
From Relational to

Object-Oriented Integrity Simpli�cation

Manfred Jeusfeld

y

, Matthias Jarke

z

y

Universit�at Passau, Innstra�e 33, 8390 Passau, Germany

jeusfeld@andorfer.fmi.uni-passau.de

z

RWTH Aachen, Ahornstra�e 55, 5100 Aachen, Germany

jarke@picasso.informatik.rwth-aachen.de

Abstract

1

Relational integrity checking technology can be transfered to deductive object bases

by utilizing a simple logical framework for objects. The principles of object iden-

tity, aggregation and classi�cation allow a more e�cient constraint control by �ner

granularity of updates, composite updates and semantic constraint simpli�cation. In

many cases, meta-level constraints and deductive rules can be handled e�ciently by a

stepwise compilation approach. An extended integrity subsystem with these features

has been implemented in the deductive object base ConceptBase.

1

This work was supported in part by the Commission of the European Community under ESPRIT

Basic Research Action 3012 (CompuLog). A version of this paper will also appear in the Proc.

Second Int. Conf. on Deductive and Object-Oriented Databases, Munich, Dec. 1991

1. Introduction

Comprehensive and e�cient integrity maintenance has been quoted as one of the major

problems in next-generation databases. Systems like HiPAC [DBM88], POSTGRES

[SJGP90] and DAMOKLES [REHM88] allow the developer to link procedures to certain

events by so-called triggers. One problem of such systems is the correctness of the

imperative procedures in the case of cascaded trigger activations. Another problem

is their inexibility concerning usage in di�erent situations: either the triggers are

activated too often or the user has to write a lot of triggers for each individual case.

Experiments with the HiPAC and O

2

languages [RB90,BM91] indicate that the code to

be written for user-de�ned triggers is at least �ve to ten times larger than for predicative

speci�cations from which these triggers can be automatically generated.

Relational databases, including deductive relational databases, overcome these problems

by generating specialized triggers automatically from predicative speci�cations of rules

and constraints [DECK86, LST86, BDM88, KS88]. However, the extension of these

techniques to semantic or object-oriented data models does not appear straightforward.

These models typically o�er two types of constraints. Structural constraints de�ne the

meaning of abstractions such as aggregation, generalization, and classi�cation and are

hardcoded into the data model; user-de�ned constraints are expressed as predicative

formulas. Compared with the (deductive) relational case, new problems concern the

interaction of structural and explicit constraints in the data model, the role of the class

concept in integrity control (seeing classes both as types and as sets of instances), the

availability of metaclasses and thus of schema evolution, the e�cient recon�guration of

complex objects in case of component changes, and the control of method applications.

In the context of implementing the deductive object manager ConceptBase [JARK91],

we have been pursuing a research program in which we try to solve these problems

systematically. Our strategy has been to reorganize successful (deductive) relational

integrity checking techniques so that they �t the context of various problems encountered

in object-oriented systems. This is achieved through providing a logic-based view of the

object model. Our results so far indicate that this approach carries quite far, i.e., that

not much additional base technology is needed to cover most "object-oriented" features.

Several seemingly di�cult problems turn into opportunities for further optimization

that could even bene�t relational systems. Speci�cally, this paper reports some results

concerning the exploitation of the aggregation and classi�cation abstraction found in

semantic and object-oriented data models for improving the performance of deductive

integrity checking.

As a basis, section 2 reviews and adapts a well-known method for integrity checking in

deductive relational databases [BDM88]. Section 3 introduces a simple object frame-

work which o�ers object identity, aggregation, classi�cation, and generalization in a

fairly general form, but without the automatic type inferencing techniques typical for

recent work in database programming languages. This object model is part of the Telos

knowledge representation language [MBJK90] used in ConceptBase and several other

ongoing implementations for purposes of software information management, natural lan-

guage understanding systems, hypermedia authoring environments, etc. However, the

2

results presented in this paper are valid for fairly general sets of assumptions about ob-

ject models and thus transferable to any object model that satis�es these assumptions.

The aggregation abstraction (sections 4 and 5) removes the restriction in published

algorithms that the unit of change is a full tuple. On the one hand, constraint checking

procedures can be attached to individual attributes. On the other, composite updates

can create versions of complex objects consistently, with reduced re-checking of integrity

constraints. An important application of this is version and con�guration management

in software databases [RJG*91,MJJG91].

The classi�cation abstraction (sections 6 and 7) induces additional conditions for the

well-formedness of explicit constraints, e.g., referential completeness. This additional

check has the bene�cial side-e�ect that ranges of variables in integrity constraints can

often be reduced. Moreover, the structural constraints can be used for semantic op-

timization of user-de�ned constraints; this may substantially reduce the number of

generated triggers.

A second exploitation of the classi�cation abstraction concerns the handling of meta-

classes which de�ne the semantics of so-called slots or attribute categories. The pred-

icative formulation of such attribute categories is often very cumbersome (we have a

real-world example which contains about 25 quanti�ers!) and leads to unnecessary trig-

ger evaluation even if optimized with the usual deductive relational algorithms. For

a substantial subclass of such categories (which includes, among others, the axiomatic

de�nition of inheritance in isa hierarchies), a two-step compilation strategy yields a

clean yet e�cient solution: Delay the generation of triggered procedures until the at-

tribute category is instantiated by a new class de�nition; then adapt the optimized form

generated at the metalevel to this particular instance.

Our results, which concentrate on the aggregation and classi�cation abstractions, com-

plement the work on type inferencing (i.e., generalization hierachies) in object-oriented

database languages [KLW90,ABIT90,HK87b] and KL-One-like knowledge representa-

tion languages [BBMR89]; it is our �nal goal to integrate these aspects in the same

framework as presented here.

2. Relational Simpli�cation Techniques

Simpli�cation techniques for integrity constraints within relational databases have �rst

been proposed by [NICO82]. The method was then extended to deductive databases

[DECK86,BDM88]. All of these approaches base on some form of the range-restricted

property [NICO82] which ensures the truth of a formula to be independent of relations

not occuring in the formula. The purpose of this section is to recall the main properties

of the simpli�cation method. The theoretical background is presented in the above

papers and in [JK90] where simpli�cation is extended to deductive rules. A normal

form that guarantees this property is given by the following de�nition (adapted from

[BDM88,JK90]):

3

De�nition 1

Let L

1

; : : : ; L

m

be positive literals of a �rst-order language. Then an integrity

constraint (in range form) is a �rst-order formula in miniscope and disjunctive

normal form matching one of the patterns:

9x

1

; : : : ; x

n

L

1

^ : : : ^ L

m

^R

8x

1

; : : : ; x

n

:L

1

_ : : : _ :L

m

_ R

(1)

Every variable x

1

; : : : ; x

n

(n � 0) has to occur in at least one of the literals

L

1

; : : : ; L

m

. The subformulas of R are either quanti�er-free well-formed formu-

las or again in one of the above formats. If one of the variables x

1

; : : : ; x

n

occurs in

R then it is free. Variables other than quanti�ed ones are disallowed. The literals

L

1

; : : : ; L

m

are called range literals.

The simpli�cation method generates for each literal occurence L

j

of an integrity con-

straint a simpli�ed form that has to be checked when the literal is updated, i.e.

inserted or deleted. Literals are interpreted by (possibly deduced) relations. In deduc-

tive databases, the simpli�cation method must work in the presence of deductive rules.

[BDM88] set up a dependency network in order to compute the derived literal updates.

De�nition 2

A deductive rule is an integrity constraint matching

8x

1

; : : : ; x

n

:L

1

_ : : : _ :L

m

_ (R _ L

concl

): (2)

The formula 8x

1

; : : : ; x

n

:L

1

_ : : :_ :L

m

_R is called the condition expression

of the deductive rule.

Let EDB be an extensional database, R be a set of deductive rules, and IC a

set of integrity constraints. Then the deductive database (EDB,R,IC) is called

consistent if EDB [R j= ' holds for all ' 2 IC.

The interpretation of formulas is classical with closed world assumption for negation.

As usual, only strati�ed rules are considered [NT89]. In order to improve readability,

we sometimes write ') as an abbreviation for '

�

_ where '

�

is the negation of '

with negation operator pushed down to the level of literals. Simpli�cation for deductive

rules is not applied to the whole formula but to its condition expression. Figure 1 shows

how updates on condition literals induce updates on the conclusion literal depending

on the sign. More details are given in [JK90].

Update Sign of condition literal Resulting update on L

concl

Insert negative Insert

Delete negative Delete

Insert positive Delete

Delete positive Insert

Fig. 1: Induced updates for rules

4

The following example demonstrates a deductive rule and an integrity constraint for

patients that take drugs against symptoms they su�er from. The rule expresses that

a drug helps to cure those symptoms which are e�ected by a component agent of the

drug. The constraint prevents a patient from taking drugs that are not against any of

his symptoms or that contain agents to which he is allergic.

EDB schema:

Patient(pname; age; takesDrug); Su�ers(patient; symptom)

Drug(dname; component); Agent(aname; e�ectedSymptom)

Allergy(pname; aname; since)

R:

8 d ; s; a Drug(d ; a) ^ Agent(a; s)) Against(d ; s) (3)

IC:

8 p; x; d Patient(p; x; d))(9s Su�ers(p; s) ^Against(d; s)) ^

(8 a; t Drug(d; a)) :Allergy(p; a; t))

(4)

The conditions expression for rule (3) is 8 d; s; a :Drug(d; a) _:Agent(a; s). Since the

conclusion literal Against(d; s) occurs only positively in constraint (4) two triggers for

delete updates on the condition have to be generated (see �g. 2). The constraint contains

�ve literals. In the corresponding range form Su�ers and and Against occur positively,

the rest has a negative sign. Note that variables not quanti�ed in the simpli�ed rules

are instantiated by the update.

ON Delete(Drug(d; a)) EVALUATE 8s Agent(a; s)) Delete(Against(d; s))

ON Delete(Agent(a; s)) EVALUATE 8d Drug(d; a)) Delete(Against(d; s))

ON Insert(Patient(p; x; d)) CHECK

(9 s Su�ers(p; s) ^Against(d; s)) ^ (8 a; t Drug(d; a)) :Allergy(p; a; t))

ON Delete(Su�ers(p; s)) CHECK 8 x; d Patient(p; x; d))

(9 s Su�ers(p; s) ^Against(d; s)) ^ (8 a; t Drug(d; a)) :Allergy(p; a; t))

ON Delete(Against(d; s)) CHECK 8 p; x Patient(p; x; d))

(9 s Su�ers(p; s) ^Against(d; s)) ^ (8 a; t Drug(d; a)) :Allergy(p; a; t))

ON Insert(Drug(d; a)) CHECK 8 p; x Patient(p; x; d))

(9 s Su�ers(p; s) ^Against(d; s)) ^ (8 t :Allergy(p; a; t))

ON Insert(Allergy(p; a; t)) CHECK 8 x; d Patient(p; x; d))

(9 s Su�ers(p; s) ^Against(d; s)) ^ :Drug(d; a)

Fig. 2: Triggers for rule (3) and constraint (4)

5

The literals in predicative formulas are interpreted by relations. Thus, it is easy to

detect the simpli�ed forms a�ected by an update on a relation. As the simpli�ed form

for the Patient literal shows, relations with many attributes are advantageous with

respect to the complexity of the simpli�ed forms since they eliminate many variables

(provided the variables are not governed by an existantial quanti�er [BDM88]). On the

other hand, relations with many attributes have an important disadvantage: updates

may lead to unnecessary constraint evaluations as long as the granularity of information

is �xed to tuples within relations. Changes to single components of a tuple have to be

realized by updates of the whole tuple. Most algorithms found in the literature simulate

updates by deletion followed by the insertion of the revised tuple. By this, unnecessary

evaluation of rules and constraints can happen. If for example, the age component of a

Patient tuple is changed, the simpli�ed form for Insert(Patient(p; x ; d)) is triggered

though in fact the update cannot change the truth of the constraint. What we need is

a formalism to express that a single component of a tuple or object is updated.

3. A Simple Object Model

After reviewing deductive relational integrity checking, we now introduce the object

model we want to use as a framework for our extension. Deductive relational databases

can be understood as �rst-order theories with integrity constraints [REIT84]. Analo-

gously, deductive object bases can be formalized by extracting some axioms from such

theories which de�ne the structure of the object model. For example, such structural

axioms may de�ne the semantics of object identity, of abstraction principles such as ag-

gregation, generalization, classi�cation, and association, and of built-in system classes.

The use of such axioms can be represented by introducing specialized literals into the

logic that indicate, e.g., attribution, class membership, or isa relationships.

A number of quite sophisticated formalizations of object-oriented data models have been

proposed roughly along these lines. Often inspired either by the theory of type lattices in

programming languages or by KL-One-like knowledge representation formalisms, they

tend to emphasize the role of object identity and generalization hierarchies with au-

tomatic classi�cation respectively type inference [HK87,BBMR89]. There are a few

logic-based formalizations of methods in object bases which specify methods by their

signature. For example, [KLW90,BEER90,AG91] formalize them as functions terms,

and [LV90] as predicates within a Datalog framework.

This paper deals with aspects that are complementary to type inferencing and method

inheritance in that we concentrate on exploiting aggregation and classi�cation knowl-

edge. Generalization is seen as a logical implication between class membership predi-

cates (see [BRAC83] and section 7). We therefore use an earlier and simpler object model

that was �rst presented in [STAN86] and forms a subset of the knowledge representation

language Telos [MBJK90]. In this section, the formalization is briey summarized as

far as it is needed later on.

6

De�nition 3

Let ID,LAB be in�nite sets of identi�ers resp. labels. Then a �nite subset

OB � fP (oid; x; l; y)j oid; x; y 2 ID; l 2 LABg

is called a Telos object base i� the oid component is unique within OB. The

elements are referred as objects.

It is useful to denote Telos object bases graphically as structured semantic networks. So-

called individual objects with identical �rst, second and fourth component are drawn

as nodes. The other objects are called attributes with two special cases: attributes

with third component (label) in are called instantiation attributes and attributes

with label isa are called specialization attributes. The oid's are system-generated.

Figure 3 shows part of the patient example encoded as a Telos OB. The oid's are written

as #Pers, #takes etc. for the sake of readability.

P(#Pers,#Pers,Person,#Pers) P(#in1,#QF,in,#Drug)

P(#Pat,#Pat,Patient,#Pat) P(#Jack,#Jack,Jack,#Jack)

P(#isa1,#Pat,isa,#Person) P(#in2,#Jack,in,#Pat)

P(#Drug,#Drug,Drug,#Drug) P(#drug1,#Jack,drug1,#QF)

P(#takes,#Pat,takes,#Drug) P(#in3,#drug1,in,#takes)

P(#against,#Drug,against,#Sympt) P(#QF,#QF,QuasiForte,#QF)

P(#Sympt,#Sympt,Symptom,#Sympt) P(#su�ers,#Pat,su�ers,#Sympt)

P(#Ag,#Ag,Agent,#Ag) P(#comp,#Drug,component,#Ag)

P(#e�ects,#Ag,e�ects,#Sympt) P(#allergy,#Pat,allergy,#Ag)

Person Agent

Drug

Symptom

Patient

Jack QuasiForte

allergy

suffers

takes

effects

against
compo-
 nent

drug1

Fig. 3: Example Telos OB and its graphical representation

For objects of the form P (oid; x; in; c) x is called instance of c (c is the class of x), and

for P (oid; c; isa; d) c is called a subclass of d (d is a superclass of c). In the following

we assume that a Telos object base OB contains the classes Object, Individual, Attribute,

7

INST and ISA which have as instances all objects of OB with a form indicated by the

class name. The structural properties of instantiation, aggregation and specialization

are de�ned as built-in rules and constraints. Telos classes are not distinguished from

other objects. Particularly, classes are themselves instances of other (meta-) classes,

metaclasses are instances of metametaclasses, etc. This in�nite hierarchy is closed by a

set of built-in (omega) classes [KMSB89].

Telos decomposes all information down to atomic relationships between objects. This

idea was already proposed by [ABRI74] when he suggested binary relations as a data

model. He also represents schema information in the same manner as instance infor-

mation. Telos extends the binary relations by regarding attributes, specializations and

instantiations as objects, and by certain axioms that are usual for object-oriented data

models.

4. Relating Literals to Objects

The integration between this structural object model and the predicative deduction

rules and integrity constraints is two-fold. From the viewpoint of the object model,

predicative assertions are simply individuals with an instantiation link to a prede�ned

metaclass called AssertionClass. From the viewpoint of the logical theory, well-formed

formulas of the Telos assertion language must refer to the object base by using the four

literals A, In, Isa, P. The objects of an object base induce solutions for the three literals:

8v;w; i P (i; v; in;w)) In(v;w) (5)

8v;w; i P (i; v; isa;w)) Isa(v;w) (6)

8v;w; l; a; b; l

1

; o; V;W P (a; v; l

1

; w) ^ P (o; a; in; b) ^ P (b; V; l;W)) A(v; l; w) (7)

Additional derived instantiation and attribution links stem from the inheritance axioms.

However, as we shall see in section 7, at least the relatively simple inheritance axioms

used in Telos can be directly de�ned as metalevel assertions so that an explicit de�nition

in this section is not necessary.

The various object-oriented data models have di�erent granularities for the smallest

possible objects. In some cases, the decomposition of an object goes down to the level

of attributes. This is necessary for relating attribute updates precisely to the a�ected

constraints. For example, in the Patient concept only the takesDrug attribute a�ects

the constraint (4) by variable d. The age attribute has no e�ect. Another requirement

is that classes are regarded as objects. Updates on them (e.g., the insertion of a new

constraint for a class) are treated as normal database operations.

A key issue for the success of the simpli�cation method presented in section 2 is to limit

as much as possible the search space of constraints and rules to be evaluated for a given

update. In the relational case, one way to achieve this is to have as many relations as

possible in the schema. Then, all simpli�ed parameterized formulas whose instantiation

literals are di�erent from those of the update are outside the search space. In that

sense, the worst case is a single universal relation where only the sign of a literal and its

8

parameter instantiation in a constraint (or rule) can prevent the system from evaluating

the simpli�ed form. Telos pays for its exibility by falling into the worst case. We have

a single "base literal" P and the three derived literals In(v,w), Isa(v,w) and A(v,l,w).

If their formulas (5-7) were treated as deductive rules, each update of a P literal would

potentially trigger a simpli�ed instance of each of the three rules. Only non-matching

parameters could then prevent rule evaluation. This situation is unacceptable since all

transactions contain object updates. Even worse, applying strati�cation to only four

literals would severely limit the expressiveness of deductive rules. In the following, the

concept of concerned classes is developed that will almost solve the both problems.

Object-oriented languages o�er the notion of classes to de�ne structure within the OB.

This observation motivates the decision to restrict the formulas to a many-sorted �rst-

order language [LT85] where the variables are bound to classes:

9 x=C ' stands for 9x In(x;C) ^ ' (8)

8 x=C ' stands for 8x :In(x;C) _ ' (9)

The typed quanti�cations guarantee that the formulas are range-restricted and are used

to determine the so-called concerned class of a literal occurence.

De�nition 4

Let (OB,R,IC) be a deductive object base, ' 2 R[IC, and L be a literal occurence

in '. An object cc of OB is called a concerned class of L (w.r.t. ') if for all

possible instantiations L

0

of L in ':

If OB [R j= L

0

then OB [R j= 9x In(x; cc).

If OB [R j= :L

0

then OB [R j= 9x :In(x; cc).

In other words, the truth of In(x; cc) is necessary for the truth of L

0

. Because of

the variable typing (8,9) and the de�nition of the three Telos literals (5-7) the set of

concerned classes is never empty: the class Object always applies. To get a �ner range

the object bases are restricted by following two constraints.

Referential integrity

Any referenced object must exist:

8 oid; x; l; y P (oid; x; l; y))

9 x

1

; l

x

; y

1

; x

2

; l

y

; y

2

P (x; x

1

; l

x

; y

1

) ^ P (y; x

2

; l

y

; y

2

)

(10)

With referential integrity and the de�nition of the literals it follows that the class INST

is a range for the In literal: the object i in (5) may never be part of a Telos OB if v

or w are missing. Thus, In(v;w) succeeds exactly for the instances of class INST .

Analogously, ISA can be taken as the concerned class of Isa literals and Object for the

P literal of Telos. If the second argument in In(v;w) is a constant then this object w

is a concerned class, too.

The interesting case is the A literal due to the three condition literals and its numerous

quanti�cations in (7). If all variables are free in such a literal then Attribute is the

smallest concerned class. Since attributes make up a major portion of a Telos object

base this is not satisfactory. A second restriction enables A literals to be connected to

"user de�ned" attribute categories such as #takes in the example OB.

9

Uniqueness property

For any literal A(x; l; y) occuring in a formula ' the label l must be instantiated

and the number of solutions aid ful�lling

9 aid; c; Y In(x; c) ^ P (aid; c; l; Y) (11)

must be exactly one.

This assumption enforces the existence of a unique attribute in the OB that corresponds

to the literal. Then, aid is a concerned class. In order to validate strati�cation, the

name of the literals in the formulas have to be replaced by the names of the concerned

classes:

For In(x; c) write c(x) if c is a constant, otherwise write INST (x; c). Isa(c; d)

is replaced by ISA(c; d). Thirdly, A(x; l; c) becomes aid(x; y) where aid is the

concerned class.

Instead of four we now have a multitude of di�erent literals, one for each class and

attribute of a class. This solves the problem of strati�cation mentioned before. It should

be noted that the original literal can be obtained very e�ciently from the instantiation

to the concerned class. For In(x; c) and Isa(c; d) this is obvious. For the A(x; l; y)

literal one only has to fetch the object P (a; x; l

0

; y) for a given instantiation In(a; aid)

to the concerned class. A minor problem remains with literals having INST or ISA as

concerned classes since they belong to the lowest strati�cation level [LST86] due to the

rules (5-7). As a consequence, deductive rules with such conclusion literals are fairly

restricted. Section 7 will provide a method for handling a lot of such cases.

Continuing the patient example, the rule and the constraint now appear as typed for-

mulas:

8 d=Drug; s=Symptom; a=Agent (12)

A(d; component; a) ^ A(a; e�ects; s)) A(d; against; s)

8 p=Patient; d=Drug

A(p; takes; d)) (9 s=Symptom A(p; su�ers; s) ^ A(d; against; s)) ^ (13)

(8 a=Agent A(d; component; a)) :A(p; allergy; a))

Only the required attributes appear in the formulations. The age attribute, for example,

that caused problems in formula (4) has now disappeared. In the range form, the sorts

of the variables are represented by instantiation literals. The labels of the individual

objects Drug etc. are replaced with their identi�ers. In an implementation, this step

can automatically be carried out in the compilation phase. The rule and constraint

have to be read as:

8 d; s; a In(d;#Drug) ^ In(s;#Sympt) ^ In(a;#Ag) ^ (14)

A(d; component; a) ^A(a; e�ects; s)) A(d; against; s)

8 p; d In(p;#Pat) ^ In(d;#Drug) ^A(p; takes; d))

(9 s In(s;#Sympt) ^ A(p; su�ers; s) ^ A(d; against; s)) ^ (15)

(8 a In(a;#Ag) ^ A(d; component; a)) :A(p; allergy; a))

10

With the object base of �g. 3, the smallest concerned classes for the In literals are

#Drug, #Sympt, #Ag, #Pat and for the A literals #comp, #e�ects, #against , #takes,

#su�ers, #allergy. Five simpli�ed forms are generated for the rule as shown in �g. 4.

From the nine simpli�ed forms for constraint (15) only the �rst and last is shown in the

�gure.

The close relation between literals and concerned classes allows to determine the up-

dated literals and the a�ected simpli�ed forms in a single step. Furthermore, the more

subclasses are de�ned and used in predicative formulas, the smaller is the number of

instances to be expected for the concerned classes. Implementations of Telos (and of

many other object-oriented databases, e.g. Iris [LWH90]) promote the idea of exten-

sibility through updates to the set of classes in the database. Thus, poorly balanced

class hierachies can be corrected at run-time of the system to improve performance of

integrity checking.

ON Delete(In(d;#Drug)) EVALUATE 8 s; a In(s;#Sympt) ^ In(a;#Ag) ^

A(d; component; a) ^ A(a; e�ects; s)) Delete(A(d; against; s))

ON Delete(In(s;#Sympt)) EVALUATE 8 d; a In(d;#Drug) ^ In(a;#Ag) ^

A(d; component; a) ^ A(a; e�ects; s)) Delete(A(d; against; s))

ON Delete(In(a;#Ag)) EVALUATE 8 d; s In(d;#Drug) ^ In(s;#Sympt) ^

A(d; component; a) ^ A(a; e�ects; s)) Delete(A(d; against; s))

ON Delete(A(d; component; a)) EVALUATE 8 s In(d;#Drug) ^ In(s;#Sympt) ^

In(a;#Ag) ^A(a; e�ects; s)) Delete(A(d; against; s))

ON Delete(A(a; e�ects; s)) EVALUATE 8 d In(s;#Sympt) ^ In(a;#Ag) ^

In(a;#Ag) ^A(d; component; a)) Delete(A(d; against; s))

ON Insert(In(p;#Pat)) CHECK 8 d In(d;#Drug) ^A(p; takes; d))

(9 s In(s;#Sympt) ^A(p; su�ers; s) ^A(d; against; s)) ^

(8 a In(a;#Ag) ^A(d; component; a)) :A(p; allergy; a))

: : :

ON Insert(A(p; allergy; a)) CHECK 8 d In(p;#Pat) ^ In(d;#Drug) ^

A(p; takes; d)) (9 s In(s;#Sympt) ^ A(p; su�ers; s) ^ A(d; against; s)) ^

(:In(a;#Ag) _ :A(d; component; a))

Fig. 4: Triggers for rule (14) and constraint (15)

Compared to the relational method in section 2 we have the advantage that updates to

irrelevant attributes do not trigger any evaluation. However, the adapted method has

two disadvantages: concurrent updates to attributes of the same object each trigger a

formula evaluation, and there are a lot of "unnecessary" triggers for the In literals. The

next two sections present solutions for these problems.

11

5. Support of Composite Updates

So far, the adaption of the simpli�cationmethod to the aggregation/decomposition prin-

ciple of object-oriented data models provided the �ner granularity for single attribute

updates. The method falls short if more than one literal is updated in one transaction:

if a constraint contains multiple attributes of the same object then the method would

generate simpli�ed forms for each single attribute update and thus re-evaluate common

subexpressions.

This weakness can be compensated by aggregating A literals around a common source

object that are updated in "one step", i.e., during the same transaction. Update rules

de�ne a literal U to be equivalent to the conjunction of several A literals:

8x; y

1

; : : : ; y

n

U(x; y

1

; : : : ; y

n

), A(x; l

1

; y

1

) ^ : : : ^A(x; l

n

; y

n

) (16)

All the literals A(x; l

i

; y

i

) have to be single-valued, i.e., the number of solutions for a

given x and l

i

must be less or equal one. Let ' be a constraint that contains an expression

A(x; l

1

; y

1

) ^ : : : ^ A(x; l

n

; y

n

). If one replaces the conjunction by U(x; y

1

; : : : ; y

n

) one

gets a formula '

0

which can now be simpli�ed for the literal U . If an update contains

U then it is su�cient to check this simpli�ed form instead of the n simpli�ed forms for

A(x; l

1

; y

1

),...,A(x; l

n

; y

n

). The correctness and completeness follows from the restriction

to single-valued attributes. The mapping of U(x; y

1

; : : : ; y

n

) to objects of the OB is

described by the update rule and by the de�nition of the A literal (7).

As an example, consider the formula

8 e;m; x; y A(e; boss;m) ^A(e; salary; x) ^

A(m; salary; y)) A(x; lessequal; y)

(17)

Suppose we have the update rule 8e;m; x U

1

(e;m; x) , A(e; boss;m) ^A(e; salary; x),

i.e., boss and salary of an employee are updated in one step. Then formula (17) can be

expressed by

8 e;m; x; y U

1

(e;m; x) ^A(m; salary; y)) A(x; lessequal; y) (18)

The simpli�ed form for U

1

is

ON Insert(U

1

(e,m,x)) CHECK 8 y A(m; salary; y)) A(x ; lessequal ; y)

which eliminates three quanti�ers. The success of introducing updates rules depends on

the number of constraints that contain a matching conjunction, and on the frequency

of updates that contain such an update literal U . In any case, the notion of compos-

ite updates prevents the object-oriented method from being worse than the relational

one: introduce an update rule for each relation and possibly drop irrelevant attributes.

Composite updates do not bury the advantages of the simpli�cation based on single

attribute updates. Such updates can still be checked by their simpli�ed forms.

12

6. Semantic Optimization Based on Structural Axioms

It is a characteristic of object-oriented databases that information is organized into class

hierachies. The Telos predicative sublanguage reects this feature by typed quanti�-

cations. One advantage is that all formulas are by de�nition range-restricted but as a

disadvantage we have additional In literals interpreting the variable types (see section

4). In the basic algorithm, these literals would be subject to generation of simpli�ed

forms. This section proposes a method for eliminating a considerable subset of such

literals by exploiting structural integrity constraints found in most object-oriented data

models and the strong relationship between literals and classes stated in section 4.

The following structural integrity constraint restricts the instantiation of classes (a kind

of type checking): If an object id is an instance of a class c then the source x of id must

be instance of the source X of c and its destination y must be instance of the destination

Y of c.

Instantiation axiom

8 id; c In(id; c)) 9x; l

1

; y;X; l; Y P (id; x; l

1

; y) ^ P (c;X; l; Y) ^

In(x;X) ^ In(y; Y)

(19)

Due to the uniqueness of the oid component of objects (def. 3) the existentially quan-

ti�ed variables are uniquely determined by id or c, resp.

Lemma 1

Let (OB,R,IC) ful�ll the uniqueness property and the instantiation axiom, and

let A(x; l; y) be a literal occuring in a formula ' 2 R [IC. Let further cc be a

concerned class of the literal and P (cc;X; l; Y) 2 OB. Then each occurence of

A(x; l; y) ^ In(x;X)

A(x; l; y) ^ In(y; Y)

in ' can be replaced by A(x; l; y) without changing the truth of '.

The proof follows from the the de�nition of the A literal and from the instantiation

axiom. Deductive rules having A(x; l; y) as their conclusion create no problem since the

conclusion literal can only contribute to a condition literal A(x

0

; l; y

0

) if the concerned

classes are the same.

As an example, we show how lemma 1 improves the optimization of rule (14).

All three In literals can be eliminated: In(d;#Drug)) and In(a;#Agt) appear

in conjunction with A(d; component; a). The concerned class of this literal is

P (#comp;#Drug; component;#Ag) which makes the lemma applicable. The elim-

inations of the remaining In(s;#Sympt) and the four In literals in constraint (15)

follow analogously. The two formulas shrink to:

8 d; s; a A(d; component; a) ^A(a; e�ects; s)) A(d; against; s) (20)

8 p; d A(p; takes; d)) (9 s A(p; su�ers; s) ^A(d; against; s)) ^ (21)

(8 a A(d; component; a)) :A(p; allergy; a))

13

ON Delete(A(d; component; a)) EVALUATE 8s A(a; e�ects; s))

Delete(A(d; against; s))

ON Delete(A(a; e�ects; s)) EVALUATE 8 d A(d; component; a))

Delete(A(d; against; s))

: : :

ON Insert(A(p; allergy; a)) CHECK 8 d A(p; takes; d))

(9 s A(p; su�ers; s) ^ A(d; against; s)) ^ :A(d; component; a)

Fig. 5: Triggers for (20) and (21)

Figure 5 demonstrates the e�ect of the optimization method. Compared to �g. 4, the

simpli�ed forms can be evaluated more e�ciently due to the smaller number of literals.

Even more important, no triggers have to be generated for the eliminated literals: the

number is reduced from �ve to two for the rule, and from nine to �ve for the constraint.

This is the same number as observed in �g. 2 for the relational model. But remember:

each class and each attribute constitute a new literal. Thereby, the trigger search space

for object bases is signi�cantly better partitioned than for relational databases.

7. Stepwise Compilation of Meta-Level Information

A few object-oriented databases regard classes themselves as objects that can be updated

like any other object. Common properties of these classes are represented in so-called

meta classes. The attributes of such meta classes have the role of attribute categories.

A typical example is the necessary

2

attribute category [KMSB89]: each token that is

instance of a class with an attribute of category necessary must instantiate this attribute:

8 A;X; l; Y; x In(A;#necessary) ^ P (A;X; l; Y) ^ In(x;X)

) 9 a; l

1

; y P (a; x; l

1

; y) ^ In(a;A)

(22)

There are two literals In(x;X) and In(a;A) that have a "bad" concerned class: INST.

Such literals are called meta literals. If we simplify the formula directly then we have

to generate simpli�ed forms triggered by every insertion (deletion) of any instantiation

relationship. That is prohibitively expensive. The following lemma shows a possibility

to overcome this problem for formulas of a certain form.

2

The semantic database SIM [JGF*88] has a similar category called required.

14

Lemma 2

Let OB be a Telos object base and ' be an integrity constraint in range form con-

taining a meta literal whose second argument is an universally quanti�ed variable

c

i

not governed by an existantial quanti�er. Let L

j

be a range literal containing

c

i

. Then OB ful�lls ' i� OB ful�lls all simpli�ed forms generated for all solutions

for L

j

that are true for OB.

The lemma is a corollary to the soundness and completeness of the basic simpli�ca-

tion method [BDM88]. The simpli�ed forms for the solutions of L

j

contain at least

one universal quanti�er less than the original constraint. Therefore, iterative appli-

cation of lemma 2 always terminates. The range form guarantees the existence of at

least one range literal L

j

. The choice of the "best" L

j

depends on the number of

solutions for L

j

(which are always �nite since OB is �nite) and the number of vari-

ables in L

j

. As an example we apply the method to the necessary attribute cate-

gory. We use In(A;#necessary) as a choice for the range literal L

j

. For the solution

In(#against;#necessary) where P (#against;#Drug; against;#Sympt) is part of the

OB we obtain:

8x In(x;#Drug)) 9 a; l

1

; y P (a; x; l

1

; y) ^ In(a;#against) (23)

Due to the key property the only possible solution for P (#against;X; l; Y) is

P (#against;#Drug; against;#Sympt). For the same reason one can omit simpli�-

cation for the literal P (a; x; l

1

; y). As result, the deduced integrity constraint must be

checked only if a new instance of #Drug is inserted or an instance of the attribute

#against is deleted.

As a second example we apply the technique to a deductive rule that describes the

inheritance of class membership (in fact, another structural axiom of Telos): each

instance of a subclass is also instance of its superclasses.

8 x ; c; d In(x ; c) ^ Isa(c; d)) In(x ; d) (24)

This rule has two meta literals. We take Isa(c; d) as the range literal to simplify it. Let

Isa(#Pat;#Pers) be a new solution. The corresponding simpli�ed deductive rule is:

8x In(x ;#Pat)) In(x ;#Pers) (25)

with the condition expression 8x :In(x;#Pat). According to the table in section 2,

two simpli�ed forms for the insertion and deletion of In(x;#Pat) have to be generated.

It follows that evaluation of the simpli�ed form for an insertion on In(x;#Pat) directly

deduces In(x;#Pers) without any further access to the object base! Analogously,

deletions of In(x;#Pat) directly induce deletions of In(x;#Pers).

15

8. Conclusions

The aim of this paper was not to propose a new integrity checking method. Instead,

technology from the relational database area was transferred to the object-oriented

domain. It turned out that characteristic features of object-oriented data models like

aggregation, classi�cation and meta classes are not obstacles but new opportunities to

increase e�ciency and expressiveness of the relational simpli�cation method.

We have implemented the method in the KBMS ConceptBase. Algorithms and the

maintenance of integrity constraints as part of the object base are reported in [JK90].

We see the following contributions:

� By decomposing complex objects into atomic attribute relationships the simpli�-

cation of predicative formulas is supported down to the level of attribute updates.

This prevents unnecessary evaluations which are common in the relational method.

The same degree of granularity is supported by the CACTIS system [HK87] but it

is used there to maintain derived attributes by more procedural attributed graphs.

� The �ner degree of granularity is accompanied by the support of composite updates.

As a consequence, the object-oriented simpli�cation method is in no case worse than

the relational one.

� The many-sorted �rst order language automatically guarantees range-restrictedness

of the formulas. By exploitation of an instantiation axiom one can eliminate most of

the type literals from the formula. Experiments with ConceptBase show a speed in-

crease by a factor of 2 to 5 compared to formulas optimized with the basic relational

techniques for the kinds of examples shown in this paper.

� Deductive rules and integrity constraints located at the metaclass level can be han-

dled e�ciently by an incremental compilation approach. Examples are the inheri-

tance axioms and the necesssary attribute category. This feature improves expres-

siveness of the formulas and enables true schema updates.

In hindsight, these results may not be all that surprising: One of the reasons of introduc-

ing semantic and object-oriented databases was to include more semantics in the object

structure, thus reducing the need for de�ning explicit constraints. Nevertheless, it is

gratifying to observe that this idea can actually be operationalized, as our experiments

seem to indicate.

Several important problems and opportunities addressed in ongoing work are not covered

in this paper. The �rst concerns complex objects. Object bases are supposed to deliver

exactly the data structures the application program asks for. In order to preserve data

independence view mechanisms are used to describe the complex objects [SS91]. Such

views can be formulated as queries that are deductive rules with a many-argument

conclusion [STAU90]. Some results on how integrity checking for updates on a complex

object can be e�ciently realized in an abductive framework are given in [MJJG91]. On

the other hand, the rule triggering method sketched in section 2 o�ers a way for an

automated complex object update induced by updates in the component objects.

Many object bases use hand-written methods for checking the correctness of certain

updates. They can pro�t from our results if they automatically generate the correctness

16

checking triggers from integrity constraints (this has already been suggested by [BM91]

for the O

2

system). Furthermore, if methods are re�ned from speci�cations which

describe the method's updates then the corresponding integrity checking procedures

can be automatically included into the code [JMW*90].

Acknowledgements. We would like to thank Eva Kr�uger who considerably con-

tributed to the deductive integrity checking component of ConceptBase [KR

�

UG89].

Many thanks also to Hendrik Decker and our collegues in the CompuLog project for

help and discussions.

9. References

[ABIT90] Abiteboul,S. (1990). Towards a deductive object-oriented database language. Data &

Knowledge Engineering 5, 1990.

[ABRI74] Abrial,J.R. (1974). Data semantics. In Klimbie and Ko�eman (eds.): Data Base Manage-

ment, North-Holland Publ.

[AG91] Abiteboul,S., Grumbach,S. (1991). A rule-based language with functions and sets. ACM

Transactions on Database Systems 16(1), March 1991.

[BBMR89] Borgida,A., Brachman,R.J., McGuinness,D.L., Resnick,L.A. (1989). CLASSIC: a struc-

tural data model for objects. Proc. ACM-SIGMOD Int. Conf. on Management of Data,

Portland, Oregon.

[BDM88] Bry,F., Decker,H., Manthey,R. (1988). A uniform approach to constraint satisfaction and

constraint satis�ability in deductive databases. Proc. EDBT'88, Venice, Italy.

[BEER90] Beeri,C. (1990). A formal approach to object-oriented databases. Data & Knowledge

Engineering 5, 1990.

[BM91] Bouzeghoub, M., Metais, E. (1991). Semantic modeling of object-oriented databases. Proc.

17th Int. Conf. on Very Large Data Bases, Barcelona.

[BRAC83] Brachman,R.J. (1983). What IS-A is and isn't: an analysis of taxonomic links in semantic

networks. IEEE Computer 16(10), Oct. 1983.

[DBM88] Dayal,U., Buchmann,A., McCarthy,D. (1988). Rules are objects too: a knowledge model

for an active object-oriented database system. Proc. 2nd Int. Workshop on Object-Oriented

Database Systems, Bad M�unster, Germany.

[DECK86] Decker,H. (1986). Integrity enforcement on deductive databases. Proc. First Int. Conf. on

Expert Database Systems, Menlo Park, Calif.

[HK87] Hudson,S.E., King,R. (1987). Object-oriented database support for software environments.

Proc. ACM-SIGMOD Int. Conf. on Management of Data, San Francisco, Calif.

[HK87b] Hull,R., King,R. (1987). Semantic database modeling: survey, applications, and research

issues. ACM Computing Surveys 19(3), Sept. 1987.

[JARK91] Jarke,M. (ed.,1991). ConceptBase V3.0 user manual. Report MIP-9106, Universit�at Pas-

sau.

[JGF*88] Jagannathan,D., Guck,R.L., Fritchman,B.L., Thompson,J.P., Tolbert,D.M. (1988). SIM:

a database system based on the semantic data model. Proc. ACM-SIGMOD Int. Conf. on

Management of Data, Chicago, Ill.

[JJR89] Jarke,M., Jeusfeld,M., Rose,T. (1989). Software process modeling as a strategy for KBMS

implementation. Proc. First Int. Conf. on Deductive and Object-Oriented Databases, Ky-

oto, Japan.

[JK90] Jeusfeld,M., Kr�uger,E. (1990). Deductive integrity maintenance in an object-oriented set-

ting. Report MIP-9013, Universit�at Passau, Germany, 1990.

[JMW*90] Jeusfeld,M., Mertikas,M., Wetzel,I., Jarke,M., Schmidt,J.W. (1990). Database application

development as an object modeling activity. Proc. 16th Int. Conf. on Very Large Data

Bases, Brisbane, Australia.

17

[KLW90] Kifer,M., Lausen,G., Wu,J. (1990). Logical foundations of object-oriented and frame-based

languages. Reihe Informatik 3/1990, Universit�at Mannheim.

[KMSB89] Koubarakis,M., Mylopoulos,J., Stanley, M., Borgida,A. (1989). Telos: features and formal-

ization. Technical Report KR-89-04, University of Toronto, Ont.

[KR

�

UG89] Kr�uger,E. (1989). Integrit�atspr�ufung in deduktiven Objektbanken am Beispiel von Con-

ceptBase. Diploma thesis, Universit�at Passau, Germany.

[KS88] Kowalski,R., Sadri,F. (1988). A theorem-proving approach to database integrity. In Minker

(ed.): Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann

Publishers.

[LWH90] Lyngb�k,P., Wilkinson,K., Hasan,W. (1990). The Iris kernel architecture. Proc.

EDBT'90, Venice, Italy.

[LST86] Lloyd,J.W., Sonnenberg,E.A., Topor,R.W. (1986). Integrity constraint checking in strat-

i�ed databases. Technical Report 86/5, Department of Computer Science, University of

Melbourne.

[LT85] Lloyd,J.W., Topor,R.W. (1985). A basis for deductive database systems. J. Logic Pro-

gramming 2, 1985.

[LV90] Laenens,E., Vermeir,D. (1990). A �xpoint semantics for ordered logic. J. Logic Computat.

1(2), 1990.

[MBJK90] Mylopoulos,J., Borgida,A., Jarke,M., Koubarakis,M. (1990). Telos: a language for repre-

senting knowledge about information systems. ACM Trans. Information Systems 8(4).

[MJJG91] Miethsam,A., Jarke,M., Jeusfeld,M., Gocek,M. (1991). Towards a logic-based reconstruc-

tion of software con�guration management. Report, ESPRIT Basic Reseach Action 3012

(CompuLog), RWTH Aachen, July 1991.

[NICO82] Nicolas,J.-M. (1982). Logic for improving integrity checking in relational databases. Acta

Informatica 18(3), Dec. 1982.

[NT89] Naqvi,S., Tsur,S. (1989). A logical language for data and knowledge bases. Computer

Science Press.

[RB90] Rios-Zertuche, D., Buchmann, A. (1990). Execution models for active databases: a com-

parison. Technical Report, GTE Laboratories, Waltham, Mass., 1990.

[REHM88] Rehm,S. et al. (1988). Support for design processes in a structurally object-oriented

database system. Proc. 2nd Int. Workshop on Object-Oriented Database Systems, Bad

M�unster, Germany.

[REIT84] Reiter,R. (1984). Towards a logical reconstruction of relational database theory. In Brodie

et al. (eds.): On Conceptual Modelling, Springer, 1984.

[RJG*91] Rose,T., Jarke,M., Gocek,M., Maltzahn,C., Nissen,H. (1991). A decision-based con�gura-

tion process environment. Software Engineering Journal, Special Issue on Software Process

and its Support, to appear.

[SJGP90] Stonebraker,M., Jhingran,A., Goh,J., Potiamos,S. (1990). On rules, procedures, caching

and views in database systems. Proc. ACM-SIGMOD Int. Conf. on Management of Data,

Atlantic City, NJ.

[SS91] Scholl,M., Schek,H.-J. (1991). Supporting views in object-oriented databases. Data Engi-

neering Bulletin, June 1991.

[STAU90] Staudt,M. (1990). Anfragerepr�asentation und -auswertung in deduktiven Objektbanken.

Diploma thesis, Universit�at Passau, Germany.

[STAN86] Stanley,M.T. (1986). CML: a knowledge representation language with application to re-

quirements modeling. M.S. thesis, University of Toronto, Ont.

18

