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Abstract. Deductive and object-oriented databases should not be viewed as competitors 
but as two layers of abstraction (specification and implementation) within an overall 
knowledge base management systems (KBMS) architecture. Software process modeling is 
proposed as an efficient means to maintain the relationships between the two layers. A 
detailed account of experiences with implementing a deductive and structurally object-
oriented system called ConceptBase gives preliminary evidence of the value of our 
proposal; ConceptBase may also serve as a basis for bootstrapping an environment for 
fully object-oriented databases.

1 Introduction

Several authors have observed an interesting discrepancy between the developments in deductive 
and  object-oriented  databases  [YOKO89].  Deductive  databases  continue  the  tradition  of  the 
relational  model  by providing a  simple  and formally  clean  declarative  mechanism for  adding 
implicit information to databases. This information can be retrieved by a query language no more 
complicated than a relational one, and with equally clean semantics. However,  despite a lot of 
research, only a limited number of applications were found which can actually make good use of 
this extension. 

Conversely, object-oriented databases [BANC88] have a large number of immediate applications 
because of their seemingly happy marriage of data structure and operations in abstract data types, 
combined with the advantages of reusability and overloading gained by inheritance mechanisms. 
Yet,  the  lack  of  formal  semantics  for  object-oriented  databases  has  often  been  decried;  in 
particular, operations are usually black boxes, at best characterized by input and output types, at 
worst leaving the user to guess from their name what they do.

This discrepancy becomes less surprising when we consider the functionality of both systems. 
Both add implicit information (gained by rules resp. methods) to traditional databases. However, 
while  object-oriented  databases  provide  full  programming  power  using  all  the  application 
experience  and  cleverness  their  programmer  can  muster,  deductive  databases  are  much  more 
limited: all procedural knowledge must be specified declaratively and this declarative description 
must be handled automatically by a general deduction mechanism. 

This observation is the foundation of our proposal for the implementation of systems that combine 
the advantages of formality in deductive databases and of general applicability and efficiency in 
object-oriented  ones;  following  [BM86,  ULLM89],  we  call  such  systems  Knowledge  Base 
Management Systems (KBMS). The basic idea is that deductive and object-oriented databases 
should not be viewed as competitors but as two layers of the same system architecture (fig. 1-
1). A declarative specification of data, transactions, and scripts of object interaction in the style of 
deductive  databases  is  implemented as  an  object-oriented  database  in  which  the  transaction 
specifications become procedures realized in some suitable programming language.
__________
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work to Michael Gocek, Eva Krüger, Hans Nissen, Martin Staudt, and Thomas Wenig.



  

structure + deductive specification

structure + attached procedures

software process representation and tools dependencies

Fig. 1-1: Two-layered KBMS architecture with software process model to maintain
dependencies between efficient implementation and deductive specification

1.1 Overview of the Approach

In such a KBMS architecture, ambiguities in the specification, and inefficiencies caused by its 
naive interpretation with a general deduction mechanism, must be removed by a  design process 
that  relates  the  specification  to  its  implementation.  Attempts  to  build  compilers  for  the  few 
semantic data models that do include procedural components (e.g., Taxis [NCL*87]) have shown 
that this process can be only partially automated: it involves choices that only become understood 
very slowly. Moreover, changes of specifications may have implications on the mapping between 
the two levels.  For example,  when entering,  changing, or deleting a method specification,  the 
system must first be able to figure out how to keep the change as local as possible with respect to 
the implementation layer; second, it must provide an efficient incremental implementation of the 
change with as little human activity or disturbance of onging knowledge base usage as possible.

Obviously,  incremental  mapping  from  object-oriented  specifications  to  correct  and  efficient 
implementations is a very difficult problem. The need for specifying active DBMS components 
has  already  been  recognized  the  late  1970´s  [BR84]  and  there  is  some work  on  incremental 
compilation even in the database area [KP81]. Closely related to our task is also the work on 
schema  evolution  [BKKK87].  However,  while  data  structure  mapping  is  relatively  well 
understood  from  a  decade  of  research  in  database  design,  research  in  mapping  transaction 
specifications  to  efficient  code  automatically  has  only  recently  attracted  the  attention  of 
researchers.  Only for more restricted specification languages, in particular of course the rules and 
constraints of deductive databases themselves, efficient mappings are known [ULLM89] although 
the  algorithms  have  not  been  used  this  way;  this  gives  us  a  nice  way  to  maintain  efficient 
structurally object-oriented deductive databases.

Besides the existence of (preferably incremental) mapping algorithms that implement deductive 
specifications, there is a second prerequisite for our two-layered KBMS architecture to work. It is 
this second prerequisite that has led to the title of this paper.

If we want to maintain consistency between the declarative and the procedural level, information 
about the process of mapping and remapping must be preserved. This involves knowledge about 
the specifications, the created data structures and procedures, the mapping decisions that were 
made to relate them, and the tools or algorithms used to execute these mapping decisions.  A 
process knowledge base is needed to manage this information; it thus defines the "software object 
development  environment"  in  which  the  individual  algorithms are  embedded.  In  the  software 
engineering community, the term software process model has recently become popular for such 
descriptions  of  specification-implementation  relationships1.  The  hypothesis  of  this  paper  is 
therefore  that  software  process  modeling  may  become  an  important  strategy  for  KBMS 
implementation.

__________
1 Actually, software process models cover a larger portion of tasks in software engineering [OSTE87] but we shall  

concentrate on this specific aspect here; see, however, [JJR89] for other applications of our model.
1.2 A Case Study: ConceptBase



  

Over  the  past  few  years,  we  have  been  involved  with  the  construction  of  a  KBMS  called 
ConceptBase  which  we  shall  use  here  to  provide  some  backing  to  the  hypothesis  of  this 
paper.ConceptBase supports the knowledge representation language CML/Telos [KMS*89] which 
integrates deductive rules and integrity constraints as well as an interval-based time calculus into a 
powerful  structurally  object-oriented  framework  with  full  classification,  generalization,  and 
aggregation hierarchies, and attributes as first-class objects. ConceptBase is operational on SUN 
and MicroVAX workstations under UNIX resp. VMS. A first prototype containing about 40.000 
lines of Prolog/ SUNView code was completed in spring, 1988, and distributed to about a dozen 
institutions  in  Europe  and  North  America  for  experimental  applications  [JJR88].  A second 
prototype with the functionality reported in this paper has just been finished [EJJ*89]; we are 
working on a  third one which  will   handle  multimedia  objects  and coordinate  multiple  users 
through conversation models [HJK*89].

In implementing ConceptBase, we tested the strategy proposed in this paper. First, we set up an 
object-oriented kernel system and defined a software process model in it; since Telos does not 
allow methods, we had to extend the language by introducing triggered external procedures which 
are invisible for the end user of the language. In ConceptBase, the kernel as well as the triggered 
procedures  are  implemented  in  Prolog1,  and  parameter  substitution  follows  the  Prolog 
conventions. This implementation-level model bears some similarity to active databases, such as 
Postgres [SHP88] or HiPAC [DBM88]2.

The specification layer of ConceptBase offers the full Telos language. In addition to the same 
structural language as at the implementation layer , it  includes predicative deduction rules and 
integrity constraints, knowledge base version and configuration support, and a usage environment 
that supports a hypertext style of interaction. The software process model was used to map these 
three components to the kernel representation, as sketched in fig. 1-2.

Telos structure  +  deduction rules and integrity constraints
                                       version and configuration decisions
                                                usage environment description

Telos structure           +       triggered Prolog procedures 
                                                       and commercial tool calls

ConceptBase 
implementation

decision

assertion
compiler

structure
mapper

user interface
mapper

rule
dependencies interface

dependencies

Fig. 1-2: Application of software process modeling approach in ConceptBase 

The remainder of this paper is organized as follows. In section 2, we describe the implementation 
layer kernel of Telos and formalize the software process model in terms of this kernel. Sections 3 
to 5 describe the applications shown in fig. 1-2. Section 6 outlines a more general incremental 
mapping environment which bootstraps from what we have so far.

__________
1 together with a number of other tools which come with the BIM-Prolog system, e.g., graphics primitives.
2 The HiPAC model also comes closest to our approach in general, in that its input specifications are declarative and 

only the actions are programmed; a precise comparison is difficult  since,  to our knowledge, neither a  concrete 
language syntax nor experiences with an implementation of HiPAC have been reported.

2 An Object-Oriented Implementation Layer: The ConceptBase Kernel



  

The  "implementation  layer"  kernel  of  ConceptBase  offers  the  target  (and  implementation) 
language for the mapping of higher functionalities.  Except for the external  procedures (called 
"behavior objects") which are not part of the visible language but needed for the implementation, 
this layer can itself be understood as consisting of a simple specification and of an implementation 
in a programming language (Prolog). The kernel implements a simple basic data structure, called a 
proposition, a few structural axioms for correct aggregation, classification, and generalization, and 
the two basic operations, ASK and TELL [KMS*89]. In this section, we first summarize the main 
features  of  this  Telos  kernel,  and  then  define  the  software  process  model  we  use  for  the 
ConceptBase implementation within that language. 

2.1 The Telos Object Language

The knowledge representation language Telos [KMS*89] evolved in the course of various 
application experiments in two ESPRIT projects from earlier work on the semantic modeling 
language Taxis [MBW80] and the requirements modeling language RML [GBM86] at the 
University of Toronto. Besides our implementation, there have been two others with different 
philosophies [GS86, TK89]. Telos´ structurally object-oriented framework generalizes earlier data 
models and knowledge representations, such as entity-relationship diagrams or semantic networks, 
and integrates them with temporal information and with predicative assertions. This combination 
of features seems to be particularly useful in software information applications such as 
requirements modeling or software process control. A formal description of Telos can be found in 
[KMS*89]. The following example shall be used to illustrate the language:

A company has  employees, some of them being  managers. Employees have a  name 
and a salary which may change from time to time. They are assigned to departments 
which in turn are headed by managers. The boss of an employee can be derived from his  
department and the manager of  that  department.  No employee is  allowed to earn more  
money than his boss.

The object Employee is declared as an instance of the system object INDIVIDUALCLASS, meaning 
that  Employee is both a class and an individual. It has four attributes:  name,  salary,  dept and 
boss. These  attributes  are  themselves  objects  that  link  Employee to  other  objects.  The  class 
Manager is defined as a specialization of  Employee. It inherits the four attributes; moreover, all 
instances of Manager are also regarded as instances of Employee:

INDIVIDUALCLASS Employee WITH
attribute

name: String
salary: Money
dept: Department
boss: Manager

END

INDIVIDUALCLASS Manager ISA Employee

INDIVIDUALCLASS Department WITH
attribute

head: Manager
END

Telos represents two kinds of temporal information: the history time and the belief time [SA85]. 
The history time of an object states during which time interval the proposition is true. The belief  
time of an object is the time during which the knowledge base knew that object. The example 
below shows both times for an instance of the class  Employee.  The history time when  Bill 
earns 20000 is 1988 but the knowledge base learned about this on 11­Jan­1989:



  
INDIVIDUAL bill IN Employee WITH

name
hisname: "William T. Miller"

salary
earns: 20000 at 1988 believed 11­Jan­1989+

END.

The individual bill also shows another feature : attribute classes specified at the class level do not 
need to be instantiated at  the instance level.  This is  the case for the  department attribute  of 
Employee. On the other hand, they may be instantiated more than once:

INDIVIDUAL mary IN Manager WITH
name

hername: "Mary Smith"
dept

currentdept: PR
advises: R&D

salary
earns: 15000

END.

Telos treats all three kinds of relationships (attribute, isa, in) as objects; a small set of basic 
axioms hardcoded in the implementation defines their semantics [KMS*89]. Thus, each attribute, 
instantiation or generalization link of  Employee may have its own attributes and instances; for 
example, each of the four  Employee attributes is instance of an attribute class denoted by label 
attribute but can also have instances of its own. For example, the attribute with label earns of 
mary is  an instance of attribute  salary  of class  Employee;  syntactically,  attribute objects  are 
denoted  by  appending  the  attribute  label  with  an  exclamation  mark  to  the  name  of  some 
individual. The relationship between salary and earns could be expressed as

ATTRIBUTE mary!earns IN Employee!salary.

This  powerful  property  of  Telos  is  enabled  by  the  fundamental  data  structure  of  so-called 
propositions which also serve for the definition of the Telos semantics [KMS*89]:

propid = <sourceid, label, destinationid, validityinterval>.

The proposition (=object)  with identifier  propid declares that the proposition  sourceid has a 
relation  called  label to  destinationid for  the  time  validityinterval.  An  excerpt  of  the 
propositions for our example shows how the temporal information is represented in the formalism, 
and stresses the uniformity of the data structure:

Employee = <Employee,­,Employee,Always>
p4 = <Employee,salary,Money,Always>
...
bill = <bill,­,bill,Always>
...
p100 = <bill,earns,20000,1988>
p101 = <p100,instanceof,p4,1988>
p102 = <p101,instanceof,InstanceOf,11­Jan­1989+>
...

The proposition representation serves as the basis for the language formalization [KMS*89] but 
also for the graphical display of Telos models;  since proposition and frame representation are 
equivalent, a hypertext-like switching between textual and graphical modes of interaction is very 
natural (and heavily used in ConceptBase applications). 
Figure 2-1 shows a subset of the objects defined so far. Unlabelled links stand for instantiation 
relationships, greyed links for specialization. The remaining links are attributes; though not shown 
in the figure, all attributes are instances of the  attribute link of  CLASS.   The objects  CLASS, 
INDIVIDUALCLASS,  String and  Money are predefined. Time intervals different from Always are 
attached to the links. The predefined class InstanceOf holds all instantiation links. The validity 
intervals of the  instanceof links of  instanceof links (like  p102) are used to represent belief 
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Fig. 2-1: Temporal information and instantiation in Telos´ network syntax

The  user  interacts  with  a  knowledge  base  by  operations  ASK and  TELL.  Delete  and update 
operations are not included directly; instead, there are operations RETELL and UNTELL which 
end the belief intervals of objects [KMS*89]. 

The actual implementation of the Telos object language in the ConceptBase kernel system  is again 
divided into two layers [JJR88]. The upper one is responsible for managing frame structures and 
operations,  the lower one  for  physical  storage strategies  using graph algorithms based on the 
network representation. We shall not discuss storage issues in this paper.

2.2 The Decision-Object-Tool (D.O.T.) Model

In this kernel language, we can now formally introduce our model of software development and 
maintenance processes. First, we extend the system class  CLASS of fig. 2-1 by built-in attribute 
categories for dependencies and triggers, and then we introduce the metaclasses that define the 
structure of our model: intermediate results or design objects, design decisions that create or alter 
the objects, and design tools  that support the execution of decisions. 
The basic system object  CLASS is  extended by two additional attribute classes.  One induces a 
special kind of attributes called  dependson. The other introduces a class of  trigger links to 
externally defined procedures. With these extensions, CLASS is defined as follows:



  

INDIVIDUALCLASS CLASS WITH
attribute

attribute : CLASS
dependson : CLASS
trigger : BehaviorObject

END

Given the basic axioms of the Telos object language, this says that classes (= instances of CLASS) 
may have attribute  classes of categories  dependson and  trigger which in turn lead to  other 
classes respectively executable procedures. The (built-in) semantics of this is as follows. Classes 
which have attribute classes of type  dependson contain instances that are derived objects; the 
dependency attributes relate these objects to the objects they were derived from. Attribute classes 
of type trigger are associated with an activation condition (e.g., a new instance of the class is 
created, or an instance link is cut); an instance of the procedure they point to is generated and 
executed when the invocation pattern becomes true [KDM88].

Now let us take a closer look at the basic approach shown in fig. 1-1 of section 1 which is repeated 
in fig. 2-2 for convenience.

structure + deductive specification

structure + attached procedures

software process representation and tools dependencies

Fig. 2-2: Two-layered KBMS architecture connected by software process model

At first, assume that both the inputs and the outputs of the software process (i.e., the specification 
and the implementation) are black box objects. We only know that these two objects exist. We also 
assume that an arbitrary semantic description in Telos can be attached to an object, and that the 
content  of  the  black box (which  need not  be  understandable in  Telos)  is  pointed to  by some 
external reference. We call objects so described design objects and define the following metaclass 
for them:

INDIVIDUALCLASS DesignObject IN MetametaClass WITH 
attribute 

objsemantic : CLASS
objsource : ExternalReference

END

Now consider the rounded box in fig. 2-2. There are usually many possibilities how to implement 
a specification; design decisions are required to choose among these possibilities, based on general 
mapping knowledge and specific situation knowledge. The whole software process can be viewed 
as a large design decision which is composed from many smaller ones; execution of these small 
sub-decisions  creates  dependencies among  their  corresponding  input  and  output  components; 
taken together, these dependencies form a semantic description of the global decision. At the same 
time, they can also be used to identify subdecisions that must be replayed when an incremental  
change is intended. The following metaclass definition captures this intuition:

INDIVIDUALCLASS DesignDecision ISA DesignObject WITH



  
attribute

from, to : DesignObject
decsemantic : DecisionDescription

END

INDIVIDUALCLASS DecisionDescription IN MetametaClass WITH
attribute

dependencies : CLASS!dependson
END

The above metaclass definitions are very general in that the design objects mentioned there can be 
arbitrary intermediate results of any development process. Our intuition behind fig. 2-2 is stronger. 
Firstly,  we  expect  that  the  implementation-level  system  is  actually  executable,  not  just  an 
intermediate design result. Secondly, we expect that the deductive method specification actually 
expresses a relationship between input and output information. In other words, the specification 
itself has the structure of a design decision. Our two-layered KBMS (or small part thereof) should 
consist of a specification which follows the structure of the DesignDecision metaclass, and an 
implementation which is a BehaviorObject in the sense discussed earlier. This is captured by the 
notion of DesignTool:

INDIVIDUALCLASS DesignTool ISA DesignDecision WITH
attribute

from : DesignDecision
to : BehaviorObject

END

We  could  call  this  metaclass  "conceptual  software  object"  or  "reusable  component"  since  it 
captures what a subsystem does, and how its specification is related to its implementation. The 
name DesignTool is justified if we apply the above definition not to the deductive specification 
of the method but to the mapping task itself. For example, the "assertion compiler" in fig. 1-2, 
takes as its specification a methodology how to implement assertions as triggered procedures, and 
as its implementation a corresponding procedure. In this case, the dependencies show what has to 
happen if assertions are added, deleted, or altered; or if the optimization algorithm implemented by 
the compiler is changed. 

Fig. 2-3 represents the semantic network view of this software process model, emphasizing the 
relationships between objects,  decisions,  and tools.  From the design perspective,  the decision-
object-tool model describes where the behaviors come from and what they do. At execution time, 
only  the  trigger  attributes  attached  to  object  descriptions  (CLASS)  are  needed,  and the  design 
information is needed only when change occurs.

DesignObjectDesignTool
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CLASSDesignDecision to

trigger

isa dependson

DecisionDescription

decsemantic

dependencies

objsemantic

BehaviorObject

to
from
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Fig. 2-3: Software process metamodel formalized in Telos kernel language
So far, we have only outlined the basic structure of our model at a very abstract level, that of 
metametaclasses.  This  model  can  be instantiated  with  the  description  of  a  particular  software 
environment, consisting of specific classes of design objects, design decisions, and tools; in our 
case,  this  level  corresponds  to  the  description  of  ConceptBase  as  sketched  in  fig.  1-2  and 
elaborated in the next three sections. This environment model can be instantiated again with a set 
of particular specifications (such as rules about Employee), and yet another time to apply them to 



  
actual data (such as those about Bill and Mary).



  

3 Rules and Constraints as Knowledge Base Objects

We now turn to the first example of how the software process model and the structural kernel 
described in  section  3  can  be exploited  for  developing efficient  implementations.  In  order  to 
integrate predicative assertions into the object-oriented kernel, we represent both the assertions 
themselves and the way how assertion evaluators are attached to objects with the D.O.T. model. 
The assertion model we obtain is similar to the one proposed for HiPAC [DBM88] and its internal 
representation lends itself well to the large number of graph-based algorithms for deductive query 
processing and integrity checking in the literature [ULLM89]. Interesting features we obtain as 
side benefits of our approach include the following:

• In contrast to most other graph-based implementations, the structures needed for 
efficient implementation are objects of the language (Telos) itself, rather than 
obscurely hidden in implementation code.
• Modeling the development process for rule evaluators in the same manner as the 
rules themselves gives us a way to integrate different query optimization and 
integrity checking algorithms gracefully in order to obtain an overall efficient 
control strategy. It provides an alternative way of structuring extensible DBMS 
toolkits [FREY87, GD87] and allows incremental addition/ deletion of assertions.
• The possibility to represent derived data and dependencies in the model provides a 
basis for maintaining redundant information. Applied to the assertions themselves, 
we can materialize selectively rule-derived views to make, e.g., integrity control 
more efficient [BLAK87]. Applied to the design process, it generates bases of 
triggered procedures already at assertion insertion time. For example, we have 
implemented a design-time time version of the deductive integrity checking 
algorithm proposed by [BDM88] to save substantial work during system usage.

We first  describe the representation and evaluation of assertion objects,  and then only briefly 
sketch the design process model since it should be pretty obvious at this point. 

At the language surface, predicative assertions are integrated in Telos as special attribute values of 
metaclass  Assertion  which have no further structure known to the user.  Their  role as either 
deduction rules or integrity constraints is defined by the way how assertion objects are attached to 
other objects by attribute links. In principle, several different assertion languages can be integrated 
in this fashion and this fact is used in ConceptBase to integrate special-purpose theorem-provers 
for  software  engineering.  Here,  we focus  on  a  first-order  language as  in  deductive  databases 
[KMS*89]. In our example, consider the rule that deduces an employee´s boss, and the constraint 
that no employee should earn more than his boss:

RETELL Employee WITH
rule

bossrule: $ forall e/Employee,d/Department,m/Manager
e.dept=d and d.head=m ==> e.boss=m $

constraint
salarybound: $ forall e/Employee,m/Manager,x/Money,y/Money

e.boss=m and e.salary=x and m.salary=y
==> x =< y $

END
Thus, if bill has the department PR which is headed by  mary, then mary is the boss of bill and 
bill ´s salary should not be higher than mary ´s. 



  

In terms of Telos´ structural representation, we can view the rule text as labeling an individual 
proposition such as

rule1 = < rule1, $forall e/Employee ...$, rule1, time1 >

where time1 determines during which interval the rule should be applicable.

The  class  Assertion can  itself  be  viewed  as  a  specialization  of  the  metametaclass 
DesignDecision of the software process model. For rules, the conditions correspond to the from 
design objects, and the conclusion to the  to design objects; for constraints, the to object is a 
special object class which can take values ´consistent´ or ´inconsistent´. Being a design decision, 
each assertion can be associated with a set of tools called assertion evaluators. Moreover, each 
input  object  mentioned  in  the  assertion´s  literals  can  have  a  trigger  attribute  that  fires  these 
evaluators under certain conditions (e.g., when it is instantiated). 

d.head=m

RuleRuleEvaluator Literal

condition

conclusion

evaluator
ATTRIBUTECLASS

concerns

$ forall e ... =m $

cond1
concernsdept

br_dept(e,d)

call1

e.boss=m
concl1

actrigger

Employee Department
dept

depttrigger

DesignObjectDesignTool

from

by CLASSDesignDecision to

trigger

objsemantic

BehaviorObject

to

from

PrologCall

invocation

e.dept=d

cond2
EvalBossRule eval

Fig. 3-1: Modeling assertion languages as decision classes
Figures 3-1 and 3-2 illustrate the model. Figure 3-1 shows part of the model for assertions as an 
instantiation of the generic  software process models.  As a particular  instance of this  assertion 
model, the structure of the example deduction rule is also sketched. This shows the situation at 
compile time: the rule is entered as an instance of metaclass Rule such that its input description 
points, e.g., to the dept link. 



  

If there are more rules and constraints, an object such as the dept link may be associated with a 
large  number  of  triggers,  some  to  be  fired  upon  instantiation,  some upon  invalidation  of  an 
instance  link,  etc.  Thus,  we have  an  object  with  encapsulated  procedures;  but  of  course,  the 
existence of these procedures depends on the existence of the assertions that they implement, and 
on the further acceptance of the implementation algorithm (here, a forward chaining technique 
proposed by Decker [BDM88]).

Figure 3-2 illustrates the firing of such generated triggers for the deductive integrity optimization 
algorithms proposed in [BDM88] of which an incremental design-time version was implemented 
in  ConceptBase  [KRÜG89].  The  algorithm  generates  specialized  procedures  separately  for 
insertion and invalidation of each object where this operation could violate the constraint. Forward 
evaluation procedures are attached to rules whose consequents generate or delete objects such that 
a constraint could be violated. In this way, only the necessary forward operations are conducted 
for each update, assuming that he KB was consistent before. Special tests have been added by us 
for the addition or deletion of rules and constraints where data already exist.
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Fig . 3-2: Using the network for deductive integrity checking
When we insert  the  worksfor attribute of object  bill as an instance of the  dept attribute of 
Employee, the procedure br_dept(e,d) is triggered. The formal parameters are replaced yielding 
the actual call br_dept(bill,PR) which can be considered an instance of the procedure. Using 
the ledby link of PR the boss of bill is computed and inserted in the KB. Since its class, the boss 
attribute of Employee, has a trigger, too, another procedure call sb_boss(bill,mary) occurs. The 
two salaries  of  bill and  mary are  compared  and  inconsistency  is  determined.  Note  that  the 
representation of the rule object itself is completely ignored in this cycle; it is reactivated if the 
rule or the optimization algorithms change. The following ConceptBase screendump shows the 
same situation. In the graph editor window, the specific metaclasses for the algorithm of [BDM88] 
are shown; one editor window shows the class definition of Employee, another one the attempted 
instantiation with a new employee,  bill,  who violates the constraint as explained in the error 



  
window.



  

Fig. 3-3: ConceptBase screendump demonstrating deductive integrity control



  
4 Knowledge Base Version and Configuration Management

The  second  application  of  this  implementation  strategy  concerns  version  and  configuration 
management.  To  limit  search  space,  large-scale  knowledge  bases  have  to  be  partitioned. 
Partitioning needs to be done by topic as well as by temporal validity of the knowledge. It requires 
configuration management  to  compose  knowledge  base  views  from  existing  components. 
Versioning is intended to provide a temporal or organizational classification.
Thus, each ConceptBase knowledge base is represented by a (possibly recursive) configuration of 
subparts representing content-oriented modules and temporal versions. Following the same line of 
argument as before, this section discusses how to model versions and configurations conceptually 
by design decisions, and how to model the process of implementing these conceptual decisions as 
structures and operations on existing software version and configuration management tools which 
work at the file level. In this paper, we apply this model to ConceptBase itself; in [RJ89], it is  
elaborated  in  much  more  detail  for  general  version  and  configuration  management  tasks  in 
software engineering.

4.1 Conceptual Version and Configuration Decisions

In  a  first  step  of  applying  our  software  process  model  to  this  problem,  we  could  view 
configurations  as  a  special  kind  of  design  decisions  similar  to  deduction  rules.  In  this  case, 
configurations  would  be  created  on  demand  from  these  rules  and  forgotten  immediately 
afterwards.  Of course, this would be rather inefficient. Therefore, we enrich the rule model by 
allowing redundant storage of the decision results. In this case, correspondences (possibly many-
to-many) between multiple  redundant  representations  of the same data  must  be maintained to 
ensure their mutual consistency; dependencies enable us to describe these correspondences at a 
very detailed level, facilitating incremental change without total recompilation along the lines of 
systems  such  as  Cactis  [HK87].  At  the  same  time,  the  model  is  quite  compatible  with 
version/configuration/equivalence modells as proposed in [KCB86].

The basic concept to structure a knowledge base is  a  module.  A module represents a view of 
objects of the knowledge base and comprises two properties: an interface and an implementation. 
The interface describes properties visible from the outside of the module. The implementation 
represents a configuration of objects satisfying the interface description. Each configuration object 
is justified by a configuration decision which takes the components as its inputs and the module 
interface  as  its  output.  In  the  following,  we  discuss  two  kinds  of  configuration  and  their 
correspondences  in  ConceptBase,  namely  conceptual  configurations  (which  objects  belong 
together from a content perspective?) and source configurations (which objects are stored together 
physically?). 

Figure 4-1 shows two versions of a conceptual module  Telos_CompanyModel representing the 
complete  Telos  model  of  a  company  as  presented  in  section  2.1.  The  decision  Configure­ 
Company configures  a  first  version of  this  object  from the design objects  Telos_Department, 
Telos_Manager  and  Telos_Employee86.  These design objects  are individuals of the process 
model  and  used  to  represent  the  Telos  objects  Department,  Manager  and  Employee. 
Telos_Employee86 represents the individual class Employee before introducing assertions. The 
decision  description  ConfigDescr aggregates  the  semantic  dependencies  of  this  configuration 
which only refer to a temporal constraint on the configuration (grey vertical arrows in figure 4-1), 
namely that all components of the configuration should be valid during 1986.  Consistency and 
maintenance of configurations can be handled by such dependencies. 

Assume that the rules mentioned in section 3 are added to  Employee  in 1988. The new version of 
Employee is  named  Telos_Employee88.  Telos_Employee88 is  not  allowed to  be  part  of  the 
configuration  ConfigureCompany because  of  the  temporal  dependency.  ConfigureCompany88 
represents the new version of the configuration decision.
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Fig. 4-1: Configuration of the extended company model

4.2 Representing the Implementation-Level System

The storage of the company model on external devices, i.e. the implementation of the conceptual  
configuration, is depicted in figure 4-2. The semantic description of source code design objects 
may  comprise  their  allocation,  version  identifiers,  access  rights,  etc.  Similar  to  conceptual 
modules, source codes can be configured to source modules. For instance, a group in a source 
code management  system like  CMS [DEC82]   is  a  set  of  sources  with  an  associated  access 
specification.  Thus,  the  decision  CompSourceModule represents  the  configuration  of  source 
module  CMS_CompGroup.  Solid lines in figure 4-2 show the source configuration for the 1986 
version of the company model. In the greyed new version,  CompSourceModul 88, the developer 
has decided to keep the source object CompanySources unchanged but to store the assertions in an 
extra file CompanyAssertions intended to collect all constraints and deduction rules of the model. 
Thus, the new version of the source model consists of a source object with the old source text and 
an additional file.
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CMS_CompGroup 88
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Fig. 4-2: Configuration of source objects for the company model 
4.3 The Conceptual-To-Physical Mapping



  

Finally,  we  look  at  the  correspondences  between  the  conceptual  and  the  source  view of  the 
knowledge base, i.e. implementing conceptual configurations by existing implementations. This 
implementation  process  is  represented  by design  decisions  (details  about  process  support  and 
interactive decision assistance in [RJ89]) which map a conceptual configuration of Telos classes to 
a reasonable source representation and source configuration. 

Figure  4-3  shows  the  correspondence  between  the  modules  Telos_CompanyModel and 
CompSourceModule. The semantic descriptions  BodyDescr and  GroupDescr have as attriubutes 
the members of the module configurations. These memberships are derived from the configuration 
decisions  ConfigureCompany88 and  CompSourceModule88. The semantic description of such a 
correspondence  decision  describes  the  interrelationships  among  conceptual  and  source 
memberships (grey arrows in figure 4-3), as discussed above. It can be easily seen how this kind 
of model could be used to determine which source modules to look at to find information about a 
conceptual module for a given validity interval; for instance, if the user is interested in the 1986 
version, he has to retrieve only one source module.
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SourceCorrDescr

fromTelos_Model

toCMS_Source

Telos_CompanyModel

Fig. 4-3: Correspondence between conceptual model and its source representation

ConceptBase currently employs SCCS/NSE for the SUN-UNIX environment and CMS/MMS for 
the VAX-VMS environment for source code management; distributed source code management 
becomes possible due to the common conceptual configuration model. The ConceptBase 
screendump in fig. 4-4 illustrates this with a larger example: a knowledge base about the 
ConceptBase implementation we use to control our own development efforts. The screendump 
shows in a hierarchical browser on the SUN (lower right window) a Telos model of the CMS 
storage of the DEC version of the ConceptBase implementation. The right upper window shows 
actual interaction with this version via remote access to a MicroVAX, whereas the graphical editor 
on the left documents the decision instance to put the ConceptBase version on DEC together in the 
manner required for this situation (that is, with an ASCII terminal interface since we cannot 
emulate DEC graphics on the SUN).



  

Fig. 4-4: ConceptBase screendump demonstrating configuration management

5 User Interfaces as Configurations of Derived Data

A discussion on usage environments has to cover many topics. A first one concerns the data 
integration of usage environment and kernel system, i.e. how to control the consistency among 
knowledge base objects and graphical structures displayed on screen. A second topic concerns the 
functionality of tools, i.e. one has to determine a graphical presentation and functionality which 
supports the representational framework of the knowledge representation language. At first, this 
section describes a conceptual approach to represent user interfaces and control their consistency. 
Subsequently, it sketches the actual interface tools of ConceptBase; other interface-related issues 
such as dialog control can be modeled again with nested design decisions but this is ongoing work 
which will be reported elsewhere.

Our configuration model is almost directly applicable to interface management as well. In general, 
a screen consists of a set of windows each managed by a tool (e.g. an editor/ browser). Since each 
window handles a set of objects derived by some deduction rules, it can be represented as a 
configuration module (fig. 5-1) whose interface specifies what objects configure it and how to 
present them on the screen. For instance, BrowserConf describes the configuration of those 
objects to be displayed by a browser and EditorConf describes the configuration of the editor; 
consistency of externally displayed views can be controlled in case of modifications by the kernel 
system or an interface tool. Correspondences between different views also allow the propagation 
of constraints across windows.
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To exploit the hybrid nature of Telos, we decided to define views that allow for a hypertext-like 
style of interaction. Therefore, the environment allows arbitrary switching between graphical and 
textual (frame) modes of display and interaction by attaching a selection and modification facility 
to each view. An impression of the interface can be gained from the screendumps of figures 3-3 
and 4-4. Rather than explaining each tool in detail [EJJ*89], we just give an architectural 
overview.

The ConceptBase usage environment is organized in three layers, as shown in figure 5-2. The 
bottom layer provides a box of interface and configuration tools  which process uninterpreted 
strings (e.g. object identifiers) and structures. These tools implement decision classes on graphical 
presentations and may be utilized for different purposes by the usage environment. The usage 
environment itself comprises tools for editing Telos objects, browsing classification or 
generalization hierarchies, etc. These tools support decisions which can be applied to knowledge 
bases. They consist of three parts. The first obtains a view to be displayed by calling a tool to 
manage user interaction by panels. The second derives the specified view. The third transforms 
this view to a structure processable by the interface objects of the tool box. The middle layer of 
fig. 5-2 relates screen-oriented and knowledge base-oriented views by defining correspondences 
between windows (screen configurations) and conceptual configurations (e.g., query results to be 
displayed).

6 Conclusion: Towards Incremental Object Development in KBMS

We tried to show how a decision-object-tool model of software processes can represent and 
support (a) the specification of implicit knowledge, and (b) the implementation of such 
specifications by object-oriented databases. Although our experience with ConceptBase has shown 
the usefulness of this approach only for relatively simple cases, we believe that it can be extended 
to more general cases. 

Before pointing out our plans in this directions, we briefly summarize the results of this paper 
concerning the three different mapping tasks identified in the ConceptBase implementation.

First, we modeled deduction rules and integrity constraints as deterministic (and therefore 
automatable) "design decisions" and showed that the graph structures derived from such a model 
are identical to those used by various optimization algorithms. Moreover, the approach led us to 
develop incremental versions of these algorithms applicable at design time rather than system 
usage time.

Second, we attacked a more complicated case in which manual and automated decision-making 
interact, namely the creation and administration of consistent versions of configurations. This 
allows the user to talk about conceptual components of the system while internally using efficient 
commercial configuration managers which work on source objects not isomorphic to the 
conceptual ones.

Finally, we combined deduction and configuration aspects in modeling the ConceptBase usage 
environment as a configuration of derived data, similar to the approach taken in Postgres [SHP88]. 
This approach is proving very helpful in extending the system to true hypertext (or even 
hypermedia) capabilities.

To achieve more generality, one has to look for more powerful mapping technology. Work in 
"automatic programming" such as exemplified by the CHI/REFINE system [SKW85]  is an 
important source for such methods; formal transaction verification techniques such as those 
investigated by [SS86] can also be of use. Then we can use a basic software process manager such 
as the current version of ConceptBase to manage and document the mapping processes supported 
by such tools.



  
In an ESPRIT project called DAIDA [DAIDA89], an initial effort was made to map general 
transaction specifications expressed in a purely declarative version of the semantic modeling 
language, Taxis [MBW80], to procedural code written in the database programming language, 
DBPL [BMSW89]. Taxis transactions are specified by preconditions, goals, and invariants. A 
theorem-proving assistant is then used to convert this specification into a set-oriented formalism 
and to apply verified refinement steps until a specification is reached that can be directly translated 
into a satisfactory database program. The design decisions and proofs are recorded by 
ConceptBase using an instance of the D.O.T. model, in order to reduce the need for re-proving and 
to maintain the relationships between specification and implementation [JJR*89]. There is still a 
lot of research needed for a sufficient automation of the proving process, and incrementality of the 
mapping algorithms as well as efficient dependency tracking procedures in ConceptBase itself 
remain to be investigated. Nevertheless, the initial results obtained in coupling such a 
transformational software development tool with a knowledge base supporting our software 
process model look quite promising.

A second area of further research we are interested in concerns a more direct logical formalization 
of our model; currently, this formalization is given only indirectly via the logical semantics of 
Telos. It would be quite interesting to understand the relationship of our approach to recent work 
on metalevel logic programming [LLOY89] which follows similar goals but also to studies of 
declarative update languages [ABIT88].
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