
Query Optimization

in

Deductive Object Bases

Manfred Jeusfeld

y

, Martin Staudt

z

y

Universit�at Passau, 8390 Passau, Germany, jeusfeld@uni-passau.de

z

RWTH Aachen, 5100 Aachen, Germany, staudt@informatik.rwth-aachen.de

Abstract

1

. Deductive object bases are extended database systems

which amalgamate structural object-orientation with logical speci�ca-

tion. Queries in such a system are regarded both as classes and as

deduction rules. Besides a general architecture for query processing in

deductive object bases, two speci�c query optimization techniques are

presented: semantic query optimization with structural axioms of the

object base, and view maintenance optimization. The approach has

been formalized in the language Telos and implemented in the system

ConceptBase.

1

This work has been supported in part by ESPRIT BRA 3012 Compulog. A version of

this paper also appears in Freytag, Maier, Vossen (eds.): Query processing in object-

oriented, complex-object, and nested relation databases, Morgan Kaufmann, 1992.

1

1. Introduction

Traditionally, databases are systems for storing and accessing large amounts of shared

persistent data in a secure way. Database research has always been concerned with pro-

viding e�cient methods for these tasks. One major conjecture was that data should be

independent from speci�c application programs. This point of view has been materialized

by the relational-style databases. They provide a simple and very attractive data model,

and declarative query languages. Compared to complete programming languages, a query

language is usually rather limited { a limitation that has an important bene�t: it is easier

to prove properties of queries. One such property is guaranteed termination. Another is

the ability to decide whether two expressions are equivalent. The latter is a prerequisite

for query optimization. While relational (and deductive) databases were very successful

partly because of their query optimizers, they can fail for complex applications like design

[MAIE86]. The reason for this failure is the too simple data model which is unable to de-

scribe adequately the data strutures manipulated by such applications. Another drawback

is the total negligence of operational properties of data, aka abstract data types [GUTT75].

Object-oriented databases address these problems by their richer type (or class) system

and - at least a few of them - by their ability to store operations or methods together

with the data. At the �rst glance, the added complexity implies some obstacles for query

optimization. For instance, a complete programming language for methods introduces un-

decidability when they are used within queries (like e.g. in O

2

[BCD89]). The notion of

complex objects o�ers a multitude of nested structures that can all hold the same kind of

data. This makes it a more di�cult task to combine such data. Shaw and Zdonik [SZ90]

propose a whole array of di�erent equality operators dependent on the nesting depth of

objects. The problem arises from the distinction between objects given by their identi�er

and objects given by its (composite) value (see also [BEER90]).

This paper pleads for a deductive style of object bases achieved in a two layer architecture

(see �g. 1). The top layer of such an object base system consists of declarative expressions,

i.e., frame-like object speci�cations, views (esp. for complex objects), deductive rules,

general integrity constraints, and a query language. All of these items are �rmly based

on a �rst-order theory of object bases. This layer corresponds to a modi�ed view of

databases as systems for managing a model of knowledge about the world in an accessible

and accurate manner for users. Some basic optimization techniques for the logical layer

are simpli�cation methods [NICO82,BCL89], recursion optimization [BR86], and semantic

query optimization [JARK84,CGM90]. They have in common that optimized formulas are

obtained by partially evaluating either integrity constraints or update speci�cations with

queries. The bottom layer contains the implementations of the logical expressions. Object

names are mapped to object identi�ers which behave similar to virtual memory addresses.

The basic optimization techniques at this level are rewritings of algebraic expressions

(e.g. [FREY87,GD87]), and redundant data, esp. indices (e.g. [KM90a]). An integrated

trigger mechanism at the implementation layer meets the requirements for active database

systems whose active components enable the creation and execution of data manipulation

operations in a production rule like way. In our view and also in our implementation these

action rules are compiled automatically from the speci�cations at the logical layer [JK90].

Other approaches propose semi-automatical derivation methods with user interaction for

purposes of integrity checking and view maintenance [CW90,CW91].

2

Logical specification layer

- frame-like objects
- views
- complex objects
- integrity constraints
- partial evaluation

- declarative queries
- deductive rules
- value orientation
- concept specialization

Active database as implementation layer

- objects as data structures
- redundant data
- indices
- persistency & recovery

- specialized algebra
- trigger mechanism
- oid’s as pointers
- procedure invocation

mapping

Fig. 1: Architecture of a deductive object base

We claim that such a two layer architecture is able to combine both deductive-relational

query optimization and the advantages of an object-oriented data model. This claim is

justi�ed as follows:

. Section 2 de�nes deductive object bases as a special case of a deductive data-

bases with integrity constraints. Object-oriented abstraction principles like

object identity, classi�cation, and specialization become axioms of a �rst-order

database theory.

. Queries can be de�ned as classes whose instances are the answer to the query

(section 3). Such a view allows to classify queries into the class hierarchy of

the object base. A mapping of queries to deductive rules precisely de�nes the

semantics of such queries.

. The increased structure of object bases can be used to perform semantic query

optimization based on the structural axioms of the object model. Section 4.1

shows, as an example, the exploitation of the attribute typing axiom in order

to eliminate class membership predicates.

. Trigger mechanisms from deductive integrity checking methods are taken to

optimize views, i.e., queries whose answers are maintained consistent with the

object base (section 4.2). The mechanism works in combination with (recur-

sive) deductive rules. An additional bene�t of maintained views is that they

can help to optimize ad hoc queries which are subclasses to the view.

The interplay of these logic-based optimization techniques with the algebraic and index-

ing techniques is sketched in the introduction to section 4. Experiences gained from an

implementation within the deductive object base ConceptBase [JARK91] are reported in

section 5.

3

2. Object Bases as Deductive Databases

Most query optimization techniques have been developed for relational and deductive data-

bases. On the other hand, the relational model has intrinsic weaknesses [JACK90] and

performance comparisons [DD88] indicate that object-oriented databases can beat their

relational counterparts, esp. when following references. This section presents object bases

to be special cases of deductive databases (EDB,IDB,IC). EDB is the extensional database

of base relations, IDB is a set of deductive rules, and IC is a set of integrity constraints.

The formulas in IDB [IC have to be range-restricted [NICO82] which is a widely ac-

cepted su�cient condition for domain independence (see [BRY88,ML90] for more details).

To ensure unique perfect models, we also assume that the set IDB is strati�ed [CGT90].

The next subsection de�nes the extensional database for deductive object bases. Then,

the object-oriented principles are de�ned by axioms based on the extensional object base.

The uniform representation of classes and instances requires an adaption of the notion of

strati�cation for de�ning the semantics of deductive rules.

2.1. The Extensional Object Base

The de�nition of the structure of an object base has considerable impact on the possible

operations on it. For relational-style databases these operations are restricted to tuple

updates on the base relation of the EDB. More demanding applications like software design,

computer supported cooperative work, and others are characterized by two requirements

that are hard to ful�ll by relational-style databases:

. Updates on the database schema are frequent as the knowledge of the ap-

plication domain is evolving. A data model that makes schema updates a

cumbersome task is not appropriate.

. The data structures to be processed by the application tend to be dynamic in

size rather than �xed as for �rst normal form tuples. Delivering exactly the

required data structures for the application program is a precondition for a

seamless integration of a database with the application.

For the reasons mentioned before we adopt an object model originally proposed for the

requirements engineering of information systems: the knowledge representation language

Telos [MBJK90]. In Telos classes, instances, attributes, instantiation and specialization

relationships are uniformly represented as quadruples:

De�nition 1

Let ID ;LAB , LAB � ID , be countable sets of identi�ers or labels, resp. Then a �nite

set

OB � fP(o; x ; l ; y)j o; x ; y 2 ID ; l 2 LABg

is called an (extensional) object base. The elements ofOB are referred to as objects.

In fact, this de�nition of an object base is like a total decomposition of a relational database

into binary relations [ABRI74] with two important di�erences:

1) Each binary "tuple" gets an object identi�er which enables references from and to

it.

4

2) The "relation name" is an argument of the quadruple. That allows quanti�cation

over such labels without leaving �rst order logic.

The intuition behind an object P (o; x; l; y) is that there is a relation l between the objects x

and y. This relationship is itself an object with identi�er o. In a graphical representation,

individual objects, P (o; o; l; o), are drawn as nodes. The other objects are links (attributes).

Two special labels are reserved: P (o; x; in; c) denotes that the object x is an instance of

the (class) object c, and P (o; c; isa; d) de�nes c to be a subclass of d. The semantics are

de�ned by axioms of the object base theory (see next subsection).

In contrast to types in programming languages [CW85] classes do not express su�cient

conditions for class membership but only necessary conditions. This is especially true for

the attributes of a class: an instance of a class may instantiate these attributes but is not

obliged to do so (provided there are no additional integrity constraints demanding that).

Figure 2 shows an example Telos object base on patients and drugs.

Object

DrugSymptom Patientsuffers takes

drug1

attribute

MalePatient

OldPatient

Appendicitis Sam
sympt1

Fenta

Aspidrug2

against

in in in

in

in

in

in
in

in in

isa

isa

Fig. 2: Object base for the drug example

The class Patient has an attribute labelled takes to the class Drug. Both MalePatient

and OldPatient are subclasses of Patient where the former has an instance called Sam.

Sam has two attributes drug1 and drug2 which are both instances of the takes attribute

class. The destinations Fenta and Aspi are instances of the class Drug. It should be noted

that the graph does not contain oid's but only labels. An object base for �g. 2 would look

like

OB = f P(#Pat,#Pat,Patient,#Pat), P(#MP,#MP,MalePatient,#MP),

P(#isa1,#MP,isa,#Pat), P(#OP,#OP,OldPatient,#OP),

P(#isa2,#OP,isa,#Pat), P(#Drug,#Drug Drug,#Drug),

5

P(#Sympt,#Sympt,Symptom,#Sympt), P(#tak,#Pat,takes,#Drug),

P(#su�,#Pat,su�ers,#Sympt), P(#ag,#Drug,against,#Sympt),

P(#Sam,#Sam,Sam,#Sam), P(#in1,#Sam,in,#MP),

P(#Fen,#Fen,Fenta,#Fen), P(#Asp,#Asp,Aspi,#Asp),

P(#in2,#Fen,in,#Drug), P(#in3,#Asp,in,#Drug),

P(#dr1,#Sam,drug1,#Fen), P(#dr2,#Sam,drug2,#Asp),

P(#in4,#dr1,in,#tak), P(#in5,#dr2,in,#tak), P(#App,#App,Appendicitis,#App),

P(#in6,#App,in,#Sympt), P(#sy1,#Sam,sympt1,#App) g

A frame-like representation of objects and their properties is solely based on object labels

(the third component of an object quadruple). The objects of �g. 2 are mapped from the

following frames:

Object Patient with

attribute

takes: Drug;

suffers: Symptom

end

Object MalePatient isA Patient

Object OldPatient isA Patient

Object Fenta in Drug

Object Aspi in Drug

MalePatient,OldPatient Sam with

takes

drug1: Fenta;

drug2: Aspi

suffers

sympt1: Appendicitis

end

Labels for individual objects have to be globally unique. Attribute labels have to be unique

within the same frame. The classes of an object are written before the object, superclasses

are preceded by the key word isA. The attributes of an object are instantiated from to

the attributes of the class by grouping them under the class attribute label. We omit the

formal de�nition, esp. the conict resolution on multiple inherited attributes with identical

labels. The object Sam shows that the attribute takes may be instantiated several times.

There are some objects whose oid has a meaning outside the object base. These objects

are called values [BEER90]. Examples for (atomic) values are numbers and strings. We

write values as objects of the form P (v; v; v; v), i.e., individual objects whose label and oid

are the same [KMSB89].

2.2. Deductive Object Base Theory

From the deductive database standpoint an object base (def. 1) is an extensional database

with a single relation. That situation is undesirable since each update deductive rule

and each integrity constraint would be a�ected by any update. This section presents

an axiomatic de�nition of object-oriented abstraction mechanisms (partially taken from

[MBJK90,KMSB89]). Deductive rules and integrity constraints are expressed with three

literals for instantiation, specialization, and attribute relationships. Strati�cation is then

applied to a rewriting of the formulas where class object identi�ers are used as predicate

names.

6

The �rst axiom de�nes object identity. No two objects in the extensional object base may

have the same identi�ers.

8 o; x

1

; l

1

; y

1

; x

2

; l

2

; y

2

P (o; x

1

; l

1

; y

1

) ^ P (o; x

2

; l

2

; y

2

))

(x

1

= x

2

) ^ (l

1

= l

2

) ^ (y

1

= y

2

)

(A

1

)

For individual objects the label (third component) must be unique within the object base,

too. The next three axioms induce base solutions for the three literals for instantiation,

specialization, and aggregation. These three literals are later used to formulate deductive

rules and integrity constraints.

8 o; x; c P (o; x; in; c)) In(x; c) (A

2

)

8 o; c; d P (o; c; isa; d)) Isa(c; d) (A

3

)

8 o; x; l; y; p; c;m; d P (o; x; l; y) ^ P (p; c;m; d) ^ In(o; p)) A(x;m; y) (A

4

)

Inheritance of class membership is a deductive rule. The Isa literal is de�ned to form a

partial order on the set objects identi�ers of an object base (another 3 axioms not shown

here).

8 x ; c; d In(x ; c) ^ Isa(c; d)) In(x ; d) (A

5

)

The next axiom declares the "weak" attribute typing in a Telos object base. Objects may

instantiate the attributes of their classes only if the destination of the attribute belongs to

the right class.

8 o; x; l; y; p P (o; x; l; y) ^ In(o; p))

9 c;m; d P (p; c;m; d) ^ In(x; c) ^ In(y; d)

(A

6

)

Axiom A

4

provides a single literal A(x;m; y) for all attribute accesses from an object x

to its attribute value y (sometimes written as x:m = y). In object-oriented languages it

is common to allow the use of the same attribute label m for di�erent classes. The next

axiom demands that for any object x the literal A(x;m; y) is uniquely assignable to an

attribute class with label m. If there are two di�erent attribute classes that x instantiates,

then there must be a common subclass of them:

8 x;m; y; c; d; a

1

; a

2

; u; v In(x; c) ^ In(x; d) ^A(x;m; y) ^ P (a

1

; c;m; u) ^ P (a

2

; d;m; v)

) 9 e; a

3

; w In(x; e) ^ P (a

3

; e;m;w) ^ Isa(e; c) ^ Isa(d; e) ^ Isa(a

3

; a

1

) ^ Isa(a

3

; a

2

)

(A

7

)

The rest of the axioms (unique labeling, re�nement of attributes for subclasses, membership

to prede�ned classes) are omitted for sake of readability [JEUS91].

2.3. Deduction and Integrity

Deductive rules and integrity constraints are range-restricted �rst order formulae over the

three literals In, Isa, and A. Range-restrictedness can be guaranteed by assigning the

quanti�ed variables to classes: 8 x=C ' stands for 8x In(x;C)) ', and 9 x=C ' stands

for 9x In(x;C)^'. This syntax is not a real restriction since variables in our model always

refer to elements in the object base.

7

E�ciency and strati�cation in deductive databases depend on the number of base and

deduced relations. The above de�nition o�ers one base relation P and three deduced

relations In, Isa, A. That number is surely not satisfactory. Therefore, a restricted inter-

pretation of deductive rules and integrity constraints is adopted. Firstly, an object base

with only A

2

�A

4

as deductive rules delivers ground facts for the three predicates. Note

that the axioms are range-restricted and strati�able. For a ground fact A(x;m; y), the

closure axiom [REIT84] applied to A

4

guarantees the existence of an object P (p; c;m; d)

to which an attribute of x was instantiated to. We extend the deduction machine by a rule

that delivers a fact A:p(x; y) for each such p. Similarily, a fact In:c(x) for each ground

fact In(x; c) is derived. The Isa-literal remains unchanged. These modi�cations extend

the number of literals by all class and attribute identi�ers.

Now, deductive rules and integrity constraints are rewritten such that they only contain

A:p, In:c and Isa literals. For the In literal, this rewriting is trivial provided the second

component is a constant. Otherwise the formula is rejected (see [JJ91] for handling meta

formulas which range over classes). The interesting case is the literal A. Let A(x; l; y) be

a literal occurrence in a formula ' where x is bound to class c. Then c

0

is de�ned to be

the lowest superclass of c that has an attribute labelled l. If there is such a c

0

at all, then

it is uniquely de�ned due to axiom A

7

. The following example shows that there are cases

where no such class exists (#Obj is the identi�er of the system class Object which has all

objects as instances):

8 x=#Obj A(x; takes; 1000)

Such formulas are forbidden as deductive rules or integrity constraints. The re�nement of

attributes creates no further problems since axiom A

7

demands a specialization relation

between those attributes. Thereby, instances of re�ned attributes will also be visible at

their superclasses.

The text representations of deductive rules and integrity constraints uses labels instead of

object identi�ers. The mapping from labels is a compilation task and not subject of this

paper. The administration of the formula strings is done within the object base: they are

stored as instances of the prede�ned classes DeductiveRule and IntegrityConstraint.

Both are attributes of Object. As an example, a constraint demanding a patient to have

at least one symptom, is assigned to the class Patient:

Object Patient with

attribute

takes: Drug;

suffers: Symptom

constraint

sick: $ forall p/Patient exists s/Symptom A(p,suffers,s) $

end

The string represents the formula

8 p In:#Pat(p)) 9 s In:#Sympt(s) ^ A:#su� (p; s)

which becomes part of the set IC in the deductive object base (OB,R,IC). The concerned

attribute of A(p; su�ers; s) is #su�. Note that the constraint may only become part of

the deductive object base if the rewriting of the literals succeeds. Further examples with

recursive deduction rules are in [JJ91].

8

3. Queries as Classes

Many proposals exist in the literature for query representation formats in the context of

object-oriented databases and knowledge representation systems. One group uses query

languages adapted from conventional databases e.g. SQL like languages augmented by

some typical object-oriented constructs (ORION [BKK88], Iris [LHW90], O

2

[BCD89]).

Another group of query languages is based on �rst order logics with a link to deductive

databases, e.g. [AG91,KLW90]. They investigate the relations of complex objects and

operations (given by their signature) with logical statements about the object base. Among

the derivatives of the knowledge representation language KL-ONE the systems CLASSIC

[BBMR89] and CANDIDE [BGN89] o�er a frame format for queries. Queries are described

as any other concept stored in the knowledge base (KB). Kernel of these systems is a

subsumption algorithm which is used to store new objects and to evaluate queries by

temporary placement in the KB. Candidates for answer objects are those objects positioned

underneath the query concept within the concept and individual hierarchy of the KB. An

important advantage of these classi�cation based query languages is their nearness to the

underlying data description language. The main concepts of the data model occur in the

query language too which means clearness and user friendliness. In addition queries are

seen as objects which can be stored in the KB and manipulated in any other way. Answers

are always objects already existing in the KB.

In [STAU90] this latter idea of query representation has been adopted and used to build

up a query language for the above outlined notion of an object base. Using for objects

the frame notation of the last section a metaclass QueryClass

2

shall contain all possible

queries which themselves are classes. Following the instantiation and classi�cation princi-

ple instances of a query class are answers to the represented query. To express necessary

and su�cient membership conditions for answer instances in query classes by which mem-

bership can be tested and answers be computed we have on the one hand the possibility

to specify structural constraints like in the above mentioned classi�cation based query

languages.

First, query classes can have super classes to which they are connected by an isa link.

These super classes restrict the set of possible answer instances to the common instances

of the super classes of the query class.

QueryClass Q1 isA MalePatient,OldPatient

MalePatient and OldPatient are here assumed to be themselves subclasses of Patient.

Since the two specialization relationships represent the only membership condition for Q1

the answer consists of the intersection of the instances of both subclasses of Patient.

Second, query classes may have attributes of two di�erent types. The �rst kind of attributes

are inherited of one of the super classes . If such an attribute is speci�ed explicitly in

a query class description this means that answer instances are given back with value

instantiations of this attribute, similar to projection in relational algebra. In addition, this

explicit speci�cation includes a necessary condition for the instantiation of the attribute

with an admissible attribute value by the answer instances. This necessary condition can

2

An approach with similar properties has independently been proposed in [AB91].

9

be enforced by specializing the target class of the inherited attribute. Then an answer

instance must instantiate the attribute with a value which is instance of this more special

class.

QueryClass Q2 isA MalePatient,OldPatient with

attribute

takes: ADrug

end

ADrug is assumed to be a specialization of class Drug. Q2 inherits attribute takes from

class Patient via direct superclass MalePatient or OldPatient. These answer instances

are the common instances of both super classes which actually take drugs of the class

ADrug.

Attributes for query classes of the second type are attributes whose instantiation value by

an answer instance is computed during the query evaluation process. That means that a

relation between the answer instance and the computed attribute value is not necessarily

stored explicitly in the KB or deducible by a stored deduction rule but nevertheless part

of the answer. The prescription how to deduce these attributes must be included in the

de�nition of the query class and can obviously not be done in a structural way without

loss of generality. So there is need for a supplementing formalism. As assertions (integrity

constraints and deductive rules) are used in the data description language of the object

base, typed �rst order logic expressions can be introduced as possible building elements

for query classes.

QueryClass Q3 isA MalePatient,OldPatient with

attribute

wrong:Drug

constraint

wrongRule: $ A(this,takes,wrong) and

not exists s/Symptom A(this,suffers,s)

and A(wrong,against,s) $

end

Within the formula this is a shorthand reference to the answer instances of Q3. The

variable wrong is identi�ed with the value of the corresponding attribute. So here the �rst

order logic expression denotes a prescription for the deduction of the wrong attribute. Q3

computes all old and male patients who take drugs against symptoms they do not su�er

from. The deduced values for the wrong attribute are part of the answer. In addition

it is possible to include any other membership conditions for instances of a query class

using the logical representation. The integration of structural and logical representation

formalisms leads to a hybrid query language. KRYPTON [BGL85], a derivative of KL-

ONE and ancestor of Telos, uses both formalisms for its query language too but as in its

data description language they are not combined to one closed format.

In order to avoid the reformulation of similar more specialized queries, attributes of query

classes can be parameterized. Substitution of a concrete value for an attribute or special-

ization of its target class by a subclass leads to a subclass of the original query class which

implies a subset relationship of the answer sets. In the frame syntax, specialized classes

are written as terms that de�ne the substitution. For instance, Q3 can be specialized by

substituting the wrong attribute:

10

Q3(Fenta/wrong)

That query is a shorthand for a query class which has only those patients as answer

instances which are instances of Q3 and have the concrete drug Fenta as their wrong

attribute. Another kind of substitution re�nes the attribute value class: Q3(wrong:ADrug)

considers only those answer instances of Q3 whose "wrong" drugs belong to the subclass

ADrug. The semantics of query classes is twofold: First, a query class is just a class object

that has some attributes. Second, there is a mapping from the query class frame to a

deductive rule that de�nes which objects are the answer to the query. Consider the frame

QueryClass Q isA C1,...,Ck with

attribute

a1: S1;

...

am: Sm;

b1: T1;

...

bn: Tn

constraint

c: $ <formula text> $

end

We assume that a1,...,am are attributes which are re�ned from existing attributes with

the same labels in classes C1,...,Cm. The attributes b1,...,bn are additional properties

of Q. Let ' be the �rst-order formula represented by <formula text>. Then the query

rule corresponding to the frame is:

8 x; y

1

; :::; y

m

; z

1

; :::; z

n

In:#C1(x) ^ ::: ^ In:#Ck(x) ^

In:#S1(y

1

) ^ A:#a1(x; y

1

) ^ ::: ^ In:#Sm(y

m

) ^ A:#am(x; y

m

) ^ (1)

In:#T1(z

1

) ^ ::: ^ In:#Tn(z

n

) ^ ') Q(x; y

1

; :::; y

m

; z

1

; :::; z

m

)

The �rst argument x of Q is called the answer variable of the query rule. The other

arguments are called query attributes. The constants #C1,#S1,#T1 etc. are the ob-

ject identi�ers of the labels C1, S1, T1 etc., and #a1,...,#am are the identi�ers of the

attributes labelled by a1,...,am (see section 2). As formula (1) shows the variables in

Q(x; y

1

; :::; y

m

; z

1

; :::; z

m

) are bound to objects in the object base. There is no "invention"

of object identi�ers for answers to queries as for example in [HY90].

Since query classes may be superclasses, or attribute value classes of other queries, class

membership to queries is de�ned by a second rule.

8 x; y

1

; :::; y

m

; z

1

; :::; z

n

Q(x; y

1

; :::; y

m

; z

1

; :::; z

m

)) In:#Q(x)) (2)

The evaluation of this rule leads to a set of ground instances of the literal Q which can

be used to build up the answer instances of the query class Q in frame format. The two

deductive rules for query class Q3 are

8 x; y

1

In:#MP (x) ^ In:#OP (x) ^ In:#Drug(y

1

) ^A:#tak(x; y

1

) ^ (3)

:9 s In:#Sympt(s) ^A:#su�(x; s) ^A:#ag(y

1

; s)) Q

3

(x; y

1

)

8 x; y

1

Q

3

(x; y

1

)) In:#Q3(x) (4)

11

The parameterization of query classes has a strong logical counterpart, the simpli�cation

of formulas [NICO82]. For instance, the deductive rule for the specialized query class

Q3(Fenta/wrong) is obtained by simplifying formula (3) with In:#Drug(#Fen). This

step instantiates the universally quanti�ed variable y

1

. The result is

8 x In:#MP (x) ^ In:#OP (x) ^A:#tak(x;#Fen) ^

:9 s In:#Sympt(s) ^ A:#su�(x; s) ^A:#ag(#Fen; s)) Q

0

3

(x;#Fen)

8 x; y

1

Q

0

3

(x; y

1

)) In:#Q3

0

(x)

The simpli�cation of the query (3) conforms well with the specialization axiom A

5

since

In:#Q3

0

(x) implies In:#Q3(x). The same property holds for the attribute value class

re�nement, e.g. Q3(wrong:Adrug).

4. Query Optimization Methods

With the given object model and query language as prerequisite in the following two

opportunities of query optimization in deductive object bases are presented. Figure 3

shows the general query optimizer architecture of a deductive object base [JK89].

Logical specification layer

Active database as implementation layer

map formulas to algebra

Query Transformator
Standardization
Simplification
 syntactic
 semantic
 partial evaluation
Amelioration

View Maintenance
View definitions
Trigger generation

Algebra Optimizer
Object algebra optimization
Logical object manager
Physical record manager

Access Planner

persistent
storage

Fig. 3: Architecture of a query optimization component for deductive object bases

The optimizer is subdivided into components for logical and algebraic query representa-

tions. The �rst one maps query declarations to algebra expressions which are then eval-

12

uated on the physically stored records. This mapping is accompanied by using di�erent

techniques of optimization to obtain necessary e�ciency.

The query transformation component at the logical layer applies general rules, laws and

heuristics to optimize and map a user query. Three di�erent aspects have to be dis-

tinguished. Standardization means mainly the introduction of a normal form used as a

starting point for further transformations. Simpli�cation can be understood in a syntactic

(e.g. elimination of tautologies and redundancies) or semantic way (consideration of rules

and integriy constraints) and includes partial evaluation methods. Amelioration covers is-

sues such as recursion elimination and optimization, reuse of common subexpressions and

application of general heuristics.

At the implemetation layer besides the mapping to logical and physical storage structures

optimizations for the special selected object algebra are performed. The access planning

component, takes quantitative statistical information about the current objectbase into

account when optimizing the algebra expression resulting from the transformation step.

Finally, a view maintenance mechanism allows the use of materialized views which in fact

are queries with stored answers and prevents unnecessary computations. Here we have an

additional aspect of optimization which comprises the e�ciency of the view maintenance

algorithm. This last topic is discussed in paragraph 4.2. The following paragraph con-

centrates on a semantic simpli�cation technique using structural axioms of the underlying

object model.

4.1. Structural Query Optimization

The deductive object base theory presented in section 2 is characterized by an increased

number of axioms when compared with deductive relational databases. The axioms are

theorems, i.e. they are true in any consistent deductive object base (OB,R,IC). Therefore,

they can always be used to simplify queries. In this section the exploitation of the attribute

typing axiom A

6

is investigated.

Recalling the query rule formula (3), one observes a considerable number of class mem-

bership literals In:c(x). They are introduced by the assignment of variables to classes,

by the attribute value classes, and by the interpretation of superclasses as classes of the

answer variable. Consider now an expression A:p(x; y) ^ In:c(x), and suppose that p is

the oid of an object P (p; c;m; d) in the extensional object base. Then, two cases can be

distinguished:

(I) A:p(x; y) is derived from axiom A

4

(section 2). Then there must be an object

P (o; x; l; y) with In(o; p). The attribute typing axiom A

7

then establishes the truth

of In(x; c).

(II) A:p(x; y) is derived from a deductive rule 8 x=c

0

; y=d

0

') A(x;m; y) where

A(x;m; y) is rewritten to A:p(x; y) (see section 2). Then, c must be the lowest

superclass of c

0

that has an attribute with label m. Then, In:c

0

(x) is true, and as a

consequence of axiom A

5

In:c(x) follows.

In both cases, In:c(x) is already guaranteed by A:p(x; y), P (p; c;m; d), and the axioms of

the object base. A similar argument holds for In:d(x) in a conjunction Ap(x; y) ^ In:d(y).

13

Thus, any conjunction A:p(x; y) ^ In:c(x) or A:p(x; y) ^ In:d(y), resp., can be replaced

with A:p(x; y) provided p is the identi�er of an object P (p; c;m; d).

The query rule (3) for query Q3 serves as an example. Firstly, there is a conjunction

In:#Drug(y

1

)^A:#tak(x; y

1

) where P (#tak;#Pat; takes;#Drug) is in the object base.

Thus, In:#Drug(y

1

) can be cancelled. Analagously, In:#Sympt(s)^A:#su�(x ; s) reduces

to A:#su�(x ; s). The result is

8 x; y

1

In:#MP (x) ^ In:#OP (x) ^ A:#tak(x; y

1

) ^

:9 s A:#su�(x; s) ^ A:#ag(y

1

; s)) Q

3

(x; y

1

)

(5)

The �rst two instantiation literals are not redundant since they are subclasses of the

class #Pat, and membership to #Pat does not imply membership to #MP or #OP .

Whether the elimination of the instantiation literals yields a performance gain depends on

the representation and evaluation algorithms. The point is that we now have the choice

to use either the original or the reduced formula.

4.2. Complex Object View Optimization

A view is a query whose answer is used over a longer period of time. The view update

problem is twofold. First, an update to the base data has to be e�ciently propagated to

the view in order to keep the answer consistent. Second, an update on the view has to

be translated into updates on the base data. For deductive databases, views are seen as

(materialized) deductive rules. In that framework, the �rst subproblem could be solved by

re-evaluating the whole deductive rule on each update (this is much too costly). For the

second subproblem, abduction has been proposed [KM90b]. In this section, we propose

a deductive de�nition for views that takes the complex object principle into account.

Simpli�cation [NICO82] is proposed as an optimization technique for the �rst direction of

view updates (view maintenance).

Application layer

Object layer

Q1

Q2

Q4

Q3

map

Fig. 4: Molecules and atoms in PRIMA

14

While views in relational databases are just (derived) relations, the de�nition for object

bases seems not that clear. For instance, the PRIMA object base system [HM88] introduces

the concept of molecules. These complex data structures are declared by means of SQL-like

query statements on top of an object base of atoms. The de�nition of molecules depends

on the application that manipulates them. Figure 4 shows two molecules which share a

common atom. It is important to note that the molecule boundaries is prescribed by the

application, not by the object base.

In a logic-based framework for an object base the usual representation for complex objects

are complex terms [CCT90]. However, such representation forbids the direct use of de-

ductive database methods that are based on a function-free horn logic. An alternative is

shown in de�nition 2.

De�nition 2

Let Q

1

; :::; Q

k

be the conclusion predicates of query rules. Then, a rule

8 v

1

; :::; v

m

Q

1

(x

1

; t

11

; :::; t

n

1

1

) ^Q

2

(x

2

; t

12

; :::; t

n

2

2

) ^ :::

^ Q

k

(x

k

; t

1k

; :::; t

n

k

k

)) Q(x

1

)

is called a complex object view i� all x

i

; i > 1, appear at least once as a t

rj

of a

Q

j

.

View layer

Object layer

Queries

Q1 Q2
Q3 Q4

R

OB

IC

Update

Q1(x1,a,x2,x3)

Q2(x2,b,c) Q3(x3,x4)

Q4(x4,e,f,g)

Q1(x1)

Fig. 5: Complex object and update propagation

15

Figure 5 presents a typical example. The complex object identi�ed by x

1

has an attribute

a, and two part complex objects identi�ed by x

2

and x

3

. The complex object x

2

is not

further decomposed, whereas x

3

has another part complex object x

4

. The object layer

of �g. 5 shows the principal propagation of an update in the object base. The update is

propagated to the simpli�ed forms of deductive rules and integrity constraints. The idea

is to use the same technique for the maintenance of the view.

The complex object rule in de�nition 2 has two interpretations. The �rst is just the logical

statement, i.e. all the ground facts Q(x

1

) that are derivable from the deductive object

base. The set of these object identi�ers can be seen as the set of pointers to the complex

objects. The second interpretation is more algorithmic. The complex object rule is a

statement which of the ground facts Q

i

shall be stored and maintained in the view layer.

All items contributing to a view are either ground facts of the object base or deductive rules,

esp. queries are mapped to deductive rules (sec. 3). Therefore, methods from deductive

database theory appear to be most appropriate to perform view maintenance optimization.

The problem is as follows:

Given a sequence of updates

< op

1

(P (o

1

; x

1

; l

1

; y

1

)); op

2

(P (o

2

; x

2

; l

2

; y

2

)); ::: > (op

i

2 fInsert;Deleteg)

�nd at lowest costs the induced update for a complex object Q(x).

A subproblem is to �nd { starting from the object base update { the set of deductive rules

that are a�ected by the update. The simpli�cation method [NICO82,BDM88] gives an

answer to this question for integrity constraints:

Let op(L) be an update and L

0

be a matching literal occuring in an integrity

constraint '. Then it is su�cient to check the simpli�ed form '

op(L)

. If no

matching literal occurs then the constraint is not a�ected by this update.

The simpli�cation idea can be extended to deductive rules as well, see e.g. [OLIV91]. For

each rule r and each update op(L) that matches a literal L

0

occuring in the rule body

a simpli�ed rule r

op(L)

is generated. If L

0

is positive and op=Insert then the evaluation

of r

op(L)

yields a superset of the derived conclusions that are true due to the truth of L.

Similar cases hold for negative L

0

s and for delete operations. The original methods were

proposed for deductive integrity checking for e�cient computation of the derived facts that

a�ect an integrity constraint.

A simple trick extends the upward propagation to complex object views: Include a formal

constraint

8 x=#Obj Q(x) _ :Q(x)

into the set IC of the deductive object base (OB,R,IC). Then, each insertion and deletion

of a subobject Q

i

(x

i

; :::) will be e�ciently propagated from updates to the object base. To

store the solutions in the view is a matter of implementation, see e.g. [SLR89].

As an example, consider the following complex object view (see also �g. 5). The query Q

3

is taken from section 3.

8 x

1

; x

2

; x

3

; x

4

; a; b; c; e; f; g Q

1

(x

1

; a; x

2

; x

3

) ^ Q

2

(x

2

; b; c) ^

Q

3

(x

3

; x

4

) ^Q

4

(x

4

; e; f; g)) Q(x

1

)

(6)

16

We assume that the view already contains the complex object identi�ed by #drSm:

Q

1

(#drSm; "Dr:med:Smith";#KlinAc;#Sam)

Q

2

(#KlinAc; 5100; "KlinikumAachen")

Q

3

(#Sam;#Aspi)

Q

3

(#Sam;#Fen)

Q

4

(#Aspi; 17; 3)

Q

4

(#Fen; 7; 21)

With the example of section 2, the update is

< Delete(P(#dr2 ;#Sam; drug2 ;#Asp));Delete(P(#in5 ;#dr2 ; in;#tak)) >

deletes the literal A:#tak(#Sam;#Asp) due to axiom A

4

. That derived update a�ects

rule (5) for query Q3 (see subsection 4.1). The simpli�ed form for this update is

In:#MP (#Sam) ^ In:#OP (#Sam) ^

:9 s A:#suff(#Sam; s) ^A:#ag(#Asp; s)) Q

3

(#Sam;#Asp)

(7)

Assuming that the condition holds, we derive the deletion of Q

3

(#Sam;#Asp) which

triggers the complex object view. The fact Q

3

(#Sam;#Aspi) is removed from the view.

In an implementation, facts with identical �rst components can be aggregated by using a

set data structure,. e.g.

CO

3

(#Sam; f#Aspi;#Fen)g)

That gives us a restricted simulation of the set constructor found in other object bases.

The update above would then e�ectively remove the element #Aspi from the list. The

dangling fact Q

4

(#Aspi; 17; 3) should then also be removed since it not longer contributes

to the complex object. A small problem arises if the last fact of a predicate symbol is

removed, e.g. Q

3

(#Sam;#Fen). Then, the condition of the view (6) fails, and Q(#Sam)

is no longer true. In a strict interpretation, the complex object #Sam has to be totally

removed from the view. Alternatively, one could interpret this situation by an empty set

in the data structure:

CO

1

(#drSm; f"Dr:med:Smith"g; f#KlinAcg; fg)

Another optimization opportunity with views is to use their content as ranges for ad hoc

queries. The general idea is to exploit subset relationships between answers to queries. If

the query QA is a superclass of QB, then each answer to QB is also an answer to QA:

8x Q

B

(x; :::)) Q

A

(x; :::)

This result follows immediately from the transformation of superclasses in formula (1). If

QB is queried frequently compared to QA then it makes sense to materialize the answer to

QA for getting a �ner range for the computation of the answer to QB. This materialization

can be achieved by simply de�ning a view 8x Q

A

(x; :::)) Q(x). An important application

are the parameterized queries (section 3). They are superclasses of all their specializations.

If the query class Q3 is materialized by a view

8 x; y

1

Q

3

(x; y

1

)) Q(x)

then ad hoc specializations of Q3, e.g. Q3(Fenta/wrong) can scan the solutions of Q3 as a

range and just check the additional condition y

1

=#Fen.

17

5. State of Implementation

The object model described in section 2 with deductive rules and integrity constraints

and the presented optimization techniques are implemented in the deductive object base

system ConceptBase

3

[JARK91] and its query language CBQL [STAU90]. ConceptBase

has been developed since 1987 at the Universities of Passau and Aachen. It is being used

in a number of projects in Europe, the US, and Canada as a knowledge-based repository

for design process information.

query class

rule with object labels

rule with oid’s

rule without redundant pred’s

triggers for view
maintenance

answer

algebra expression

Translate to rule

Semantic interpretation

Structural optimization

Translate to algebra

Optimize expr

Simplifier

Answer
generation

Evaluation

in

Fig. 6: Query optimization in ConceptBase

The system consists of two parts: the kernel which realizes the object base administration

mostly implemented in Prolog on SUN machines, and a X11-based usage environment for

3

In addition to the concepts mentioned in the previous sections, ConceptBase contains

a temporal component for representing validity and system time for each object.

18

browsing, querying and editing of the object base. The communication between both parts

and between the kernel and other application programs follows a client/server architecture.

The query optimizer of ConceptBase (see �g. 6) accepts as input query classes which

are transformed to a query rule according to section 3. The constants which represent

object labels are replaced by object identi�ers, and the literals In,A are rewritten with

the specialized literals. The resulting rule is then transformed by exploiting the structural

axioms of the object base, esp. the attribute typing axiom. For queries which contribute to

views triggers for the view update are generated (sec. 4.2). The last transformation step is

the translation to the object algebra. The algebra expression can then be evaluated over

the object base. The algebra optimizer is currently simulated by a direct implementation

of the base literals (P; In;A; Isa) on an extensible main memory-oriented object store

[GALL90].

Fig. 7: Screendump of a session with ConceptBase

Figure 7 shows the X11-based user interface of ConceptBase with the graphical browser and

the object editor. The browser displays the object network of the drug example in section

19

2 together with the query classes introduced in section 3. Individuals and attributes are

represented as nodes and labelled links, specialization and instantiation relationships as

dotted and normal links. The query classes are stored as objects (and therefore browsable

like any other object). The frame representation of Q3 shown in the editor slightly di�ers

from the format in section 3. Deduced attributes of query classes belong to a special

category computed attribute. The literal AttrValue corresponds to the former A literal.

The displayed situation is as follows: After selecting Q3 in the graph with menu item

"Ask" Q3 is called to be evaluated i.e. the instances of Q3 together with values for the

wrong attribute are to be computed. This task is transmitted to the ConceptBase kernel

via an inter-process message. The answers are sent back to the usage environment and

are displayed in the Ask-Replies window in their textual frame representation. In this

example, Q3 has only a single instance of Patient as answer: Sam. Sam takes drugs Aspi

and Fenta although he does not su�er from a symptom these drugs are against. A second

result is shown for a query Q4.

For queries, rules and constraints the actual implementation of ConceptBase contains

di�erent evaluable internals formats which can be chosen. Forward evaluation of deductive

rules and integrity constraints triggered by class instantiations is done by a meta program

interpreting an internal format of the formulas. Current implementation work concentrates

on improving the evaluation of deductive rules (and queries) with the magic set format.

Further e�orts are directed towards the application of the view maintenance mechanisms

via query classes to schema integration for heterogenous databases [KLEM91].

6. Conclusions

The aim of this paper was to demonstrate that a deductive kind of object bases o�ers

optimization opportunities that �t well together with object-orientation. The Telos object

model introduced in section 2 is characterized by a total decomposition of information into

quadruples forming the extensional object base. Instances, attributes, classes, instantia-

tion and specialization links are uniformly treated as objects. As a consequence, updates

on either of them are principally undistinguished. Based on this extensional object base,

a �rst-order language for deductive rules and integrity constraints is de�ned. The inter-

pretation is restricted by a strati�cation that is not applied to the original formulas but

to a rewriting on them that replaces the �xed set of literals by literals based on object

identi�ers at the class level.

Our frame-like query language describes queries as classes with superclasses, attributes, and

a logical statement that constrains the instances of the query class. The advantage of this

notation { which is familiar with certain knowledge representation languages { is that users

do not have to learn a special query language di�erent from the data de�nition language. A

mapping of the frame-like query classes to deductive rules de�nes the semantics of queries,

and integrates well with (recursive) deductive rules. We only presented a small segment

of query optimization at the level of logical formulae:

. Instantiation literals introduced by the class ranges of variables can be elimi-

nated by applying the attribute typing axiom. Experiments indicate that the

20

e�ciency increase is about factor 2 - 5. But, the axioms of the object model

hold in any object base. Thereby, this optimization can be applied to virtually

any query, deductive rule, and integrity constraint inserted into the system.

. If complex objects are de�ned as function-free deductive rules, then well-known

update propagation methods become applicable. We presented a de�nition

that is able to simulate tuple and set constructors. Views can also be used

to materialize queries that serve as ranges for ad hoc queries specialized from

them.

During the upward propagation of updates to views, a lot of intermediate updates on

derived facts can be generated, each triggering another simpli�ed rule. Surely, the proposed

propagation method is not e�cient enough if the amount of rules or their complexity

exceeds a certain level. A possible solution is to restrict views and rules in a way that

allows further optimization.

A major application of the deductive de�nition of complex objects is the software con�g-

uration problem [RJG*91]. Software systems are composed from modules that are further

decomposed. Updates to components have to be propagated downwards to submodules

(this is a special abduction problem [KM90b]), and upwards to the modules (complex ob-

jects) that depend on the updated object (this is a special case of the view update problem

in section 4.2). Currently, we are investigating the special properties of complex objects

in software con�guration. Such properties are for example, that integrity checking can be

drastically simpli�ed if the constraints only relate con�gured objects. Another research

issue is to �nd a good mapping from the logical layer into the structural layer. We expect

that the optimization methods based on rewritings of algebraic expressions can then be

transfered to our storage system.

Acknowledgements. The authors would like express their thanks to Matthias Jarke

for his constant advice. Many thanks also to the participants of the Dagstuhl seminar for

the vivid discussions and important hints.

7. References

[ABRI74] Abrial,J.R. (1974). Data semantics. In Klimbie, Ko�eman (eds.): Data Base Management,

North-Holland Publ.

[AB91] Abiteboul,S., Bonner,A. (1991). Objects and views. Proc. ACM-SIGMOD 1991.

[AG91] Abiteboul,S., Grumbach,S. (1991). A rule-based language with functions and sets. ACM Trans.

on Database Systems 16(1), March 1991.

[AK89] Abiteboul,S., Kanellakis,P.C. (1989). Object identity as a query language primitive. Proc.

ACM-SIGMOD 1989.

[BBMR89] Borgida,A., Brachman,R.J., McGuiness,D., Resnick,L.A. (1989). CLASSIC: A structural data

model for Objects. Proc. ACM-SIGMOD 1989.

[BCD89] Bancilhon,F., Cluet,S., Delobel,C. (1989). A query language for the O2 object-oriented data-

base system. Rapport Technique Alta��r 35-89.

[BCL89] Blakely,J.A., Coburn,N., Larson,P.-A. (1989). Updating derived relations: detecting irrelevant

and autonomously computable updates. ACM Trans. on Database Systems 14(3), Sept. 1989.

[BEER90] Beeri,C. (1990). A formal approach to object-oriented databases. Data & Knowledge Engi-

neering 5.

21

[BGL85] Brachman,R.J., Gilbert,V.P., Levesque,H.J. (1985). An essential hybrid reasoning system:

knowledge and symbol level accounts of KRYPTON. Proc. Int. Joint. Conf. on Arti�cial In-

telligence

[BGN89] Beck,H.W., Gala,S.K., Navathe,S.B. (1989). Classi�cation as a query processing technique in

the CANDIDE semantic data model. Proc. 5th Int. Conf. on Data Engineering

[BKK88] Banerjee,J., Kim,W., Kim,K.C. (1988). Queries in object-oriented databases. Proc. 4th Int.

Conf. on Data Engineering

[BR86] Bancilhon,F., Ramakrishnan,R. (1986). An amateur's introduction to recursive query process-

ing strategies. Proc. ACM-SIGMOD 1986.

[CCT90] Ceri,S., Cacace,F., Tanca,L. (1990). Object orientation and logic programming for databases: a

season's irt or a long-term marriage? In Schmidt, Stogny (eds.): Next Generation Information

System Technology, LNCS 504, Springer-Verlag, 1990.

[CGM90] Chakravarthy,U.S., Grant,J., Minker,J. (1990). Logic-based approach to semantic query opti-

mization. ACM Transactions on Database Systems 15(2), Juni 1990.

[CW85] Cardelli.L., Wegner,P. (1985). On understanding types, data abstraction, and polymorphism.

Computing Surveys 17(4), Dec. 1985.

[CW90] Ceri,S., Widom,J. (1990). Deriving production rules for constraint maintenance. Proc. 16th

VLDB Conf., Brisbane, Australia.

[CW91] Ceri,S., Widom,J. (1991). Deriving production rules for incremental view maintenance. Proc.

17th VLDB Conf., Barcelona, Spain.

[DD88] Duhl,J., Damon,C. (1988). A performance comparison of object and relational databases using

the Sun benchmark. OOPSLA'88 Conference Proceedings.

[FMV91] Freytag,J.C., Maier,D., Vossen,G. (eds.,1991). Query processing in object-oriented, complex-

object and nested relation databases. Seminar-Report 15, Schlo� Dagstuhl, Germany.

[FREY87] Freytag,J.C. (1987). A ruled-based view of query optimization. Proc. ACM-SIGMOD 1987.

[GALL90] Gallersd�orfer,R. (1990). Realisierung einer deduktiven Objektbank durch abstrakte Daten-

typen. Diploma thesis, Universit�at Passau, Germany.

[GD87] Graefe,G., DeWitt,D.J. (1987). The EXODUS optimizer generator. Proc. ACM-SIGMOD

1987.

[GUTT75] Guttag,J.V. (1975). The speci�cation and application to programming of abstract data types.

Ph.D. thesis, University of Toronto, Dept. of Computer Science, Technical Report CSRG-59.

[HM88] H�ubel,C., Mitschang,B. (1988). Object-Orientation within the PRIMA-NDBS. In Dittrich

(ed.): Advances in Object-Oriented Database Systems, Proc. 2nd Int. Workshop on Object-

Oriented Database Systems, Bad M�unster, Germany, Sept. 1988, Springer Verlag.

[HY90] Hull,R., Yoshikawa,M. (1990). ILOG: declarative creation and manipulation of object identi-

�ers. Proc. 16th VLDB Conf., Brisbane, Australia.

[JACK90] Jackson, M.S. (1990). Beyond relational databases. Information and Software Technology

32(4), May 1990.

[JARK84] Jarke,M. (1984). External semantic query simpli�cation: a graph-theoretic appoach and its

implementation in Prolog. Proc. 1st Int. Workshop Expert Database Systems, Kiawah Island,

South Carolina, 1984.

[JARK91] Jarke,M. (ed.,1991). ConceptBase V3.0 user manual. Report MIP-9106, Universit�at Passau,

Germany.

[JEUS91] Jeusfeld,M. (1991). Axiome des Telos-Datenmodells. Working paper, Universit�at Passau,

Germany, Sept. 1991.

[JJ91] Jeusfeld,M., Jarke,M. (1991). From relational to object-oriented integrity simpli�cation. Proc.

2nd Int. Conf. on Deductive and Object-Oriented Databases, M�unchen, Germany, Dec. 1991;

also in: Aachener Informatik-Berichte 91-19, RWTH Aachen, Germany.

[JJR89] Jarke,M., Jeusfeld,M., Rose,T. (1989). Software process modeling as a strategy for KBMS

implementation. In Kim, Nicolas, Nishio (eds.): Deductive and Object-Oriented Databases,

North Holland, 1990.

[JK89] Jarke,M., Koubarakis,M. (1989). Query optimization in KBMS: overview, research issues, and

concepts for a Telos implementation. Technical report KRR-TR-89-6, University of Toronto,

Ontario.

[JK90] Jeusfeld,M., Kr�uger,E. (1990). Deductive integrity maintenance in an object-oriented setting.

Report MIP-9013, Universit�at Passau, Germany.

22

[KLEM91] Klemann,A. (1991). Schemaintegration relationaler Datenbanken. Diploma thesis, Universit�at

Passau, Germany.

[KLW90] Kifer,M., Lausen,G., Wu,J. (1990). Logical foundations of object-oriented and frame-based

languages. Reihe Informatik 3/1990, Universit�at Mannheim, Germany.

[KM90a] Kemper,A., Moerkotte,G. (1990). Access support in object bases. Proc. ACM-SIGMOD 1990.

[KM90b] Kakas,A,C., Mancarella,P. (1990). Database updates through abduction. Proc. 16th VLDB

Conf., Brisbane, Australia.

[KMSB89] Koubarakis,M., Mylopoulos,J., Stanley, M., Borgida,A. (1989). Telos: features and formaliza-

tion. Technical Report KR-89-04, University of Toronto, Ontario.

[LHW90] Lyngb�k,P., Wilkinson,K., Hasan,W. (1990). The Iris kernel architecture. Proc. EDBT'90,

Venice, Italy.

[MAIE86] Maier,D. (1986). Why object-oriented databases can succeed where others have failed. Proc.

1986 Int. Workshop on Object-Oriented Database Systems.

[MBJK90] Mylopoulos,J., Borgida,A., Jarke,M., Koubarakis,M. (1990). Telos: a language for representing

knowledge about information systems. ACM Trans. Information Systems 8(4), October 1990.

[NICO82] Nicolas,J.-M. (1982). Logic for improving integrity checking in relational databases. Acta

Informatika 18.

[RJG*91] Rose,T., Jarke,M., Gocek,M., Maltzahn,C., Nissen,H. (1991). A decision-based con�guration

process environment. Appears in: Software Engineering Journal, Special Issue on Software

Process and its Support.

[SLR89] Sellis,T., Lin,C.-C., Raschid,L. (1989). Data intensive production systems: the DIPS approach.

SIGMOD Record 18(3), Sept. 1989.

[REIT84] Reiter,R. (1984). Towards a logical reconstruction of relational database theory. In Brodie et

al. (eds.): On Conceptual Modelling, Springer-Verlag.

[STAU90] Staudt,M. (1990). Anfragerepr�asentation und -auswertung in deduktiven Objektbanken.

Diploma thesis, Universit�at Passau, Germany.

[SZ90] Shaw,G.M., Zdonik,S.B. (1990). Object-oriented queries: equivalence and optimization. In

Kim, Nicolas, Nishio (eds.): Deductive and Object-Oriented Databases, North Holland, 1990.

23

