showed that the graph structures derived from such a model
are identical to those used by various optimization algorithms. Moreover, the approach led us to
develop incremental versions of these algorithms applicable at design time rather than system
usage time.

Second, we attacked a more complicated case in which manual and automated decision-making
interact, namely the creation and administration of consistent versions of configurations. This
allows the user to talk about conceptual components of the system while internally using efficient
commercial configuration managers which work on source objects not isomorphic to the
conceptual ones.

Finally, we combined deduction and configuration aspects in modeling the ConceptBase usage
environment as a configuration of derived data, similar to the approach taken in Postgres [SHP88].
This approach is proving very helpful in extending the system to true hypertext (or even
hypermedia) capabilities.

To achieve more generality, one has to look for more powerful mapping technology. Work in
"automatic programming" such as exemplified by the CHI/REFINE system [SKW85] is an
important source for such methods; formal transaction verification techniques such as those
investigated by [SS86] can also be of use. Then we can use a basic software process manager such
as the current version of ConceptBase to manage and document the mapping processes supported
by such tools.

In an ESPRIT project called DAIDA [DAIDA89], an initial effort was made to map general
transaction specifications expressed in a purely declarative version of the semantic modeling
language, Taxis [MBW80], to procedural code written in the database programming language,
DBPL [BMSW89]. Taxis transactions are specified by preconditions, goals, and invariants. A
theorem-proving assistant is then used to convert this specification into a set-oriented formalism
and to apply verified refinement steps until a specification is reached that can be directly translated
into a satisfactory database program. The design decisions and proofs are recorded by
ConceptBase using an instance of the D.O.T. model, in order to reduce the need for re-proving and
to maintain the relationships between specification and implementation [JJR*89]. There is still a
lot of research needed for a sufficient automation of the proving process, and incrementality of the
mapping algorithms as well as efficient dependency tracking procedures in ConceptBase itself
remain to be investigated. Nevertheless, the initial results obtained in coupling such a
transformational software development tool with a knowledge base supporting our software
process model look quite promising.

A second area of further research we are interested in concerns a more direct logical formalization
of our model; currently, this formalization is given only indirectly via the logical semantics of
Telos. It would be quite interesting to understand the relationship of our approach to recent work
on metalevel logic programming [LLOY89] which follows similar goals but also to studies of
declarative update languages [ABIT88].

References

[ABIT88] Abiteboul, S. (1988). Updates: the new frontier. Proc. 2nd Intl. Conf. Database
Theory, Bruges, Belgium, 1-18.

[BANC88] Bancilhon, F. (1988). Object-oriented database systems Proc. ACM 7th Symp.
Principles of Database Systems, Austin, Tx, 152-162.

[BDM88] Bry, F., Decker, H., Manthey, R. (1988). A uniform approach to constraint satisfaction
and constraint satisfiability in deductive databases. Proc. EDBT '88, Venice, Italy, 488-
505.

[BLAK87] Blakeley, J.A. (1987). Updating materialized database views. Ph.D. thesis, Dept.
Computer Science, University of Waterloo, Ont.

[BKKK87] Banerjee, J., Kim, W., Kim, H.-J., Korth, H.F. (1987). Semantics and implementation
of schema evolution in object-oriented databases. Proc. ACM- SIGMOD Conf., San
Francisco, Ca, 311-322.

[BM86] Brodie, M.L., Mylopoulos, J., eds. (1986). On Knowledge Base Management Systems.
New York: Springer-Verlag.

[BMSW89]Borgida, A., Mylopoulos, J., Schmidt, J.W., Wetzel, I. (1989). Support for data-
intensive applications: conceptual design and software development. To appear in
Proc. 2nd Workshop Database Programming Languages, Portland, Or.

[BR84] Brodie, M.L., Ridjanovic, D. (1984). On the design and specification of database
transactions.In Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.): On Conceptual
Modeling, New York: Springer-Verlag, 277-306.

[DAIDA89] Jarke,M.,DAIDA Team
(1989). The DAIDA demonstrator.ESPRIT89, Brussels.

[DBM88] Dayal, U., Buchmann, A., McCarthy, D.R. (1988). Rules are objects too: a knowledge
model for active, object-oriented database systems. In Dittrich, K. (ed.): Advances in
Object-Oriented Databases, Springer-Verlag, 129-143.

[DEC82] Code Management System: User Manual (1982). Digital Equipment Corporation.
[EJJ*89] Eherer, S., Jarke, M., Jeusfeld, M., Miethsam, A., Rose, T. (1989). A global KBMS for

database software evolution: ConceptBase 2.0 user manual. Report, Universität
Passau, W. Germany.

[FREY87] Freytag, J.C. (1987). A rule-based view of query optimization. Proc. ACM- SIGMOD
Conf., San Francisco, Ca, 173-180.

[GBM86] Greenspan, S., Borgida, A., Mylopoulos, J. (1986). A requirements modelling
language and its logic, in Brodie, M.L. Mylopoulos, J. (eds.): On Knowledge Base
Management Systems, New York, Springer-Verlag, 471-502.

[GD87] Graefe, G., DeWitt, D.J. (1987). The EXODUS query optimizer generator. Proc.
ACM-SIGMOD Conf., San Francisco, Ca, 160-172.

[GS86] Gallagher, J., Solomon, L. (1986). CML Support System. Report, ESPRIT Project 107

(LOKI), SCS Hamburg, W. Germany.
[HJK*89] Hahn, U., Jarke, M., Kreplin, K., Farusi, M., Pimpinelli, F. (1989). CoAUTHOR: a

hypermedia group authoring environment. Proc. European Conf. Computer-Supported
Cooperative Work, Gatwick, UK.

[HK87] Hudson, S.E., King, R. (1987). Object-oriented database support for software
environments. Proc. ACM-SIGMOD Conf., San Francisco, Ca, 491-503.

[JJR88] Jarke, M., Jeusfeld, M., Rose, T. (1988). A KBMS for database software evolution:
documentation of first ConceptBase prototype. Report MIP-8819, Universität Passau,
West Germany.

[JJR89] Jarke, M., Jeusfeld, M., Rose, T. (1989). A software process data model for
knowledge engineering in information systems. Information Systems 14, 3.

[JJR*89] Jarke, M., Jeusfeld, M., Rose, T., Mylopoulos, J., Schmidt, J.W., Wetzel, I., Ziegler, A.
(1989). Data and process management in formal software development. Working
paper, Universität Passau (submitted for publication).

[KCB86] Katz, R., Chang, E., Bhateja, R. (1986). Version modeling concepts for computer-
aided design databases, Proc. ACM-SIGMOD Conf., Washington, D.C., 379-386.

[KDM88] Kotz, A.M., Dittrich, K.R., Mülle, J.A. (1988). Supporting semantic rules by a
generalized event/ trigger mechanism. Proc. EDBT '88, Venice, Italy, 76-91.

[KMS*89] Koubarakis, M., Mylopoulos, J., Stanley, M., Borgida, A., Jarke, M. (1989). Telos: a
knowledge representation language for software information. Report KRR-89-01,
University of Toronto, Ont.

[KP81] Koenig, S., Paige, R. (1981). A transformational framework for the automatic control
of derived data. Proc. 7th Intl. Conf. Very Large Data Bases, Cannes, France, 306-318.

[KRÜG89] Krüger, E. (1989). Integritätsoptimierung in deduktiven Objektbanken am Beispiel
ConceptBase. Diploma thesis, Universität Passau, W. Germany.

[LLOY89] Lloyd, J.W. (1989). Meta-programming for knowledge-based systems. Proc. 3rd GI-
Kongreß Wissensbasierte System, Munich, W. Germany.

[MBW80] Mylopoulos, J., Bernstein, P.A., Wong, H.K.T.(1980). A language for designing
interactive data-intensive applications. ACM Trans. on Database Systems 5, 2, 185-
207.

[NCL*87] Nixon, B., Chung, L., Lauzon, D., Borgida, A., Mylopoulos, J., Stanley, M. (1987).
Implementation of a compiler for a semantic data model: experience with Taxis. Proc.
ACM-SIGMOD Conf., San Francisco, Ca, 118-131.

[OSTE87] Osterweil, L. (1987). Software processes are software too. Proc. 9th Intl Conf. on
Software Engineering, Monterey, Ca, 2-13.

[RJ89] Rose, T., Jarke, M. (1989). A decision-based configuration process model. To appear
in Proc. 12th Intl. Conference Software Engineering, Nice, France..

[SA85] Snodgrass, R, Ahn, I. (1985). A taxonomy of time in databases. ACM- SIGMOD
Conf., Austin, Tx, 236-246.

[SHP88] Stonebraker, M., Hanson, E., Potamianos, S. (1988). The Postgres rule manager. IEEE
Trans. Software Eng. SE-14, 7, 897-907.

[SKW85] Smith, D.R., Kotik, G.B., Westfold, S.J. (1985). Research on knowledge-based
software environments at Kestrel Institute. IEEE Trans. Software Eng. SE-11, 11,
1278-1295.

[SS86] Sheard, T., Stemple, D. (1986). Automatic verification of database transaction safety.
COINS Report 86-30, University of Amherst, Mass.

[TK89] Topaloglou, T., Koubarakis, M. (1989). Implementation of Telos: problems and
solutions. Report KRR-89-08, University of Toronto, Ont.

[ULLM89] Ullman, J.D. (1989). Principles of Database and Knowledge-Base Systems, Vol. II,
Rockville, Md: Computer Science Press.

[YOKO89] Yokota, K. (1989). What is expected of an object-oriented data model? In Ritter, G.X.
(ed.): Information Processing ´89, North-Holland, 799-800.

