
Metamodeling for Method
Engineering

edited by

Manfred A. Jeusfeld,
Matthias Jarke, and
John Mylopoulos

Jeu
sfeld

, Jarke,
an

d
 M

ylo
p
o
u
lo
s,

ed
ito

rs

M
e
ta
m
o
d
e
lin

g
 fo

r M
e
th
o
d

E
n
g
in
e
e
rin

g

computer science

Metamodeling for Method
Engineering

edited by
Manfred A. Jeusfeld,
Matthias Jarke, and
John Mylopoulos

This text is a guide to the foundations of method engineering, a developing field concerned with the definition of
techniques for designing software systems. The approach is based on metamodeling, the construction of a model
about a collection of other models. The book applies the metamodeling approach in five case studies, each describ-
ing a solution to a problem in a specific domain. Suitable for classroom use, the book is also useful as a reference for
practitioners.

The book first presents the theoretical basis of metamodeling for method engineering, discussing information
modeling, the potential of metamodeling for software systems development, and the introduction of the metamodeling
tool ConceptBase. The second, and larger, portion of the book reports on applications of the metamodeling approach
to method engineering. These detailed case studies range from telecommunication service specification, hypermedia
design, and data warehousing to cooperative requirements engineering, chemical device modeling, and design of new
abstraction principles of modeling languages. Although these chapters can stand alone as case studies, they also relate
to the earlier theoretical chapters. The metamodeling approach described in the book is based on the Telos metamodel-
ing language implemented by the ConceptBase system. An accompanying CD-ROM contains the ConceptBase system
and a large collection of Telos metamodels discussed in the text. The CD-ROM enables readers to start directly with
method engineering, from small method chunks up to complete method definitions. The complete definition of Ed
Yourdon’s structured analysis method is included as an instructional example.

MAnfRED JEuSfElD iS ASSiSTAnT PROfESSOR Of infORMATiOn SYSTEMS AnD MAnAgEMEnT, TilBuRg univERSiTY, THE
nETHERlAnDS. MATTHiAS JARkE iS ExECuTivE DiRECTOR Of THE fRAunHOfER inSTiTuTE Of APPliED iT, BOnn, gERMAnY.
JOHn MYlOPOulOS iS PROfESSOR in THE DEPARTMEnT Of COMPuTER SCiEnCE AT THE univERSiTY Of TOROnTO AnD DiSTin-
guiSHED PROfESSOR in THE DEPARTMEnT Of infORMATiOn EnginEERing AnD COMPuTER SCiEnCE AT THE univERSiTY Of TREnTO.

Cooperative Information Systems series

“With the increased complexity of cooperative information systems
that organizations and society require today, the role played by
methods that support their development becomes crucial. Meth-
od engineering has emerged in response to the need to adapt
methods to better fit the requirements of the development task
at hand. its aim is to provide techniques for modeling reusable
method components, adapting and assembling these together to
form the new method. This book provides the foundations for
method engineering and demonstrates their use in different case
studies.”

Colette Rolland, Professor of Computer Science, Department of
Mathematics and Informatics, Université Paris 1 Panthéon Sorbonne

Contributors
Birgit Bayer

alex Borgida

MohaMed dahchour

arMin eBerlein

Matthias Jarke

Manfred a. Jeusfeld

ralf klaMMa

kalle lyytinen

Wolfgang Marquardt

John Mylopoulos

Wolfgang neJdl

alain pirotte

christoph quix

WilliaM n. roBinson

Martin Wolpers

The MIT PReSS MaSSaChUSeTTS InSTITUTe of TeChnology CaMbRIDge, MaSSaChUSeTTS 02142 hTTP://MITPReSS.MIT.eDU

978-0-262-10108-0

M
D

 D
A

L
IM

 #1021972 4/21/09
M

E
T

G
R

A
Y

B
L

U
E

 B
L

K

2021 Open-access Edition

Metamodeling for Method Engineering

2021 Open-Access Edition

Cooperative Information Systems

Michael P. Papazoglou, Joachim W. Schmidt, and John Mylopoulos, editors

Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering,

Nikota K. Kasabov

Advances in Object-Oriented Data Modeling, Michael P. Papazoglou, Stefano

Spaccapietra, and Zahir Tari, editors

Workflow Management: Models, Methods, and Systems, Wil van der Aalst and Kees

Max van Hee

A Semantic Web Primer, Grigoris Antoniou and Frank van Harmelen

Aligning Modern Business Processes and Legacy Systems: A Component-Based

Perspective, Willem-Jan van den Heuvel

A Semantic Web Primer, second edition, Grigoris Antoniou and Frank van

Harmelen

Service-Oriented Computing, Dimitrios Georgakopoulos and Michael P.

Papazoglou, editors

At Your Service, Elisabetta di Nitto, Anne-Marie Sassen, Paolo Traverso, and

Arian Zwegers, editors

Metamodeling for Method Engineering, Manfred A. Jeusfeld, Matthias Jarke, and

John Mylopoulos, editors

Metamodeling for Method Engineering

Edited by Manfred A. Jeusfeld, Matthias Jarke, John Mylopoulos

This online edition is published by its editors, (c) 2021

2009T57.7.M48
003 0 2008047203.3—dc22

10 9 8 7 6 5 4 3 2 1

Copyright notice of the original 2009 book publication:

6 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use.
For information, please email hspecial_sales@mitpress.mit.edui or write to Special Sales Department,
The MIT Press, 5 Cambridge Center, Cambridge, MA 02142.

This book was set in Times New Roman and Syntax on 3B2 by Asco Typesetters, Hong Kong.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Metamodeling for method engineering / edited by Manfred A. Jeusfeld, Matthias Jarke, John
Mylopoulos.

p. cm. — (Cooperative information systems)
Includes bibliographical references and index.
ISBN 978-0-262-10108-0 (hc : alk. paper)
1. Programming (Mathematics) 2. Engineering models. I. Jeusfeld, Manfred. II. Jarke, Matthias. III.
Mylopoulos, John. IV. Series.

This is the 2021 Open-Access Edition of the book "Metamodeling for Method Engineering" Re-
published by its editors under the Creative Commons license CC BY-NC-ND 4.0,see

https://creativecommons.org/licenses/by-nc-nd/4.0/

All rights to this edition held by the editors.
Contact: Manfred A. Jeusfeld, University of Skövde, Box 408, 54128 Skövde, Sweden
email: manfred.jeusfeld@acm.org

last update: 2022-07-06

mailto:hspecial_sales@mitpress.mit.edui

Contents

Series Foreword vii

Introduction xi

1 A Sophisticate’s Guide to Information Modeling 1

Alex Borgida and John Mylopoulos

2 Metamodeling 43

Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

3 Metamodeling and Method Engineering with ConceptBase 89

Manfred A. Jeusfeld

4 Conceptual Modeling in Telecommunications Service Design 169

Armin Eberlein

5 Metadata for Hypermedia Textbooks: From RDF to O-Telos and Back 233

Martin Wolpers and Wolfgang Nejdl

6 Monitoring Requirements Development with Goals 257

William N. Robinson

7 Definition of Semantic Abstraction Principles 295

Mohamed Dahchour and Alain Pirotte

8 Metadatabase Design for Data Warehouses 329

Christoph Quix

9 A Conceptual Information Model for the Chemical Process Design Lifecycle 357

Birgit Bayer and Wolfgang Marquardt

List of Contributors 383

Index 387

Online resources for the 2021 Open-Access Edition

The ConceptBase system used as a tool for exercises in this book can be downloaded from

http://conceptbase.cc

under a BSD-style open-source license.

Sources for examples for some of the chapters and other resources such as slides for lectures
on metamodeling can be obtained from

http://conceptbase.cc/CB-Resources.html

This replaces the content of the CD-ROM that was accompanying the original 2009book
edition of the textbook. The open-access edition of the textbook features linksto the CD-ROM
contents on the left margin of the pages. There are three types of links:

source/sources: point to the textual Telos source codes (file extension sml); view those
files with a text editor and/or load them to ConceptBase via the tool CBIva

slides: point to slides discussing textbook sections

gel: ConceptBase graph files ready to be loaded by the tool CBGraph; by clicking on
them you can download them via your web browser and start them by the ConceptBase
tool CBGraph

The sources pointed to by links and the graph files may have slightly updated definitions
compared to the source code samples in the textbook since they are being actively maintained.

Further example models for ConceptBase are available from the ConceptBase Forum at

http://conceptbase.sourceforge.net/CB-Forum.html

http://conceptbase.sourceforge.net/
http://conceptbase.sourceforge.net/CB-Resources.html
http://conceptbase.sourceforge.net/CB-Forum.html

Series Foreword

The traditional view of information systems as tailor-made, cost-intensive database

applications is changing rapidly. The change is fueled partly by a maturing software

industry, which is making greater use of o¤-the-shelf generic components and stan-

dard software solutions, and partly by the onslaught of the information revolution.

In turn, this change has resulted in a new set of demands for information services

that are homogeneous in their presentation and interaction patterns, open in their

software architecture, and global in their scope. The demands have come mostly

from application domains such as e-commerce and banking, manufacturing (includ-

ing the software industry itself), training, education, and environmental manage-

ment, to mention just a few.

Future information systems will have to support smooth interaction with a large

variety of independent multivendor data sources and legacy applications, running

on heterogeneous platforms and distributed information networks. Metadata will

play a crucial role in describing the contents of such data sources and in facilitating

their integration.

As well, a greater variety of community-oriented interaction patterns will have to

be supported by next-generation information systems. Such interactions may involve

navigation, querying, and retrieval, and will have to be combined with personalized

notification, annotation, and profiling mechanisms. Such interactions will also have

to be intelligently interfaced with application software, and will need to be dynami-

cally integrated into customized and highly connected cooperative environments.

Morever, the massive investments in information resources, by governments and

businesses alike, call for specific measures that ensure security, privacy, and accuracy

of their contents.

All these are challenges for the next generation of information systems. We call

such systems cooperative information systems, and they are the focus of this series.

In layman’s terms, cooperative information systems are servicing a diverse mix

of demands characterized by content—community—commerce. These demands are

originating in current trends for o¤-the-shelf software solutions, such as enterprise re-

source planning and e-commerce systems.

A major challenge in building cooperative information systems is to develop tech-

nologies that permit continuous enhancement and evolution of current massive

investments in information resources and systems. Such technologies must o¤er an

appropriate infrastructure that supports not only development, but also evolution of

software.

Early research results on cooperative information systems are becoming the core

technology for community-oriented information portals or gateways. An informa-

tion gateway provides a ‘‘one-stop-shopping’’ place for a wide range of information

resources and services, thereby creating a loyal user community.

The research advances that will lead to cooperative information systems will not

come from any single research area within the field of information technology. Data-

base and knowledge-based systems, distributed systems, groupware, and graphical

user interfaces have all matured as technologies. While further enhancements for

individual technologies are desirable, the greatest leverage for technological advance-

ment is expected to come from their evolution into a seamless technology for build-

ing and managing cooperative information systems.

The MIT Press Cooperative Information Systems series will cover this area through

textbooks and research editions intended for the researcher and the professional who

wishes to remain up-to-date on current developments and future trends. The series

will publish three types of books:

� textbooks or resource books intended for upper-level undergraduate or graduate-

level courses

� research monographs, which collect and summarize research results and develop-

ment experiences over a number of years

� edited volumes, including collections of papers on a particular topic

Authors are invited to submit to the series editors book proposals that include a table

of contents and sample book chapters. All submissions will be reviewed formally and

authors will receive feedback on their proposal.

John Mylopoulos

jm@cs.toronto.edu

Dept. of Computer Science

University of Toronto

Toronto, Ontario

Canada

viii Series Foreword

mailto:jm@cs.toronto.edu

Michael Papazoglou

M.P.Papazoglou@kub.nl

INFOLAB

P.O. Box 90153

LE Tilburg

The Netherlands

Joachim W. Schmidt

j.w.schmidt@tu-harburg.de

Software Systems Institute

Technische Universität

TUHH

Hamburg, Germany

Series Foreword ix

mailto:M.P.Papazoglou@kub.nl
mailto:j.w.schmidt@tu-harburg.de

Introduction

This book addresses researchers in the field of conceptual modeling as well as practi-

tioners with advanced modeling skills. It provides the foundations for method engi-

neering, that is, the definition of techniques to design software systems, and applies

these foundations in five case studies ranging from designing chemical processes to

the development of new modeling-language constructs.

The Problem

A computerized software system constitutes a complex reflection of the realities that

it models, is part of, and interacts with. Specialized methods have been developed to

support the whole life cycle of such a system, from early requirements to installation

and maintenance. The methods introduced over the last thirty years include pro-

gramming paradigms, design techniques, modeling languages, and project manage-

ment, to name a few.

As software systems become more complex and diversified, so do the development

methods we use to build them. Standard methods, such as ones based on the Unified

Modeling Language (UML), are not always appropriate for any one development

project, since they represent a specific view on the system and reality, which may be

in conflict with the requirements of the project. Moreover, new technologies, such as

Web services and information quality, are hardly addressed by standard methods.

This book presents a practical approach to engineering new methods for building

software, founded on construction of metamodels. A method is regarded here as a

set of rules and instructions that guide users of the method in creating models about

an information system. The concept of a model subsumes any representation of state-

ments about some artifact. For example, the source code of a program is a model, as

is a list of requirements. As suggested by the title, defining a method by means of a

metamodel is the goal and subject of this book.

Structure of the Book

The book is separated into two main parts plus an accompanying CD-ROM. The

first part, consisting of chapters 1 through 3, presents the theory and state of the

art of metamodeling for method engineering. Chapter 1 introduces information

modeling, which underlies not just the development of a software system, but other

activities such as the specification of requirements. Information models capture

knowledge about some universe of discourse at a level that is closer to human con-

ceptualizations of the domain than to a computer implementation. The knowledge in

an information model can be categorized as concerning static, dynamic, intentional,

and social aspects of the system. In a software system, static aspects are usually

stored as data and dynamic aspects help the design of transactions, whereas the so-

cial and intentional aspects are essential in choosing between design alternatives.

Chapter 1 surveys techniques developed for expressing each di¤erent category of

knowledge, including informal ones, which are accessible to prospective users, and

formal ones, which are amenable to machine manipulation and reasoning.

Chapter 2 investigates the potential of metamodeling for software system develop-

ment. Essentially, a metamodel is a model about a collection of models. Metamodel-

ing has been used to define and extend the capabilities of modeling frameworks.

Two main approaches to metamodeling are presented. The first approach, the Infor-

mation Resources Dictionary System (IRDS) Standard, defines four levels of ab-

straction: the data level, containing actual data of an application; the model level,

containing models of the information system (including source code); the metamodel

level, containing definitions of modeling notations and languages; and the meta-

metamodel level, containing the facilities to define modeling languages. Meta-

modeling is thus the art of designing the contents of the metamodel level, that is, of

designing modeling notations and their interrelationships. The second approach is

an investigation of key perspectives on information systems development: the goal

aspect, the development process aspect, the ontological aspect, and the notational

aspect. Typical metamodeling tools, of which chapter 2 describes a few well-known

representatives, emphasize a subset of these aspects, depending on the main applica-

tions to which they are targeted.

Chapter 3 presents the features of the ConceptBase system as an environment for

method engineering. ConceptBase is based on the metamodeling constructs of Telos,

a knowledge representation language. The basic concept is a statement (or proposi-

tion). Concepts like inheritance, class membership, and attribution are all defined on

top of statements through logical axioms. Since statements can be formed at any of

the four IRDS levels, Telos is an ideal framework for metamodeling. ConceptBase

is basically a model management system. Within ConceptBase, metamodeling and

method engineering become construction and analysis activities for metamodels.

xii Introduction

The chapter applies the functionality of ConceptBase to an instructional example,

the Yourdan method for software system development. Well-known modeling lan-

guages like entity-relationship diagrams and data flow diagrams can be defined with

ConceptBase. The Yourdan method itself is represented by a software process model.

This model is part of the metamodel level, along with modeling languages. Particular

attention is paid to the construction of internotational constraints, which define the

integrity of a given set of models about a software system. Metalevel rules can be

defined to capture the semantics of link types in conceptual modeling languages, for

example, the transitivity of subclass relations. Finally, some examples on measuring

models and modeling processes are given in the chapter in the form of ConceptBase

queries.

The second, and larger, part of the book reports on applications of the meta-

modeling approach to method engineering. All chapters in this part are stand-alone

in the sense that they describe a solution to a problem from a specific domain. Chap-

ter 4 reports on a method engineering case study in telecommunications service

design. The domain of telecommunications service is characterized by specialized

design techniques, but there is a lack of suitable tools to guide the requirements

engineering process. The solution proposed in chapter 4 combines three aspects in

service design. Intelligence models guide the developer to solutions to telecommuni-

cations design problems. Development models contain the standard procedures for

service design, including milestone definitions and iterations. Finally, so-called nego-

tiation models interface from domain models to development models. The collection

of models is interrelated by rules and constraints. Queries are used to check whether

all requirements of a particular service design have been addressed.

Chapter 5 investigates construction aids for hyperbooks. A hyperbook is a com-

plex graph whose navigation structure is crucial for its readability. To allow inter-

operability, di¤erent chunks of a hyperbook distributed over the World Wide Web

are described by Resource Description Framework (RDF) statements. It turns out

that the logical foundation of Telos makes it an ideal candidate for storing RDF

statements and for querying the metadata of a distributed hyperbook. The Telos-

based solution is incorporated into a hyperbook system that is used in academic

courses.

The interaction of requirements monitoring with a goal model is the subject of

chapter 6. The DealScribe system incorporates metamodels of requirements analysis

and goal representations. This allows the specification of goals such as ‘‘each stake-

holder will contribute equally to the requirements dialog during information system

development.’’ The assessment of goal fulfillment is used to guide the dialog of devel-

opers. During di¤erent phases, di¤erent goals are monitored. Glimpses into the fu-

ture are made possible by so-called hypothetical updates to the model repository.

Hence, before actually performing an action, a developer can check its consequences

Introduction xiii

for goal fulfillment. The system also includes a metamodel of linking requirements to

express whether one requirement is subsumed by another. Moreover, conflicts among

requirements can be expressed and dealt with by voting on alternative resolutions.

DealScribe is a working tool that addresses requirements analysis and goal monitor-

ing in a comprehensive way. It uses dedicated modeling languages for expressing

requirements and goals and implements these languages using Telos metamodels.

Chapter 7 returns to a more theoretical metamodeling topic: the definition of se-

mantic abstraction principles, such as specialization, attribution, class membership,

and part-of relations. Interestingly, there is an abstraction principle that can be posi-

tioned between class membership (an object is an instance of a class) and class spe-

cialization (one class is more special than another class). This abstraction principle is

called materialization. It allows expression of the idea that some attributes of a class

are specialized (or inherited), whereas others are instantiated. A class model defines

attributes that are shared by all instances of a particular class (e.g., the gas mileage of

a certain car model). A class materialization defines properties that are specific to the

instances of a particular class (e.g. the serial number of a car). The new abstraction

principle ‘‘materializes’’ is defined by metalevel formulas. Active rules are used to

propagate certain class model properties to the class instances (e.g., the gas mileage

is propagated to the car instances that conform to a certain model). The materializa-

tion relationship itself is subject to querying, for example, to find out all car classes

that materialize a certain car model. The chapter shows that software developers

need not be restricted by predefined semantic abstraction principles as provided by

a standard modeling language, such as UML. Instead, they can engineer their own

abstraction principles on demand. The examples in the chapter are included on the

accompanying CD-ROM.

Chapter 8 addresses the design and management of data warehouses. Data ware-

houses include their own development tools, through which one can add new sources

of data or provide new data cubes for new analysis techniques. The challenge is to

provide a development environment that keeps track of the conceptual, logical, and

physical perspectives of the data warehouse system and at the same time supports as-

sessment of the quality of the data in the system. The solution to this challenge that is

presented in the chapter consists of a set of nine interrelated modeling languages, one

for each of the previously mentioned perspectives at each of three levels: data source,

data warehouse, and client tool. A quality metamodel is placed on top of these nine

languages. It allows quality goals and metrics to be expressed at any level and for

any perspective. For example, the quality of the conceptual schema of a data source

can be assessed as well as the performance of data uploaders in the physical perspec-

tive. The Telos models for this solution are also provided on the accompanying

CD-ROM.

The last case study, in chapter 9, is about industrial design, in particular, the de-

sign of chemical processes. The goal of the Conceptual Lifecycle Process (CLiP) en-

xiv Introduction

1 The CD-ROM resources are available online via http://conceptbase.cc//CB-Resources.html

1

vironment is to enhance chemical-plant design and shorten the time required for it.

The core concept is a system that has properties that are organized into modeling

aspects. Systems can be models of other systems (e.g., a system of equations can be

a model of a valve). System properties are subdivided into property requirements,

functions, realizations, behavior, and performance. These aspects cover the life

cycle of the design of a technical system. The notion of a chemical process groups

function, realization, behavior, and performance properties. In addition to these

domain-specific concepts, a so-called workflow model is included that defines the sys-

tem development method in CLiP. Telos metamodels of CLiP are provided on the

accompanying CD-ROM. After validation of the metamodels with ConceptBase,

the CLiP environment itself is realized on the basis of UML.

Theory versus Practice

The chapters in the first (theoretic) and second (practical) parts of the book are inter-

related in various ways.

Goals

Chapters 1 and 2 elaborate on the necessity of a goal perspective in software develop-

ment projects. Chapter 6 picks this up and presents a specific solution in the area of

requirements engineering, in particular, for monitoring goals and maintaining a net-

work of goal relations.

Social Aspects

Chapter 1 introduces social aspects: Humans take on roles and positions when dis-

cussing a system or an issue. This social aspect of software development projects

recurs in several of the later chapters. Chapter 4 presents a method for organizing

goals and requirements expressed by stakeholders and maintains the agreement level

of the discussion between stakeholders. Chapter 9 devotes a separate metamodel to

the social aspect in order to define collaboration in a team.

IRDS Abstraction Levels

The levels of the IRDS (chapters 2 and 3) are one of the organizing principles in this

book. They distinguish a model from its definitions by a metamodel. All chapters in

the second part of the book (i.e., chapters 4–9) are based on this principle.

Semantics

A particular problem is the formal semantics of abstraction principles like specializa-

tion. Chapter 3 presents metalevel formulas to facilitate the definition of semantics.

Chapter 7 applies metalevel formulas to a new abstraction principle called material-

ization. Another interesting application is the formalization of the RDF language

Introduction xv

that is so popular in the Semantic Web community (chapter 5). Here, it turns out

that the RDF semantics can be expressed by adapting the Telos axioms discussed in

chapter 3.

Model Analysis

The complexity and manifoldness of models require methods for assessing the mod-

els’ correctness, completeness, and quality. Chapter 3 introduces queries as a facility

for analyzing models in a formal way. Chapter 4 uses this idea to tackle the model

analysis problem in the context of telecommunications modeling. Chapter 8 concen-

trates on the quantitative aspect of model analysis and presents a solution for manag-

ing measurements of models in the context of data warehouses.

Process Support

Systems are developed in a series of steps (chapter 2), some of which are about creat-

ing some results, and others of which are more informational. The case study pre-

sented in chapter 3 shows that process design can also be regarded as a modeling

activity and that process enactment is the instantiation of the process model.

Multiple Perspectives

The complexity of software systems is addressed through specialized methods for

the di¤erent aspects of a system yielding static, dynamic, and other models about

the system (chapters 1 and 2). Chapter 8 employs an elaborate metamodel for data

warehouse design with no less than nine interrelated aspects. Another example of

representing multiple perspectives is presented in chapter 9 for the domain of chemi-

cal engineering.

The accompanying CD-ROM contains version 7.0 of the metadatabase system

ConceptBase with executables for the platforms Windows and Linux. The examples

for chapters 3, 7, 8, and 9 are provided on the CD-ROM to allow direct experiments

with the metamodels presented in the book. The ConceptBase software tool and the

practical examples included on the CD-ROM enable readers to start engineering

their own methods directly on their computer.

Acknowledgments

First, we are grateful to the authors of the case studies documented in this book for

their cooperation and patience. Their work has been partially published elsewhere

but has never been collected in a single, integrated book. Their work o¤ers strong ev-

idence that metamodeling is a practical technique that can produce tangible results.

Although the theoretic foundation is important for getting started with meta-

modeling and method engineering, we believe that only the examples in the extended

xvi Introduction

case studies can demonstrate the beauty and the feasibility of this exciting modeling

technique.

This book would not have been possible without the work of our colleagues who

have contributed to the design of Telos and implementation of the ConceptBase sys-

tem over the last fifteen years. We are particularly grateful to Manolis Koubarakis

and Alex Borgida for their contributions to the design of the Telos modeling lan-

guage. Special thanks are also due to Martin Staudt, who developed the Concept-

Base query language, and to Hans Nissen, who created its module system. Many

thanks to René Soiron, Kai von Thadden, Rainer Gallersdörfer, and Thomas List

for their great contribution to the ConceptBase server.

We thank the anonymous reviewers of an earlier draft of this book for their valu-

able suggestions and Michael Harrup, the careful copy editor, for improving the lan-

guage and removing misspellings. We wholeheartedly appreciate the long-standing

support of the MIT Press in general, and Douglas Sery, Valerie Geary, and Deborah

Cantor-Adams in particular for their unwavering encouragement for this book. Last

but not least, we thank Greg McArthur, who processed most of the copy editor’s

comments. His work was essential in finalizing this book.

Manfred A. Jeusfeld

Matthias Jarke

John Mylopoulos

Introduction xvii

Metamodeling for Method Engineering

1 A Sophisticate’s Guide to Information Modeling

Alex Borgida and John Mylopoulos

Models of various kinds of information about the world have found uses in diverse

areas of computer science (e.g., artificial intelligence, databases, software require-

ments engineering), as well as in the business world (e.g., business process reengi-

neering, corporate knowledge management). We provide a brief introduction to a

variety of information modeling techniques by presenting a selective history, and

then surveying a number of techniques for modeling static, dynamic, intentional

and social aspects of an application. Our survey covers both diagrammatic and

formal modeling methods, and applies them to an example involving scheduling

meetings. Diagrammatic techniques, such as UML, are used because they visually

summarize the principal elements of a model, and provide an easy to understand

roadmap. Formal languages, such as KAOS, are based on predicate logic and cap-

ture additional details about an application in a precise manner. They also provide

a foundation for reasoning with information models.

1.1 Introduction

Information modeling is concerned with the construction of computer-based symbol

structures that model some part of the real world. We refer to such symbol structures

as information bases, generalizing the term from related terms in computer science,

such as databases and knowledge bases. Moreover, we refer to the part of a real world

being modeled by an information base as its application domain (or just plain appli-

cation). The atoms out of which one constructs the information base are assumed to

denote particular individuals in the application (Maria, George, 7, . . .) or concepts

under which the individual descriptions are classified (student, employee, . . .). Like-

wise, the associations within the information base denote real-world relationships,

such as physical proximity and social interaction. We imagine that an information

base is queried and updated through special-purpose languages, analogously to the

way databases are accessed and updated through query and data manipulation

languages.

slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616299/lect02.pdf

It should be noted that in general, an information base is developed over a long

time period, accumulating details about the application it models and changing to

remain a faithful model of an evolving application. In this regard, it should be

thought of as a repository that contains accumulated, disseminated, structured in-

formation, much like human long-term memory, or databases, knowledge bases,

and so on. Assuming that information is entered into the information base through

statements expressed in some language, the foregoing considerations suggest that

the contents of these statements need to be extracted and organized. In other

words, the organization of an information base should reflect its contents, not just

its history.

This implies some form of a locality principle (Brodie 1984), which calls for infor-

mation to be organized according to its subject matter. Support for such a principle

may come from the tools provided for building and updating an information base, as

well as from the development methodology adopted. For example, insertion opera-

tions that expect object descriptions (i.e., an object’s name, attributes, superclasses,

etc.) do encourage this type of grouping, in contrast to those that accept arbitrary

statements about the application (e.g., an assertion like ‘‘Maria wants to play with

the computer’’ or ‘‘George is outside’’).

What kinds of symbol structures does one use to build up an information base?

Analogously to databases, these symbol structures need to adhere to the rules of

some information model—a notion that is a direct adaptation of the concept of data-

base data model. The following definition is also adapted from databases: An infor-

mation model1 consists of (1) a collection of symbol structure types, whose instances

are used to describe an application; (2) a collection of operations that can be applied

to any valid symbol structure, and (3) a collection of inherent constraints that define

the set of consistent symbol structure states, or valid changes of states. The relational

model for databases (Codd 1970) is the prototypical example of an information

model. Its basic symbol structure types include tuple, table, and domain. Its associ-

ated operations include, for tuples, insert, delete, and update operations, and for

tables, join and select operations. The relational model has a single inherent con-

straint: ‘‘No two tuples within a table can have the same key.’’ Given the foregoing,

one can define more precisely an information base as a symbol structure that is based

on an information model and describes a particular application.

Is an information model the same thing as a language or a notation? For our pur-

poses, it is not. An information model o¤ers symbol structures for representing infor-

mation. This information may be communicated to users of an information base

(human or otherwise) through one or more languages. For example, there are several

di¤erent query languages associated with the relational model, of which Structured

Query Language (SQL) is the most widely used. In a similar spirit, we see notations

as (usually graphical) partial descriptions of the contents of an information base.

2 Alex Borgida and John Mylopoulos

Again, there may be several notations associated with the same information model

(e.g., the di¤erent graphical notations used for data flow diagrams).

The earliest information models in computer science were physical models, which

employed conventional programming notions (e.g., records, files, strings, and

pointers) to build and maintain a data structure that modeled a particular applica-

tion. Not surprisingly, such models focused mostly on implementation, as opposed

to representation, aspects of the information being captured.2 Logical information

models, based on abstract mathematical symbol structures (e.g., sets, relations),

were o¤ered in order to hide implementation details from the user. The relational

model for databases is an excellent example of a logical model. In a relational data-

base, one does not need to know the physical data structures used (e.g., B-trees) in

order to access the database’s contents. Unfortunately, such models are not well-

suited for modeling complex real-world applications. Finally, conceptual models o¤er

facilities for modeling applications more ‘‘naturally and directly’’ (Hammer and

McLeod 1981, 352), as well as for structuring and constructing information bases.

These models provide semantic terms for modeling an application, such as ‘‘entity,’’

‘‘activity,’’ ‘‘agent,’’ and ‘‘goal,’’ as well as means for organizing information in

terms of abstraction mechanisms, which are often inspired by principles of cognitive

science (Collins and Smith 1988).

Most of the conceptual models discussed in this chapter support some form of the

locality principle alluded to earlier. There are several reasons for this. First, the prin-

ciple appears to be consistent with accepted theories of human memory organization

(Anderson and Bower 1973). Second, conceptual models supporting locality are gen-

erally considered more perspicuous, and hence easier to use. Finally, such models

o¤er the promise of e‰cient implementations because of their commitment to clus-

tering information according to its topic. In short, conceptual models adopting such

a locality principle have advantages over standard methods, both on cognitive and

on engineering grounds.

Information modeling touches on deep and long-standing philosophical issues, no-

tably, the nature of generic terms included in an information base, such as Person,

Student, and Employee. Do these terms represent abstract things in the application,

in the same way Michelle or Myrto represent concrete ones? Or are these represen-

tations of concepts in the mind of the modeler? Philosophers as far back as Plato

have taken stands on the problem. Plato, in particular, adopts a naive realism in

which objective reality includes abstract ideas, such as the concepts of student and

employee, and everything is out there to be discovered. Others, including Aristotle,

Locke, and Hume, adopt various forms of conceptualism, according to which con-

cepts are cognitive devices created through cognitive processes. For a discussion of

the range of stands on this issue within philosophy and how these a¤ect the nature

of information modeling, see Artz 1997.

A Sophisticate’s Guide to Information Modeling 3

Likewise, information modeling touches on fundamental issues that relate to social

science (Potts 1997). In particular, all the techniques discussed here adopt an abstrac-

tionist stance, founded on the notion of a model abstracted from an application,

which captures the essence of the application, ignores bothersome details, and is in-

tended for analysis and/or communication. Natural scientists and engineers use such

abstractionist methods heavily. In contrast, contextualism emphasizes precisely the

details and idiosyncrasies of each individual application, as well as the modeling pro-

cess itself. These define a context and constitute the unique identity of each particular

modeling situation. Ignoring them can lead to models that are inaccurate and mis-

leading, as they simply miss the essence of each case. Contextualism has been largely

developed and used within the social sciences, and it remains to be seen how one can

combine it with abstractionism in information modeling.

The rest of the chapter is organized as follows. Section 1.2 presents a brief history

of conceptual modeling in artificial intelligence, databases, software engineering, and

information systems. Section 1.3 focuses on modeling the static aspects of an appli-

cation dealing with scheduling meetings. The remaining sections present the model-

ing of dynamic, intentional, and social aspects for the same example. In each section

we present both graphical and textual/formal models and discuss di¤erent kinds of

analyses that can be carried out.

1.2 A Brief History

Over the years, there have been literally hundreds of proposals for conceptual mod-

els, most defined and used only within the confines of a single project. We review in

this section some of the earliest models that launched fruitful lines of research and

influenced the state of practice. Interestingly, these models were developed indepen-

dently of one another and in di¤erent research areas within computer science.

Ross Quillian (1968) proposed semantic networks, a form of directed, labeled

graph, as a convenient device for modeling the structure of human lexical memory.

Nodes of his semantic network proposal (see figure 1.1) represented concepts (more

precisely, word senses). For words with multiple meanings, such as ‘‘plant,’’ there

would be several nodes, one for each sense of the word (e.g., ‘‘plant’’ as in ‘‘industrial

plant,’’ ‘‘evergreen plant’’, etc.). Nodes were related through links representing se-

mantic relationships, such as isA (‘‘A bird is a(n) animal,’’ ‘‘a shark is a fish’’), has

(‘‘A bird has feathers’’), and eat (‘‘Sharks eat humans’’). Moreover, each concept

could have associated attributes, representing properties, such as ‘‘Penguins can’t

fly.’’

There are several novel ideas in Quillian’s proposal. First, his information base

was organized in terms of concepts and associations. Moreover, generic concepts

were organized into an isA (or generalization) hierarchy, supported by attribute in-

4 Alex Borgida and John Mylopoulos

heritance. In addition, his proposal came with a radical computational model termed

spreading activation. Thus, computation in the information base was carried out by

‘‘activating’’ two concepts and then iteratively spreading the activation to semanti-

cally adjacent concepts. For example, to discover the meaning of the term ‘‘horse

food,’’ spreading activation would fire the concepts horse and food and then spread

activations to neighbors, until the following two semantic paths were discovered:

horse --isA--> animal --eats--> food

horse --isA--> animal --madeof--> meat --isA--> food

These paths correspond to two di¤erent interpretations of ‘‘horse food’’; the first

amounts to something like ‘‘food that horses eat,’’ whereas the second refers to

‘‘food made out of horses.’’

In 1966, Ole-Johan Dahl and Kristen Nygaard proposed an extension of the pro-

gramming language ALGOL 60, called Simula, intended for simulation applications.

Simula (Dahl, Myrhaug, and Nygaard 1970) allows the definition of classes that

serve as a cross between executable processes and record structures. A class can be

instantiated any number of times. Each instance first executes the body of the class,

to initialize it, and then remains as a passive data structure that can be operated

upon only by procedures associated with the class. For example, the class stack in

figure 1.2 has two local variables, N, an integer, and T, a vector of reals. Every time

the class is instantiated, these are initialized. Then instances can be operated upon

through two operations push and pop that perform (obvious) stack operations.

Simula advanced significantly the state of the art in programming languages,

served as intellectual foundation for Smalltalk and has been credited with the launch

of object-oriented programming. Equally importantly, Simula influenced informa-

tion modeling by recognizing that for some programming tasks, such as simulation,

Figure 1.1
A simple semantic network

A Sophisticate’s Guide to Information Modeling 5

one needs to build a model of an application. For instance, to simulate a barbershop,

one needs to define classes for the barbershop itself, its barbers, and customers, who

arrive at a certain rate, wait in line, get a haircut by one of the barbers on hand, pay,

and leave. According to Simula, such models are constructed out of class instances

(objects, nowadays). These are the basic symbol structures that model elements of

the application. Classes themselves define common features and common behaviors

of instances and are organized into subclass hierarchies. Class declarations can be in-

corporated into subclasses through some form of inheritance (in this case textual).

Jean-Raymond Abrial proposed the semantic binary model for databases in 1974,

shortly followed by Peter Chen’s (1976) entity-relationship model.3 Both were in-

tended as advances over logical data models, such as Codd’s relational model, pro-

posed only a few years earlier.

The entity-relationship diagram of figure 1.3 shows entity types Client, Book,

and BookCopy and relationships requests and hasCopies. Roughly speaking, the

Figure 1.2
A Simula class definition

6 Alex Borgida and John Mylopoulos

diagram represents the fact that ‘‘Clients request books’’ and ‘‘Books have many

copies.’’ The requests relationship type is many-to-many (N to M), meaning that

a client requests many books, and each book can be requested by many clients.

On the other hand, hasCopies is a one-to-many relationship type in that a book

can have many copies, but each copy is associated with a single book. In addition,

values (integers, strings, etc.) can be associated with either entities or relationships

through attributes (e.g., the string title of a book, the date when the request was

made).

Novel features of the entity-relationship model include its built-in terms, which

constitute ontological assumptions about the intended application. In other words,

the entity-relationship model assumes that applications consist of entities/values and

relationships/attributes. This means that the model is not appropriate for applications

that violate these assumptions (e.g., a world of fluids, or those involving temporal

events, state changes, and the like). In addition, Chen’s original paper showed ele-

gantly how one could map a schema based on his conceptual model, such as that

shown in figure 1.3, to a logical database schema. These features made the entity-

relationship model an early favorite, perhaps the first conceptual model to be used

widely. Later research on semantic data models extended the basic ontology and con-

structs provided by Chen’s proposal to facilitate the modeling of additional applica-

tion semantics.

Abrial’s semantic model is more akin to object-oriented data models, which be-

came popular over a decade later, than Chen’s entity-relationship model is. His

model also o¤ers entities and relations (albeit only binary ones) as primitive terms

but includes a procedural component through which one can associate with a class

four primitive operations: for adding instances of the class, deleting instances of the

class, testing whether an object is an instance of the class, and fetching all class

instances. These procedures can capture additional details of the situation being

modeled.

Figure 1.3
An entity-relationship diagram

A Sophisticate’s Guide to Information Modeling 7

Douglas Ross (1977; Ross and Schoman 1977) proposed in the mid-1970s the

Structured Analysis and Design Technique (SADT) as a ‘‘language for communicat-

ing ideas’’ (Ross 1977, 17). The technique was used by Softech, a Boston-based soft-

ware company, to specify requirements for software systems. According to SADT,

the world consists of activities and data. Each activity is represented by a box and is

described in part by the data involved in its execution: An activity may consume

some data, represented through input arrows on the left side of the activity box, and

produce some data, represented through output arrows on the right side, and may

also have some data that control the execution of the activity but are neither con-

sumed nor produced. (Control data are represented by arrows feeding into the activ-

ity box from the top.) For instance, the Buy_Supplies activity in figure 1.4 has

input Farm_Supplies, output Fertilizer and Seeds, and controls Prices and

Plan&Budget. An activity may be further described in terms of its own diagram,

showing its subactivities. Thus Grow_Vegetables is defined in terms of the subactiv-

ities Buy_Supplies, Cultivate, Pick_Produce, and Extract_Seeds. An SADT

model is therefore hierarchically structured, making it easier to build and understand

than a nonhierarchical model. One of the more elegant aspects of the SADT concep-

tual model is its duality: Data, like activities, are also described in terms of diagrams

Figure 1.4
An SADT activity diagram

8 Alex Borgida and John Mylopoulos

with input, output, and control arrows, which in this case represent activities that can

produce, consume, or a¤ect the state of a given datum.

Ross’s contributions to information modeling include more advanced ontological

assumptions: Unlike in the entity-relationship model, according to SADT, applica-

tions consist of both static and dynamic parts. Ross also was influential in convincing

software engineers that it pays to have diagrammatic descriptions of how a software

system is to fit its intended operational environment. This contribution helped launch

requirements engineering as an accepted and important early phase in software de-

velopment. The case for world modeling as part of requirements engineering was

also articulated eloquently by Michael Jackson (1978), whose software development

methodology (Jackson 1983) starts with a ‘‘model of the reality with which the sys-

tem is concerned’’ (4).

The use of conceptual models for information systems engineering was launched

by Solvberg (1979), and Bubenko’s (1980) conceptual information model (CIM) is

perhaps the first comprehensive proposal for a formal requirements modeling lan-

guage. Its novel features include an ontology of entities and events and an assertional

sublanguage for specifying constraints, including those expressing complex temporal

relationships.

After these pioneers, research on conceptual models4 and modeling broadened

considerably, both in the number of researchers working on the topic and in the

number of proposals for new conceptual models. In databases, dozens of new seman-

tic data models were proposed, intended to ‘‘capture . . . more of the meaning of the

data’’ (Codd 1979, 397). For instance, RM/T (Codd 1979) attempts to embed within

the relational model the notion of entity and organizes relations into generalization

hierarchies. SDM (Semantic Data Model) (Hammer and McLeod 1981) o¤ers a set

of highly sophisticated facilities for modeling entities and supports the organization

of conceptual schemata in terms of generalization and aggregation, as well as a

grouping mechanism. Taxis (Mylopoulos 1980) adopts ideas from semantic networks

and Abrial’s proposal to organize all components of an information system, includ-

ing transactions, exceptions, and exception-handling procedures, using generalization

hierarchies. Tsichritzis (1982) presents an early but thorough treatment of data mod-

els and modeling, and Hull and King (1987) and Peckham and Maryanski (1988)

survey and compare a variety of semantic data models.

The rise of object orientation as the programming paradigm of the 1980s (and

1990s) led to object-oriented databases, which adopted some ideas from semantic

data models and combined them with concepts from object-oriented programming

(Zdonik and Maier 1989; Atkinson et al. 1990). Early object-oriented data models

supported a variety of sophisticated modeling features (e.g., Gemstone [Copeland

and Maier 1984], based on the information model of Smalltalk), but the trend in re-

cent commercial object-oriented database systems is toward the information model

A Sophisticate’s Guide to Information Modeling 9

of popular object-oriented programming languages, such as Cþþ. By including more

and more programming aspects, object-oriented data models seem to be taking a step

backward with respect to conceptual modeling.

The rise of the Internet and the World Wide Web has created tremendous demand

for integrating heterogeneous information sources. This has led, in turn, to an em-

phasis on metamodeling techniques in databases, in which one needs to model the

meaning and structure of the contents of di¤erent information sources, such as files,

databases, Web sites, and digitized pictorial data, rather than an application (Klas

and Sheth 1994; Widom 1995).

Within artificial intelligence (AI), semantic network proposals proliferated in the

1970s (Findler 1979), including those that treated semantic networks as a graph-

theoretic notation for logical formulas. During the same period, Minsky (1975)

introduced the notion of frames as a suitable symbol structure for representing com-

monsense knowledge, such as the concept of a room or of an elephant. A frame may

contain information about the components of the concept being described and links

to similar concepts, as well as procedural information on how the frame can be

accessed and change over time. Moreover, frame representations focus specifically

on capturing commonsense knowledge, a problem that still remains largely un-

resolved for knowledge representation research. Examples of early semantic network

and frame-based conceptual models include KL-ONE (Brachman 1979) and KRL

(Bobrow and Winograd 1977).

Terminologic/description logics are a family of formalisms that grew out of

attempts to formalize and systematize semantic networks and frames. Such systems

(e.g., CLASSIC [Borgida et al. 1989]) o¤er facilities for precisely specifying concepts

in terms of necessary and/or su‰cient conditions. For example, a bachelor might be

defined as a person of male gender who does not have a spouse:

Bachelor == (and Person

(fills gender ‘male)

(at-most 0 spouse))

The description on the right-hand side of the specification is built from identifiers of

relationships (e.g., spouse), individuals (e.g., ‘male) and other concepts (e.g., Per-

son), using concept constructors (and, fills, at-most) chosen from a small prede-

fined set. The important point is that descriptions have a well-defined semantics and

support e¤ective reasoning (e.g., deciding when two descriptions are mutually incon-

sistent or one subsumes the other). In fact, from a theoretical point of view, descrip-

tion logics (DLs) such as KL-ONE and CLASSIC, have been the most thoroughly

studied knowledge representation schemes. The decidability of reasoning in DLs is

achieved by limiting what can be expressed in the language, with empirical research

10 Alex Borgida and John Mylopoulos

driving the choice of particular concept constructors. A knowledge base management

system using descriptions stores concept definitions (i.e., an ontology) in the ‘‘termi-

nological’’ component; in addition, an ‘‘assertional’’ component is provided for stat-

ing which descriptions hold regarding specific individuals. Descriptions allow

incomplete information to be encoded (e.g., we might know that Gianni has at least

two children, who are older than sixteen, without knowing anything else about them)

and used for reasoning. Borgida (1995) surveys the use of description logics in data-

bases. Knowledge representation is thoroughly presented in Brachman and Levesque

1984, reviewed in Levesque 1986, and overviewed in Kramer and Mylopoulos 1991.

In requirements engineering, Sol Greenspan’s RML (Requirements Modeling Lan-

guage) (Greenspan, Mylopoulos, and Borgida 1982; Greenspan 1984; Greenspan,

Borgida, and Mylopoulos 1986) attempts to formalize SADT using ideas from

knowledge representation and semantic data models. The result is a formal require-

ments language in which entities and activities are organized into generalization

hierarchies; Greenspan’s proposal anticipates a number of object-oriented analysis

techniques by several years. During the same period, the GIST specification language

(Balzer 1981) was developed at the University of Southern California’s Information

Sciences Institute. It, too, was based on ideas from knowledge representation and

supported modeling the environment; it was influenced by the notion of making the

specification executable and by the desire to support transformational implementa-

tion. ERAE (Dubois et al. 1986) was an early e¤ort that explicitly shared with

RML the view that requirements modeling is a knowledge representation activity;

it was founded on ideas from semantic networks and logic. The KAOS project con-

stitutes a more recent and most significant research e¤ort that strives to develop a

comprehensive framework for requirements modeling and requirements acquisition

methodologies (Dardenne, van Lamsweerde, and Fickas 1993). The language o¤ered

by KAOS for requirements modeling provides facilities for modeling goals, agents,

alternatives, events, actions, existence modalities, agent responsibility, and other con-

cepts. KAOS relies heavily on a metamodel to provide a self-descriptive and exten-

sible modeling framework. In addition, KAOS o¤ers an explicit methodology for

constructing requirements that begins with the acquisition of goal structures and the

identification of relevant concepts and ends with the definition of actions to be per-

formed by the system to be built or agents existing in the system’s environment.

The state of practice in requirements engineering was influenced by SADT and its

successors. Data flow diagrams (e.g., De Marco 1979) adopt some of the concepts of

SADT but focus on information flow within an organization, as opposed to SADT’s

all-inclusive modeling framework. The combined use of data flow and entity-

relationship diagrams has led to an information system development methodol-

ogy that dominated teaching and practice until the advent of the Unified Modeling

A Sophisticate’s Guide to Information Modeling 11

Language (UML). Since the late 1980s, however, object-oriented analysis techniques

(for example, Shlaer and Mellor 1988; Rumbaugh et al. 1991; Jacobson et al. 1992)

have been introduced in software engineering practice and are dominant today.

These techniques o¤er a more coherent modeling framework than the combined use

of data flow and entity-relationship diagrams. The object-oriented framework adopts

features of object-oriented programming languages, semantic data models, and re-

quirements languages. UML (Fowler and Scott 1997) integrates the features of these

and other preceding object-oriented analysis techniques and has become the de facto

system development standard for a considerable segment of the software industry.

An early survey of issues in requirements engineering appears in Roman 1985, and

the requirements modeling terrain is surveyed in Webster 1987. Thayer and Dorfman

1990 includes a monumental tutorial on requirements engineering.

The history of conceptual modeling did not unfold independently within the areas

reviewed here. An influential workshop held at Pingree Park, Colorado, in 1980

brought together researchers from databases, AI, programming languages, and soft-

ware engineering to discuss conceptual modeling approaches and compare research

directions and methodologies (Brodie and Zilles 1981). The workshop was followed

by a series of other interdisciplinary workshops that reviewed the state of the art in

information modeling and related areas (Brodie, Mylopoulos, and Schmidt 1984;

Brodie and Mylopoulos 1986; Schmidt and Thanos 1989). The International Confer-

ences on the Entity-Relationship Approach,5 held annually since 1979, have marked

progress in research on as well as the practice of conceptual modeling generally.

A number of papers and books survey the whole field of conceptual modeling or

one or more of its constituent areas. Loucopoulos and Zicari 1992 is a fine collection

of papers on conceptual modeling, most notably a survey of the field (Rolland and

Cauvet 1992), and Boman et al. 1997 o¤ers a complete and coherent approach to

conceptual modeling, using Prolog as the representation and reasoning language.

Mylopoulos and Brodie 1988 surveys the interface between AI and databases, much

of it related to conceptual modeling. Along a similar path, Borgida 1990 discusses

the similarities and di¤erences between knowledge representation in AI and semantic

data models in databases. It should also be acknowledged that the foregoing discus-

sion has left out other areas in which conceptual modeling has been used for some

time, most notably enterprise modeling (Vernadat 1996) and software process mod-

eling (Madhavji and Penedo 1993).

In the remainder of the chapter, we consider several topics about what information

may appear in a conceptual model: static and dynamic aspects, goals, agents, and

intentions. In each case, we give a series of examples from the domain of meeting

scheduling that illustrate issues that commonly arise in building such a model. The

examples are expressed, whenever possible, in both a diagrammatic notation (such

as UML) and a more formal, textual one (such as KAOS).6

12 Alex Borgida and John Mylopoulos

1.3 Modeling Static Aspects of the Application

1.3.1 Individuals in the World

It is natural to see the world as being populated by individuals. Some are quite con-

crete, such as a particular person, Gianni, or a particular room in a particular build-

ing. Others are somewhat more abstract, like the meeting that Gianni attended last

week, or the one he will be attending next week, or the Monday morning meeting

he usually attends. These kinds of individuals have an intrinsic identity, so that even

if we are told of two meetings to be held tomorrow morning at 9 a.m., we can distin-

guish them (e.g., count them), even if we cannot name any specific properties that

they have and that are di¤erent in each. In order to refer to such individuals, it would

be easiest if each had a unique name, but unfortunately the real world is never quite

as neat as this. In this chapter, as in object-oriented systems, we will be assigning ar-

bitrary identifiers to individuals (e.g., gianni), so that we can refer to them. Note

that it is important to distinguish an individual from various references to it (gianni

vs. ‘‘the person whose first name is ‘John’ ’’ vs. ‘‘the initiator of tomorrow’s meeting’’

vs. ‘‘the chairman of the psychology department’’).

Other individuals are mathematical abstractions, such as integers, strings, lists, and

tuples, whose identity is determined by some procedure, usually involving the struc-

ture of the individual. We call such individuals values, in contradistinction to objects.

For example, the two strings ‘‘abc’’ and ‘‘abc’’ are the same individual value because

they have the same sequence of characters. Similarly for triangles with sides of length

25, 12, and 20 or dates such as 1925/12/20.

Although values are eternal, individuals usually have an associated period of exis-

tence. Time is therefore an intrinsic part of every object model, though frequently it

is omitted, with the understanding that the model reflects only the state of the world

at the present moment.

1.3.2 Classes

In general, building a model for an application begins with a model of the generic

concepts that are relevant to the application. For example, if we are modeling a uni-

versity, then concepts such as ‘‘faculty,’’ ‘‘department,’’ ‘‘degree,’’ and ‘‘program of

study’’ are modeled first, using the notion class. Like a database schema, these con-

cepts serve to circumscribe the contents of the information base we are constructing.

Some special individuals may show up at this stage as well, if they are su‰ciently im-

portant and stable. For example, if we are modeling a pair of related universities

(including, say, the University of North Bay), then the individual northBayU may,

quite appropriately, appear in the model. In general, however, early modeling of an

application focuses on classes of individuals, since usually there are too many indi-

viduals in the world to make modeling each of them realistic, and they come and

A Sophisticate’s Guide to Information Modeling 13

go, whereas the corresponding classes are more stable. When individuals are intro-

duced in an information base, they are associated with one or more classes as their

instances. So we distinguish a special InstanceOf relationship between individuals

and classes.

If we are concentrating on meeting scheduling in the university world, some obvi-

ous classes of individuals are meetings (requested or scheduled), persons, committees,

rooms, topics, dates, agendas, and timetables. Classes need to be given identifiers,

and the choice of the names should be a matter of careful deliberation (Ross 1977a),

because domain experts, who are most probably not computer experts, will rely on

these to capture much of the semantics of the application. In UML, a class is pre-

sented as a box, labeled by the class identifier, as shown in figure 1.5.

1.3.3 Subclasses

For many classes, there are specialized subclasses, representing subconcepts that are

also of interest. For example, a Meeting can be DeptWide or UniversityWide;

it can also be ScheduledRegularly or AdHoc. Meetings might be classified depend-

ing on their intended purpose (hiring, curriculum, etc.), which often is correlated

with a particular committee. In some of the above cases, we recognize that some

subclasses are disjoint (e.g., ScheduledRegularly and Adhoc, or DeptWide and

UniversityWide).

Note that a modeling language should not require mutual disjointness of sub-

classes. For example, we could have a meeting that discusses both hiring and curric-

ulum and is therefore an instance of both the Hiring and Curriculum classes. It

should be up to the modeler to decide what assertions make sense for her application,

Figure 1.5
A subclass hierarchy for the class Meeting

14 Alex Borgida and John Mylopoulos

so that they can be included in the specification of the information base. Unfortu-

nately, in many modeling frameworks based on object-oriented programming lan-

guages, one is forced to create a common subclass for such situations, in order to

guarantee a unique minimal class for every individual. Such features are not model-

ing principles—they are implementation obstacles.

Figure 1.5 illustrates the specification of subclasses in UML, using an open arrow-

head. Grouping subclasses together under a single arrowhead allows one to specify

that these subclasses are created based on some particular criterion (a discrimina-

tor attribute, such as timing) and that the subclasses are mutually disjoint (anno-

tation {disjoint}) or that their union covers the entire superclass (annotation

{complete}).

A final, conceptually important distinction concerning classes is whether an ob-

ject’s membership in a particular class can change with time or whether it is an in-

trinsic property. For example, it is fair to assume that a person remains a person

throughout its lifetime. On the other hand, a faculty member is likely to start as a

junior faculty member and become, in the normal course of events, a senior faculty

member. (UML does not have special notation for this ‘‘dynamic’’ property.)

1.3.4 Modeling Relationships

Apart from being instances of classes, objects participate in relationships. Binary

relationships are most frequent and are usually named directionally. For example, a

meeting will have people participating in it (the participants relationship of a

meeting), or conversely, a person will be participating in meetings (the partici-

pates relationship of persons). In addition, we may want to specify the minimum

and maximum number of meeting participants (two or more, written as 2..*) and

the minimum and maximum cardinality of meetings a person can participate in

(zero or more, written as 0..*). This information is presented, according to the

UML notation, as shown in figure 1.6.

Relationships can also exist between individuals and values. For example, a meet-

ing may have a time, indicating the time period when it is to take place, and a

place, describing the location. Frequently, such relationships are distinguished

from relationships between individuals and are called attributes. In UML, attributes

are shown schematically as named entries inside the box representing a particular

class, as in figure 1.7.

Figure 1.6
A semantic relationship between Meeting and Person

A Sophisticate’s Guide to Information Modeling 15

In addition to cardinality and range constraints on relationships, a wide variety of

other kinds of constraints often need to be captured in a model. For example, be-

cause of the need for keys in relational databases, it is frequently desirable to specify

that some collections of attributes uniquely identify an object within some class. And

certain relationships can be designated to be part-whole compositions (marked with a

solid diamond at the end of the composite), indicating among other things that when

the whole is destroyed, its parts are also destroyed.

1.3.5 Reified Relationships

It is sometimes useful to attach attributes to qualify relationships. For example, when

someone commits to attend a meeting, we might want to record when the com-

mitment was made and also what task was assigned to the person for the meeting.

In UML, this could be depicted using an association class, as shown in figure 1.8.

Here the relationship shown in figure 1.6 has been augmented with two attributes,

committedOn and assignedTask. These are attributes of each participation rela-

tionship, as opposed to attributes of the meeting and/or person involved.

We can reify relationships by treating them as individual objects, belonging to

their own classes, as illustrated in figure 1.9. However, if Participation is just an

ordinary class, one must be careful, because there may be multiple instances of the

Figure 1.7
Attributes for Meeting

Figure 1.8
Participation as an association class

16 Alex Borgida and John Mylopoulos

class with the same where and who attributes, which could not happen in an ordi-

nary binary relationship (which is a set, rather than a bag, of tuples). One must there-

fore add constraints to ensure the uniqueness of the (who, where) pair of objects in

the class. It is necessary to reify relationships when one is trying to represent n-ary

relationships, such as room bookings, which relate a room, a time and a meeting.

The entity-relationship model and KAOS (see section 1.3.7) are examples of concep-

tual models that treat arbitrary relationships as classes but distinguish them from en-

tity classes.

1.3.6 A Larger UML Example

Figure 1.10 shows a UML class diagram for meeting scheduling. In addition to Per-

son and Meeting, we include two subclasses to distinguish between requested and

scheduled meetings. In addition, each person has a Calendar, which consists of con-

straints on meetings he or she can attend. (Since the deletion of a calendar does not

imply the disappearance of meetings, this is not a composition relationship, and an

open diamond is used to denote this ‘‘aggregation’’ relationship.) Meetings have

associated requirements, involving equipment, space, location, and time, which are

expressed as constraints.

1.3.7 A Formal Modeling Language

Like other formal conceptual models, KAOS allows one to express some of the pre-

ceding information through the use of built-in notions such as entity and relation-

ship. For example, the UML material in figures 1.7 and 1.9, plus additional

information about Person, is captured in the KAOS definition appearing in figure

1.11.

By associating a set with every class (the extent of the class), a function with every

attribute, and a predicate with every relationship (as well as a predicate with every at-

tribute), we obtain the basis of a first-order predicate language in which one can

make assertions about the valid states of the world. The syntax illustrated in figure

1.11 is then provided a formal semantics by translation to formulas in predicate

logic. For example, using the popular x.f notation as equivalent to f(x), the Meet-

ing entity class leads to the assertion of

Figure 1.9
The reified Participation class

A Sophisticate’s Guide to Information Modeling 17

(Em:MEETING)(TimePeriod(m.time)5RoomLocation(m.place)).

Additional assertions, called invariants, can be added to the conceptual model to

capture constraints for which there are no abbreviatory conventions. For example,

we could require that the busy and free time intervals for a person must be disjoint,

(Ep:PERSON)(p.busyXp.free = q),

and also, that the times a person has committed to meetings should not be listed as

free:

(Ep:PERSON,m:MEETING)(Participation(p,m)

=> m.time B p.free).

1.3.8 Reifying Classes

Classes can themselves be treated as (meta)objects, with their own attributes and

relationships. These are frequently useful for capturing aggregate information, which

Figure 1.10
A UML class diagram for meetings

18 Alex Borgida and John Mylopoulos

would not normally be associated with every individual in the class. For example, the

class Meeting might have attributes that capture information such as the number of

currently scheduled meetings or the average length.

1.3.9 Reasoning about the Static Model

Given the preceding translation into logic, it now becomes clear that we can perform

logical inferences over the conceptual model. Most frequently, one is looking to dis-

cover inconsistencies, which can easily arise in large models. For example, the con-

straints imposed on an attribute in a class and one of its superclasses may be in

conflict with each other. The result is that some classes or relationships can be proven

to have no instances in any possible state of the world. Checks for consistency of this

kind are often built into computer tools that support conceptual modeling with vari-

ous languages and notations. Some of the most powerful logic-based reasoning about

static models can currently be performed with notations that are translated into de-

scription logics, which include all manner of entity-relationship and object-oriented

approaches, as discussed in Calvanese, Lenzerini, and Nardi 1998.

Figure 1.11
KAOS specification of Meeting

A Sophisticate’s Guide to Information Modeling 19

1.4 Modeling Dynamics

Of course, the world is not static, and therefore it is important to incorporate into an

information model some of the dynamic aspects of the application being modeled. In

the meeting-scheduling domain, some natural actions are issuing a meeting request,

scheduling a meeting, and postponing or canceling a meeting. Other activities would

involve the management of committees and their membership. In UML, activities

are associated with specific objects as operations, shown in a separate compartment

of a class diagram, after the attributes, as in the example in figure 1.12.

There are a number of aspects to modeling dynamics, supported by di¤erent

notations.

1.4.1 Use Cases

An important technique for discovering what actions occur in some domain is

describing scenarios involving actors and actions. Use cases (Jacobson et al. 1992)

are specialized instances of such scenarios, describing at a very high level the interac-

tions between a system to be and actors in its environment. As such, use cases o¤er

an external view of an artifact (i.e., system object or property), and answer questions

such as ‘‘What can the artifact do for the user?’’ and ‘‘How can the user use it?’’

Assuming that the artifact is a meeting-scheduling system, we might start by

identifying two types of actors, the (meeting) Initiator, who is unique for each

meeting-scheduling case, and the (meeting) Participants, of whom there are two

or more for each planned meeting. After a little thinking, we might identify six use

cases for the problem at hand: ScheduleMtg (intended to initiate the scheduling pro-

cess), ProvideConstr (in which participants describe their timetable for meetings),

GenSchedule (which produces a schedule that takes into account a given set of con-

straints), EditConstr (modifying constraints previously submitted by a participant

for a meeting), Withdraw (a participant from a meeting), and ValidateUser (for

security purposes).

Figure 1.12
Some operations for Meeting

20 Alex Borgida and John Mylopoulos

Let us elaborate on these use cases. First, the use case ScheduleMtg is triggered

by the meeting initiator, who sends a message through the system to all intended par-

ticipants requesting a meeting, provides them with his own constraints, such as his

timetable and required equipment, and asks them for theirs. This use case launches

the meeting-scheduling process supported by the system. The use case Provide-

Constr is triggered by each participant when she is ready to fill in a form supplied

by the system with the necessary meeting information. The system is supposed to in-

form the initiator that this step has been completed for each participant.

The use case GenSchedule generates schedules and is triggered by ScheduleMtg

when any of the following events occurs:

� All possible participants have provided their constraints.

� A participant modifies her availability or withdraws from the meeting.

� The initiator modifies the meeting date range.

This use case produces a schedule if one is possible, given all participant constraints.

Each time this step is completed, the system informs the initiator of the outcome.

Likewise, the use case EditConstr is triggered by the initiator or a participant

when he wants to change constraints he has previously submitted. The system is

expected to send a message to the initiator after any amendments to the meeting

constraints. The use case Withdraw is triggered by a meeting participant when she

withdraws from the meeting. A withdrawal may or may not a¤ect the time of the

meeting. Again, the initiator is notified of any withdrawals. Finally, the use case

ValidateUser is triggered by other use cases when a user attempts to log in. This

use case is refined into the usual login protocol or a more elaborate one, depending

on other requirements.

Actors, use cases, and the relationships between them are all modeled in UML

with use case diagrams. A basic relationship between an actor and a use case is the

communication association, shown as an unlabeled arrow in figure 1.13. This type

of association can exist in one or both directions between an actor and a use case.

A second semantic relationship between two use cases is labeled uses and indi-

cates that one use case relies on another to realize its functionality. For example,

ValidateUser is used by ScheduleMtg. A relationship of type extends is generally

used to show optional or conditional behavior of a use case, which is carried out by

another use case under certain conditions. ProvideConstr, for instance, extends the

EditConstr use case by limiting its use to participants (the initiator provides her

constraints in ScheduleMtg) and perhaps imposing additional restrictions on what

users can change. The full use case diagram for a meeting-scheduling system is shown

in figure 1.13.

A Sophisticate’s Guide to Information Modeling 21

1.4.2 Sequencing

Use cases o¤er a notation for describing activities at a very gross level, as (artifact)

use. To provide additional details about activities, one can describe the sequencing of

actions in various scenario instances, as well as the objects participating in the action.

Let us focus our example on ScheduleMtg, which launches the whole scheduling

process. One scenario for this use case (expressed in figure 1.14 as a UML sequence

diagram) begins with an initiator (a person) logging in, followed by the system vali-

dating her identity (say this is done by an instance of the class :MtgRequest), fol-

lowed by a prompt to the initiator. (Notation: :<Class> refers to an unnamed

instance of <Class>; e.g., the :Person associated with the first column of the se-

Figure 1.13
Use cases for a meeting-scheduling system

Figure 1.14
A sequence diagram for ScheduleMtg

22 Alex Borgida and John Mylopoulos

quence diagram in figure 1.14 refers to a particular person (the meeting initiator),

whereas the last column refers to another person, a participant.) Then the initiator

provides details about the meeting she wants scheduled, the system informs other

participants, through the :MtgManager, which keeps prompting participants until

they supply their meeting constraints. When all such constraints are in, the

:MtgManager prompts another object, the :Scheduler, to generate a schedule.

The schedule is relayed to the initiator for his approval and all participants are

informed. Here :MtgRequest, :MtgManager and :Scheduler are respectively re-

sponsible for handling a meeting request, communication with participants, and

scheduling. They could be actors, or components of a software system for meeting

scheduling. Note that a use case may have several di¤erent scenaria, which follow

di¤erent sequence paths. For instance, other paths may involve withdrawals on the

part of some participants, revised constraints etc.

1.4.3 Formal Models of Dynamics

A description of an activity needs to characterize the transitions among the states

with which it is associated. To complete such a description, one usually needs to (1)

identify the participants in the activity (inputs, outputs, agents performing it or re-

sponsible for it, etc.) and (2) characterize the possible initial states in which the activ-

ity can be started and the final states in which it can end. Formal models of dynamic

behavior augment graphical notations such as those discussed so far with a formal

assertion language that includes primitives for talking about time.

Let’s consider the activity BookRoom (specified in figure 1.15 using the KAOS lan-

guage), which is performed by a person and involves directly a room, a time slot, and

a meeting. In order for the activity to be carried out, the room must be free for the

time slot chosen for booking. Once the activity is complete, the room is no longer

free for that time slot, and a Booking relationship holds among the given parameters

of the activity. Likewise, the IssueReminder activity takes as inputs a meeting and

a person and produces a Reminded relationship. The postcondition of the activity

says that when the activity has been completed, every participant has been reminded

by the person in charge of the scheduling. IssueReminder also has a triggering con-

dition: It is to be started if the meeting has been scheduled more than two weeks

prior and there hasn’t been a reminder in the previous week. These constraints are

captured in figure 1.15.

One way to understand the figure’s notation regarding temporal logic is to imagine

that functions and relations have time as an extra argument. Then Scheduled(m)

really means Scheduled(m,now), while 9Scheduled(m) means that Sched-

uled(m) held at all time points before now: (Et:Time) before(t,now)=> Sched-

uled(m,t). The expression 9<-2wk Scheduled(m) constrains t to happen during

the preceding two weeks:

A Sophisticate’s Guide to Information Modeling 23

(Et:Time) before(t,now)5timeDist(now,t)<-2wk

=> Scheduled(m,t)

The notation Y provides an existential quantifier over past time. Note that in the

formulas for the KAOS model in figure 1.15, the application of an operation is asso-

ciated with the occurrence of an event object belonging to a class with the same name

(but enclosed within quotation marks) plus an explicit predicate Occurs.

1.4.4 Complex Activities

UML distinguishes between actions and activities: The former are atomic, whereas

the latter have duration, may overlap, and may have components which need to be

coordinated. For example, scheduling of meetings involves

1. submitting a meeting request

2. obtaining participant calendar constraints, and concurrently

3. obtaining room availability constraints

4. evaluating the constraints to decide whether and how the meeting can be

scheduled

Figure 1.15
Formal specification of BookRoom in KAOS

24 Alex Borgida and John Mylopoulos

In UML, the above sequence of steps can be described graphically using activity

diagrams, which are inspired by process descriptions such as those found in the fields

of workflow and software process modeling. In KAOS, operations can be combined

into more complex scenarios using sequential, parallel, alternative, and repetitive

composition.

Another formal notation for such complex activities is Congolog (DeGiacomo,

Lespérance, and Levesque 1997), in which one starts with descriptions of atomic

actions, such as SubmitMeetingRequest:

action SubmitMeetingRequest(init,mtg)

possible when Person(init), Meeting(mtg)

results in Requested(init,mtg) always;

and then describes composite actions using composition operators for sequencing (;),

(nondeterministic) alternation (||), iteration, concurrent execution, (nondeterminis-

tic) choice, and so on:

activity ScheduleMtg(init,mtg,particips) =

SubmitMeetingRequest(init,mtg);

(ObtainConstraints(particips, pcs)

||

ObtainRoomConstraints(mtg.time, rcs));

EvaluateConstraints(pcs,rcs)

end activity

1.4.5 State Transition Diagrams

An object-centered alternative to describe behavior is to model the life cycle of an

individual in terms of states and transitions induced by actions. For example, for

meetings we may want to define the states a meeting can go through during its life

cycle, say, Scheduled, Cancelled, and Unscheduled, and the allowable transitions

among them. These transitions may be triggered by the occurrence of an action, such

as cancel or postpone, or by the occurrence of events, such as the passing of a

deadline. Figure 1.16 presents a reasonable state transition diagram for an already

scheduled meeting.

Such state transition diagrams can be formalized in KAOS using the temporal

operators introduced earlier. In particular, we could represent meeting states as pred-

icates Scheduled, Unscheduled, and Cancelled and transitions as invariants on

the entity Meeting. For instance, the transition from Scheduled to Cancelled

might be specified by the following invariant:

(Em:Meeting)Scheduled(m)5(bc:"cancel") Occur(c)

=> PCancelled(m)

A Sophisticate’s Guide to Information Modeling 25

The temporal operator P declares its argument to be true at the next time instance.

So the invariant depicted here declares that if a meeting m is currently in Scheduled

state and the Cancel operation is applied, m will move to the Cancelled state. A

fuller formal specification of Meeting might then include the material in figure 1.17.

1.4.6 Reasoning Using Dynamic Models

One can do a variety of type correctness checks on dynamic specifications, ensuring,

for example, that definitions of operations and their uses have matching arguments.

In addition, one can perform two kinds of computer-supported reasoning with for-

mal descriptions of actions. The first is enactment: Given an initial description of

some state of the world, one may be interested in finding out what can be determined

about some state resulting from a particular sequence of operations. Congolog has

exactly this capability, because Congolog descriptions can be translated into Prolog

programs. A second kind of reasoning that may be conducted regarding a set of

formal activity specifications is determining whether the total system obeys some

theorem/invariant such as termination or lack of deadlock. This is usually accom-

plished by humans through the use of special theorem-proving aids (Lespérance

et al. 1999), unless the logic used to describe actions is decidable.

1.5 Modeling Goals and Intentions

A third modeling dimension of any application encompasses the world of things

agents believe in, want, prove or disprove, and argue about. This dimension covers

concepts such as ‘‘issue’’ and ‘‘goal’’ and relationships such as ‘‘supports,’’ ‘‘denies,’’

and ‘‘subgoalOf.’’ The subject of beliefs and goals has been studied extensively in

AI. For instance, Maida and Shapiro 1982 addresses the problem of representing

propositional attitudes, such as beliefs, desires, and intentions, for agents. As shown

in requirements modeling research, such as Feather 1987 and Dardenne, van Lams-

weerde, and Fickas 1993, the modeling of goals is an important component of soft-

Figure 1.16
State transition diagram for meetings

26 Alex Borgida and John Mylopoulos

ware specification and design. And of course, goals are of primary importance in the

analysis of enterprises.

1.5.1 Modeling Issues

Modeling the issues that arise during complex decision making is discussed in Conk-

lin and Begeman 1988. The application of such an argumentation framework to

software design, intended to capture the arguments pro and con regarding decision

problems and the decisions they result in, has been a fruitful research direction since

it was first proposed in Potts and Bruns 1988, with notable refinements described in

MacLean et al. 1991 and Lee 1991. For example, MacLean et al. 1991 models design

rationale in terms of questions, options, and criteria. In designing an automated teller

Figure 1.17
KAOS specification of Meeting including state transitions

A Sophisticate’s Guide to Information Modeling 27

machine (ATM), for instance, the designer may want to ask questions such as ‘‘What

range of services will be o¤ered (by the ATM under design)?’’ There may be two

options: full range and cash disbursement only. In turn, there may be two criteria

for choosing among them: user convenience and cost. On a complementary front,

Gotel and Finkelstein 1995 studies the types of contributions a stakeholder can

make to an argumentation structure.

1.5.2 Goals

Going as far back as the late 1960s, AI planning and problem solving used AND/

OR trees as basic data structures to define and explore alternative ways of satisfying

a goal. Briefly, a particular goal to be satisfied was decomposed iteratively, using

AND and OR, until (sub)goals were encountered that were either trivially satisfied

(‘‘solved’’) or unsatisfiable (‘‘unsolvable’’). A goal could be, for example, a desired

world situation, expressed as a logical formula; then the task for a planning program

would be to find a sequence of actions that could lead to the desired situation.

We could consider the meeting-scheduling task as a generic goal to be achieved

and then use an AND/OR decomposition to explore alternative solutions. Each al-

ternative would be a potential plan for satisfying the goal. Figure 1.18 presents such

a decomposition of the ScheduleMtg goal. AND decompositions are marked with

an arc, indicating that satisfying the goal that appears above the arc can be accom-

plished by satisfying all the subgoals encompassed by the arc; OR decompositions,

on the other hand, are marked with a double arc (or ‘‘new moon’’ symbol) and

Figure 1.18
A (partial) space of alternatives for meeting scheduling

28 Alex Borgida and John Mylopoulos

require only that one of the alternate subgoals encompassed by the double arc be sat-

isfied. For our example, the goal ScheduleMtg is first AND-decomposed into sub-

goals ConstrCollected, ScheduleGenerated, and ParticipsNotified, all of

which must be satisfied for the meeting to be scheduled. In turn, ScheduleGener-

ated is OR-decomposed into three subgoals, which find, respectively, a schedule

manually, automatically (e.g., schedules are retrieved from a database), or interac-

tively; any of these three methods of determining a schedule can satisfy the subgoal

of schedule generation. Other decompositions explore alternative ways of fetching

the necessary information, including timetable information, which may or may not

be publicly available for each potential participant. Alternatives also consider wheth-

er only the initiator or all participants can specify other constraints prior to sched-

uling. As the reader may well appreciate, even with this simple example, there could

be literally dozens of alternative solutions, and the solution sketched in the previous

section is but one of them.

KAOS o¤ers a formal language for describing goals, together with an ontology for

classifying goals and indicating their decomposition. Thus, the top of the goal tree in

figure 1.18 would be described as

SystemGoal Achieve[ScheduleMtg]

InstanceOf SatisfactionGoal

ReducedTo ConstrCollected, ScheduleGenerated, ParticipsNotified

FormalDef (Em:Meeting, init:Initiator)

Requested(m,init)5Feasible(m) => (t <- 3day Scheduled(m))

where, for example, the keyword Achieve describes a pattern of temporal behavior

in which some target condition must eventually be established by the agent to whom

the goal is assigned (in this case, the system). The advantage of goal classification is

the availability of a knowledge base of generic ways to elaborate or achieve goals,

which forms the basis of tools for supporting requirements acquisition (van Lams-

weerde, Darimont, and Massonet 1995). The FormalDef part of the description

shows a possible formal specification of the goal in terms of some of the predicates

used in the description of actions—in this case requiring that the meeting be sched-

uled no more than three days from the time it was requested.

1.5.3 Reasoning with Goals

Goal formalizations, such as the ones in the foregoing, can be used for a variety of

tasks, including detecting and resolving conflicts among goals, revealing high-level

exceptions that may obstruct the accomplishment of goals, and proving that a goal

decomposition is correct and complete or that a set of operations ensures the goals

it operationalizes (e.g., Dardenne, van Lamsweerde, and Fickas 1993; Darimont

and van Lamsweerde 1996).

A Sophisticate’s Guide to Information Modeling 29

1.5.4 Softgoals

The preceding notions are helpful when goals can be crisply specified, such as that of

wanting to have a meeting scheduled. For software systems, one often also needs to

describe so-called nonfunctional requirements, or qualities, such as ‘‘system must be

usable’’ or ‘‘system must improve meeting quality.’’

Some nonfunctional goals (e.g., those dealing with safety or security) can be

treated in the manner described in the foregoing, but others don’t have generic defi-

nitions, nor do they have clear-cut criteria for establishing when they have been sat-

isfied. For these, we need a looser notion of goal and a richer set of relationships so

that we can indicate, for example, that a goal supports or hinders the accomplish-

ment of another one.

To model this looser notion of goal, we use the notion of softgoal, proposed by the

nonfunctional requirements (NFR) framework of Lawrence Chung (Chung et al.

1999). Softgoals are concepts intended to represent precisely such ill-defined goals

and their interdependencies. To distinguish them from their (hard) goal cousins, we

will say that a softgoal is satisficed when there is su‰cient positive evidence for it and

little negative evidence against it, and it is unsatisficable when there is su‰cient neg-

ative evidence against it and little positive evidence for it.

Let’s give an example concerning the quality ‘‘highly usable system,’’ which may

be as important an objective for the system-to-be as any of the functional goals

encountered earlier. The softgoal Usability represents this requirement in figure

1.19.7 The process for analyzing it, as with goals, consists of iterative decomposi-

tions, which involve similar AND/OR relationships or other, more loosely defined

dependency relations. In the figure, the arrows between a number of softgoals

describing such relationships are labeled with a plus sign, which indicates that the

softgoal at which the arrow begins supports (or ‘‘positively influences’’) the softgoal

at which the arrow terminates. For instance, UserFlexibility is clearly enhanced

by the system quality Modularity, which allows for substitutions of modules, and

also by the system’s ability to allow setting changes (AllowChangeOfSettings).

These factors, however, are not claimed to be necessarily su‰cient to satisfice User-

Flexibility; hence the relationships are marked with plus signs instead of the arcs

that would indicate AND/OR relationships.

Figure 1.19 gives only a partial decomposition of the softgoal Usability. The

softgoals ErrorAvoidance, InformationSharing, and EaseOfLearning have

their own rich space of alternatives, which may be elaborated through further

refinements.

For any given software development project, several softgoals will have been set

down initially as required qualities of the software developed. Some of these may be

technical, such as (system) Performance, because they refer specifically to qualities

of the system to be. Others will be more business-oriented. For instance, it is reason-

30 Alex Borgida and John Mylopoulos

able for a firm’s management to require that the introduction of a new meeting-

scheduling system improve meeting quality (by increasing average participation

and/or e¤ectiveness measured in some way) or cut average cost per meeting (where

costs include those incurred during the scheduling process). Softgoal analysis calls for

each of these qualities, represented as softgoals, to be analyzed in terms of a softgoal

hierarchy, such as the one shown in figure 1.19.

1.5.5 Softgoal Correlations

The softgoal hierarchies discussed in the previous section are built by repeatedly ask-

ing the question ‘‘What can be done to satisfice or otherwise support this softgoal?’’

Unfortunately, softgoals are frequently in conflict with one another. Consider, for in-

stance, security and user friendliness, performance and flexibility, and high quality

and low costs. Correlation analysis is intended to discover positive or negative lateral

relationships between softgoals. Such analysis can begin by noting top-level lateral

relationships, such as, say, a negatively labeled relationship8 between Performance

Figure 1.19
A (partial) softgoal hierarchy for Usability

A Sophisticate’s Guide to Information Modeling 31

and Flexibility. This relationship can then be refined to one or more relationships

of the same type from subgoals of Performance (say, Capacity or Speed) to sub-

goals of Flexibility (say, Programmability or InformationSharing). This

process is repeated until the point is reached at which relationships cannot be refined

farther down the softgoal hierarchies. Figure 1.20 shows diagrammatically the soft-

goal hierarchy for Security, with correlation relationships to other hierarchies.

1.5.6 Comparing Solutions

Suppose now that we’d like to compare alternative solutions to the goals in figure

1.18 in regard to all the softgoals identified so far, since we propose to use the latter

in order to evaluate the former. For example, alternative subgoals of the goal

ScheduleMtg will require di¤erent amounts of e¤ort for scheduling. With respect

to these softgoals, automation is desirable, whereas doing things manually is not.

On that basis, we can set up positively or negatively labeled relationships linked to

subgoals such as (Schedule Generated) Automatically or Manually (shown in

figure 1.21). On the other hand, if meeting quality is the criterion, scheduling the

meeting manually is actually desirable (because, presumably, it adds a personal

Figure 1.20
A (partial) softgoal hierarchy for Security, including correlations with other hierarchies

32 Alex Borgida and John Mylopoulos

touch to the scheduling process), whereas doing things through the system receives

low marks.

Figure 1.21 shows a possible set of correlation links for a simplified version of the

ScheduleMtg goal in terms of the softgoals MinimalEffort and QualityOf-

Schedule. The goal tree structure in the center right of the figure shows the refine-

ment of the ScheduleMtg goal, whereas the two softgoal trees in the upper part of

the figure represent the softgoals that are intended to serve as evaluation criteria.

This example points out a major advantage of treating softgoals (such as Usabil-

ity) as goals in their own right, rather than as qualifiers of other goals (e.g.,

UsableSystem): It encourages the separation of analysis of a quality (e.g., Usabil-

ity) from the object to which it is applied (e.g., System) and from other attributes.

This allows relevant knowledge to be brought to bear on the analysis process: from

very generic (e.g., ‘‘To achieve quality x for an artifact, try to achieve x for all of its

components’’) to very specific (e.g., ‘‘To achieve e¤ectiveness of a software review

meeting, all stakeholders must be present’’). Knowledge-structuring mechanisms

such as classification, generalization, and aggregation can be used to organize the

Figure 1.21
Evaluation of the goal ScheduleMtg

A Sophisticate’s Guide to Information Modeling 33

available know-how to support such a goal-oriented analysis process. A thorough ac-

count of such generic as well as specific knowledge for softgoals such as Security,

Accuracy, and Performance can be found in Chung et al. 1999, along with case

studies that evaluate the e¤ectiveness of the nonfunctional requirements framework.

1.6 Modeling Social Settings

The fourth modeling dimension we’ll consider here covers social settings, including

permanent organizational structures, group collaborations, and shifting networks of

alliances and interdependencies (Galbraith 1973; Mintzberg 1979; Pfe¤er and Salan-

cik 1978; Scott 1987). Traditionally, this dimension has been characterized in terms

of concepts such as actor, position, role, authority, and commitment. Yu

(1993; Yu and Mylopoulos 1994; Yu, Mylopoulos, and Lespérance 1996) proposes

a strategic dependency model that includes a novel set of concepts for modeling

organizations.

According to this model, an organization is described in terms of actors and

dependencies. Actors can be agents (such as Michelle), positions (e.g., company

president), or roles (e.g., the chair of a meeting). Actors can be related to one an-

other through links that represent (social) dependencies. Each dependency between

two actors indicates that one actor depends on the other for something in order to

attain some goal. We call the depending actor the depender and the actor who is

depended upon the dependee. For example, a professor (the depender) can achieve

the goal of scheduling a meeting of the tutors for her course by depending on her sec-

retary (the dependee). Without the opportunity of using the services of the secretary,

the professor may not be able to achieve the goal (for lack of time or lack of infor-

mation about the tutors’ e-mail addresses). On the other hand, the professor is vul-

nerable to the secretary’s forgetting her request to schedule the meeting or otherwise

not doing a proper job of it. The model distinguishes among four types of depen-

dencies (goal, task, resource, and softgoal dependency) based on the type of freedom

that is accorded to the dependee in fulfilling its obligation to the depender. In addi-

tion, three levels of dependency strengths are distinguished, based on the degree of

vulnerability due to the e¤ects of changes to dependent goals. For instance, assume

that the ScheduleMtg goal is associated with anyone who can play the role of

(meeting) initiator and that professors can play such a role. Then clearly, there are

di¤erent ways to satisfy this goal, such as by the initiator’s delegating the meeting-

scheduling task to someone else (e.g., her secretary), or by her keeping the responsi-

bility, but simply delegating some of the component tasks. In the latter case, she

might delegate the task of keeping people’s calendars updated or of finding a meeting

time for a given a set of scheduling constraints and preferences.

34 Alex Borgida and John Mylopoulos

Figure 1.22 shows a partial set of dependencies between an initiator and a partici-

pant, assuming that the initiator collects calendar information for each participant

and does the scheduling herself. Here the initiator depends on each participant to

provide calendar information (bottom of the figure). This is a resource dependency.

The initiator also depends on each participant to attend the meeting (a task depen-

dency) and contribute to it. The latter is clearly a goal dependency, because the initi-

ator obviously doesn’t care how this is done, as long as it is done. In turn, each

participant depends on the initiator to organize a useful meeting. This is an example

of a softgoal dependency, since ‘‘useful meeting’’ is not a well-defined goal.

Figure 1.23 shows an alternate structure of strategic dependencies in which the ini-

tiator relies on a scheduler to schedule the meeting. The scheduler’s task is to gather

Figure 1.22
Initiator-participant dependencies for a meeting

Figure 1.23
Initiator relies on scheduler to schedule meeting

A Sophisticate’s Guide to Information Modeling 35

calendar information from participants and have them show up at the meeting. Par-

ticipants, in turn, depend on the scheduler to choose a suitable time. The initiator

still depends on participants to contribute to the meeting, and they on him to ensure

that the meeting is useful.

As indicated earlier, actors can be agents, positions, or roles. Figure 1.24 elabo-

rates on the distinction by showing the Initiator and Participant actors as roles,

whereas the Scheduler actor is labeled as a position. We also show two agents

(Sally and Michael) who are assigned to the Initiator role and Scheduler posi-

tion, respectively; the DeptChair (a position) has been assigned to the Participant

role. Note that the figure doesn’t show certain kinds of information, such as how

many assignments can be associated with each position and/or role.

1.6.1 Strategic Rationale Analysis

To explore and analyze how alternative dependency configurations fare with respect

to a set of qualities, an analyst may attempt to explicitly model and analyze the

rationales behind the alternatives. Continuing with the meeting-scheduling example,

let us say there are several groups within the organization having the same meeting-

scheduling problem. One could let each group solve the problem individually or o¤er

a centralized solution in which certain meetings are organized by a central scheduler,

to ensure e¤ectiveness and spread the remaining meetings. Alternatively, there might

be some organization-wide facilitation, such as a centralized calendar database,

Figure 1.24
Agents, positions, and roles

36 Alex Borgida and John Mylopoulos

administered by a specific person. How does one go about comparing these alterna-

tives? Qualities represented as softgoals can be used for this type of comparison.

Figure 1.25 assumes that the scheduling-process alternatives are to be evaluated

with respect to overall Costs and quality of the Service provided. These two qual-

ities are further refined into several other softgoals. The three alternative meeting-

scheduling designs (centralized, decentralized, and mixed) can now be correlated

with several of the softgoals, as shown in the figure. These correlations can serve as

rationale for choosing a scheduling process within a large organization.

1.7 Summary

We have reviewed basic modeling techniques from di¤erent areas of computer

science and have briefly introduced concepts that can be used to model the static,

Figure 1.25
Evaluating alternative strategic dependency configurations

A Sophisticate’s Guide to Information Modeling 37

dynamic, intentional, and social aspects of an application. We hope that this quick

tour of information modeling and conceptual models has helped the reader appreci-

ate the breadth and depth of the subject matter, as well as its central role for com-

puter and information science.

Acknowledgments

We are extremely grateful to Axel van Lamsweerde for his detailed and insightful

comments on an earlier draft of the chapter. All remaining errors are of course our

own responsibility.

The work of Alex Borgida was funded in part by the U.S. National Science Foun-

dation under grant no. IRI-9619979. John Mylopoulos was funded partly by Com-

munications and Information Technology Ontario (CITO) and the Natural Sciences

and Engineering Research Council (NSERC) of Canada.

Notes

1. Adapted from Ted Codd’s (1982) classic account of data models and databases.

2. It is interesting to note that the Y2K problem was caused precisely by this tension between implemen-
tation and representation concerns.

3. The model was actually first presented at the First Very Large Databases Conference in 1975.

4. The term ‘‘conceptual modeling’’ was used in the 1970s either as a synonym for semantic data modeling
or in the technical sense of the ANSI/X3/SPARC report (ANSI/X3/SPARC Study Group 1975), in which
it refers to a model that allows the definition of schemata lying between external views, defined for di¤erent
user groups, and internal ones defining one or several physical databases. The term was used more or less
in the sense discussed here at the Pingree Park workshop ‘‘Data Abstraction, Databases and Conceptual
Modeling,’’ held in June 1980 (Brodie and Zilles 1981).

5. Eventually renamed the International Conferences on Conceptual Modeling.

6. For completeness, we note that KAOS has its own graphical notation, based on semantic networks.

7. Figure 1.19 was adapted from work prepared by Lisa Gibbons and Jennifer Spiess for a graduate course
taught by Eric Yu during the spring term of 1996.

8. A negatively labeled relationship indicates that the fulfillment of one goal negatively influences the ful-
fillment of the other goal.

References

Abrial, J.-R. 1974. ‘‘Data Semantics.’’ In Data Base Management, Proceedings of the IFIP Working on
Conference Data Base Management, ed. J. W. Klimbie and K. L. Ko¤eman, 1–60. Amsterdam: North-
Holland.

Anderson, J., and G. Bower. 1973. Human Associative Memory. Washington, DC: Winston-Wiley.

ANSI/X3/SPARC Study Group on Database Management Systems 75-02-08. 1975. ‘‘Interim Report.’’
FDT FDT-ACM SIGMOD Record 7, no. 2: 1–140.

Artz, J. 1997. ‘‘A Crash Course on Metaphysics for the Database Designer.’’ Journal of Database Manage-
ment 8, no. 4: 25–30.

38 Alex Borgida and John Mylopoulos

Atkinson, M., F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. 1990. ‘‘The Object-
Oriented Database System Manifesto.’’ In Deductive and Object-Oriented Databases, Proceedings of the
First International Conference on Deductive and Object-Oriented Databases (DOOD’89), ed. W. Kim,
J.-M. Nicolas, and S. Nishio, 223–240. Amsterdam: Elsevier Science.

Balzer, R. 1981. ‘‘Final Report on GIST.’’ Technical report, Information Sciences Institute, University of
Southern California, Marina del Rey.

Bobrow, D., and T. Winograd. 1977. ‘‘An Overview of KRL, a Knowledge Representation Language.’’
Cognitive Science 1: 3–46.

Boman, M., J. Bubenko, P. Johannesson, and B. Wangler. 1997. Conceptual Modeling. Upper Saddle
River, NJ: Prentice Hall.

Borgida, A. 1990. ‘‘Knowledge Representation, Semantic Data Modeling: What’s the Di¤erence?’’ In Pro-
ceedings of the Ninth International Conference on the Entity-Relationship Approach (ER’90), ed. H. Kan-
gassala, 1. Amsterdam: North-Holland.

Borgida, A. 1995. ‘‘Description Logics in Data Management.’’ IEEE Transactions on Knowledge and Data
Engineering 7, no. 5: 671–682.

Borgida, A., R. Brachman, D. McGuiness, and L. Resnick. 1989. ‘‘CLASSIC: A Structural Data Model
for Objects.’’ In Proceedings of the ACM SIGMOD International Conference on the Management of Data,
ed. J. Cli¤ord, B. Lindsay, and D. Maier, 58–67. New York: ACM Press.

Brachman, R. 1979. ‘‘On the Epistemological Status of Semantic Networks.’’ In Associative Networks:
Representation and Use of Knowledge by Computers, ed. N. Findler, 3–50. New York: Academic Press.

Brachman, R., and H. Levesque, eds. 1984. Readings in Knowledge Representation. Los Altos, CA: Mor-
gan Kaufmann.

Brodie, M. 1984. ‘‘On the Development of Data Models.’’ In On Conceptual Modeling: Perspectives from
Artificial Intelligence, ed. M. Brodie, J. Mylopoulos, and J. Schmidt, 19–47. New York: Springer.

Brodie, M., and J. Mylopoulos, eds. 1986. On Knowledge Base Management Systems: Perspectives from
Artificial Intelligence and Databases. New York: Springer-Verlag.

Brodie, M., J. Mylopoulos, and J. Schmidt, eds. 1984. On Conceptual Modeling: Perspectives from Artifi-
cial Intelligence, Databases and Programming Languages. New York: Springer-Verlag.

Brodie, M., and S. Zilles, eds. 1981. Proceedings of Workshop on Data Abstraction, Databases and Concep-
tual Modeling. New York: ACM Press.

Bubenko, J. 1980. ‘‘Information Modeling in the Context of System Development.’’ In Proceedings of the
IFIP Congress ’80, ed. S. Lavington, 395–411. Amsterdam: North-Holland.

Calvanese, D., M. Lenzerini, and D. Nardi. 1998. ‘‘Description Logic for Conceptual Modeling.’’ In Log-
ics for Databases and Information Systems, ed. J. Chomicki and G. Saake, 229–263. Dordrecht, Nether-
lands: Kluwer.

Chen, P. 1976. ‘‘The Entity-Relationship Model: Towards a Unified View of Data.’’ ACM Transactions on
Database Systems 1, no. 1: 9–36.

Chung, L., B. Nixon, and E. Yu. 1996. ‘‘Dealing with Change: An Approach Using Non-functional
Requirements.’’ Requirements Engineering 1, no. 4: 238–260.

Chung, L., B. Nixon, E. Yu, and J. Mylopoulos. 1999. Non-functional Requirements in Software Engineer-
ing. Norwell, MA: Kluwer.

Codd, E. 1970. ‘‘A Relational Model for Large Shared Data Banks.’’ Communications of the ACM 13,
no. 6: 377–387.

Codd, E. 1979. ‘‘Extending the Database Relational Model to Capture More Meaning.’’ ACM Transac-
tions on Database Systems 4, no. 4: 397–434.

Codd, E. 1982. ‘‘Relational Database: A Practical Foundation for Productivity.’’ Communications of the
ACM 25, no. 2: 109–117.

Collins, A., and E. Smith. 1988. Readings in Cognitive Science: A Perspective from Psychology and Artifi-
cial Intelligence. Los Altos, CA: Morgan Kaufmann.

A Sophisticate’s Guide to Information Modeling 39

Conklin, J., and M. Begeman. 1988. ‘‘gIBIS: A Hypertext Tool for Exploratory Policy Discussion.’’ ACM
Transactions on O‰ce Information Systems 6, no. 4: 281–318.

Copeland, G., and D. Maier. 1984. ‘‘Making Smalltalk a Database System.’’ In Proceedings of the ACM
SIGMOD International Conference on the Management of Data (SIGMOD’84), ed. B. Yormark, 316–325.
New York: ACM Press.

Dahl, O.-J., and K. Nygaard. 1966. ‘‘SIMULA—An ALGOL-Based Simulation Language.’’ Communica-
tions of the ACM 9, no. 9(September): 671–678.

Dahl, O.-J., B. Myrhaug, and K. Nygaard. 1970. ‘‘SIMULA 67 Common Base Language,’’ Report S-22,
Norwegian Computing Center, Oslo, Norway.

Dardenne, A., A. van Lamsweerde, and S. Fickas. 1993. ‘‘Goal-Directed Requirements Acquisition.’’
Science of Computer Programming 20: 3–50.

Darimont, R., and A. van Lamsweerde. 1996. ‘‘Formal Refinement Patterns for Goal-Driven Require-
ments Elaboration.’’ In Proceedings of the Fourth ACM SIGSOFT Foundations of Software Engineering
(FSE96), ed. D. Garlan, 179–190. New York: ACM Press.

DeGiacomo, G., Y. Lespérance, and H. Levesque. 1997. ‘‘Reasoning about Concurrent Execution, Priori-
tized Interrupts, and Exogenous Actions in the Situation Calculus.’’ In Proceedings of the Fifteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI’97), ed. M. Pollack, 1221–1226. San Francisco:
Morgan Kaufmann.

De Marco, T. 1979. Structured Analysis and System Specification. Upper Saddle River, NJ: Prentice Hall.

Dubois, E., J. Hagelstein, E. Lahou, F. Ponsaert, and A. Rifaut. 1986. ‘‘A Knowledge Representation
Language for Requirements Engineering.’’ Proceedings of the IEEE 74, no. 10: 1431–1444.

Feather, M. S. 1987. ‘‘Language Support for the Specification and Development of Composite Systems.’’
ACM Transactions on Programming Languages and Systems 9, no. 2(April): 198–234.

Findler, N., ed. 1979. Associative Networks: Representation and Use of Knowledge by Computers. New
York: Academic Press.

Fowler, M., and K. Scott. 1997. UML Distilled. Reading, MA: Addison-Wesley.

Galbraith, J. 1973. Designing Complex Organizations. Reading, MA: Addison-Wesley.

Gotel, O., and A. Finkelstein. 1995. ‘‘Contribution Structures.’’ In Proceedings of the Second IEEE Inter-
national Symposium on Requirements Engineering, 100–107. Los Alamitos, CA: IEEE Computer Society.

Greenspan, S. 1984. ‘‘Requirements Modeling: A Knowledge Representation Approach to Requirements
Definition.’’ Ph.D. diss., Department of Computer Science, University of Toronto.

Greenspan, S., A. Borgida, and J. Mylopoulos. 1986. ‘‘A Requirements Modeling Language and Its Log-
ic.’’ Information Systems 11, no. 1: 9–23.

Greenspan, S., J. Mylopoulos, and A. Borgida. 1982. ‘‘Capturing More World Knowledge in the Require-
ments Specification.’’ In Proceedings of the Sixth International Conference on Software Engineering
(ICSE), 225–234. Los Alamitos, CA: IEEE Computer Society.

Hammer, M., and D. McLeod. 1981. ‘‘Database Description with SDM: A Semantic Data Model.’’ ACM
Transactions on Database Systems 6, no. 3: 351–386.

Hull, R., and R. King. 1987. ‘‘Semantic Database Modeling: Survey, Applications and Research Issues.’’
ACM Computing Surveys 19, no. 3: 201–260.

Jackson, M. 1978. ‘‘Information Systems: Modeling, Sequencing and Transformation.’’ In Proceedings of
the Third International Conference on Software Engineering (ICSE), 72–81. Los Alamitos, CA: IEEE
Computer Society.

Jackson, M. 1983. System Development. Upper Saddle River, NJ: Prentice Hall.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992. Object-Oriented Software Engineering
—A Use Case Approach. Reading, MA: Addison-Wesley.

Klas, W., and A. Sheth, eds. 1994. ‘‘Metadata for Digital Data.’’ Special issue, ACM SIGMOD Record 23,
no. 4.

Kramer, B., and J. Mylopoulos. 1991. ‘‘A Survey of Knowledge Representation.’’ In The Encyclopedia of
Artificial Intelligence, 2nd ed., ed. S. Shapiro, 743–759. New York: Wiley.

40 Alex Borgida and John Mylopoulos

Lee, J. 1991. ‘‘Extending the Potts and Burns Model for Recording Design Rationale.’’ In Proceedings of
the Thirteenth International Conference on Software Engineering, 114–125. New York: ACM Press.

Lespérance, Y., T. Kelley, J. Mylopoulos, and E. Yu. 1999. ‘‘Modeling Dynamic Domains with Con-
Golog.’’ In Proceedings of the Eleventh Conference on Advanced Information Systems Engineering
(CAiSE’99) (Lecture Notes in Computer Science 1626), ed. M. Jarke and A. Oberweis, 365–380. Heidel-
berg, Germany: Springer.

Levesque, H. 1986. ‘‘Knowledge Representation and Reasoning.’’ In Annual Review of Computer Science,
Vol. 1, ed. J. Traub, B. Grosz, B. Lampson, and N. Nilsson, 255–287. Palo Alto, CA: Annual Reviews.

Loucopoulos, P., and R. Zicari, eds. 1992. Conceptual Modeling, Databases and CASE: An Integrated
View of Information System Development. New York: Wiley.

MacLean, A., R. Young, V. Bellotti, and T. Moran. 1991. ‘‘Questions, Options, Criteria: Elements of De-
sign Space Analysis.’’ Human-Computer Interaction 6, nos. 3–4: 201–250.

Madhavji, N., and M. Penedo, eds. 1993. ‘‘Evolution of Software Processes.’’ Special section, IEEE Trans-
actions on Software Engineering 19, no. 12: 1125–1170.

Maida, A., and S. Shapiro. 1982. ‘‘Intensional Concepts in Propositional Semantic Networks.’’ Cognitive
Science 6: 291–330.

Minsky, M. 1975. ‘‘A Framework for Representing Knowledge.’’ In The Psychology of Computer Vision,
ed. P. Winston, 211–277. Cambridge, MA: MIT Press.

Mintzberg, H. 1979. The Structuring of Organizations. Upper Saddle River, NJ: Prentice Hall.

Mylopoulos, J., P. Bernstein, and H. Wong. 1980. ‘‘A Language Facility for Designing Data-Intensive
Applications.’’ ACM Transactions on Database Systems 5, no. 2: 185–207.

Mylopoulos, J., and M. Brodie, eds. 1988. Readings in Artificial Intelligence and Databases. San Francisco:
Morgan Kaufmann.

Peckham, J., and F. Maryanski. 1988. ‘‘Semantic Data Models.’’ ACM Computing Surveys 20, no. 3: 153–
189.

Pfe¤er, J., and G. Salancik. 1978. The External Control of Organizations: A Resource Dependency Perspec-
tive. Harper and Row.

Potts, C. 1997. ‘‘Requirements Models in Context.’’ In Proceedings of the Third IEEE International Sym-
posium on Requirements Engineering, 103. Los Alamitos, CA: IEEE Computer Society.

Potts, C., and G. Bruns. 1988. ‘‘Recording the Reasons for Design Decisions.’’ In Proceedings of the Tenth
International Conference on Software Engineering, 418–427. Los Alamitos, CA: IEEE Computer Society.

Quillian, R. 1968. ‘‘Semantic Memory.’’ In Semantic Information Processing, ed. M. Minsky, 227–270.
Cambridge, MA: MIT Press.

Rolland, C., and C. Cauvet. 1992. ‘‘Trends and Perspectives in Conceptual Modeling.’’ In Conceptual
Modeling, Databases and CASE: An Integrated View of Information System Development, ed. P. Louco-
poulos and R. Zicari, 27–48. New York: Wiley.

Roman, G.-C. 1985. ‘‘A Taxonomy of Current Issues in Requirements Engineering.’’ IEEE Computer 18,
no. 4: 14–23.

Ross, D. 1977. ‘‘Structured Analysis (SA): A Language for Communicating Ideas,’’ in ‘‘Requirements
Analysis,’’ special issue, IEEE Transactions on Software Engineering 3, no. 1: 16–34.

Ross, D., and A. Schoman. 1977. ‘‘Structured Analysis for Requirements Definition,’’ in ‘‘Requirements
Analysis,’’ special issue, IEEE Transactions on Software Engineering 3, no. 1: 6–15.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. 1991. Object-Oriented Modeling and
Design. Upper Saddle River, NJ: Prentice Hall.

Schmidt, J., and C. Thanos, eds. 1989. Foundations of Knowledge Base Management. New York: Springer
Verlag.

Scott, W. 1987. Organizations: Rational, Natural or Open Systems. 2nd ed. Upper Saddle River, NJ: Pren-
tice Hall.

Shlaer, S., and S. Mellor. 1988. Object-Oriented Systems Analysis: Modeling the World in Data. Upper
Saddle River, NJ: Prentice Hall.

A Sophisticate’s Guide to Information Modeling 41

Solvberg, A. 1979. ‘‘A Contribution to the Definition of Concepts for Expressing Users’ Information Sys-
tem Requirements.’’ In Proceedings of the International Conference on the E-R Approach to Systems Anal-
ysis and Design, ed. P. Chen, 381–402. Amsterdam: North-Holland.

Thayer, R., and M. Dorfman. 1990. System and Software Requirements Engineering. 2 vols. Los Alamitos,
CA: IEEE Computer Society.

Tsichritzis, D., and F. Lochovsky. 1982. Data Models. Upper Saddle River, NJ: Prentice Hall.

van Lamsweerde, A., R. Darimont, and P. Massonet. 1995. ‘‘Goal Directed Elaboration of Requirements
for a Meeting Scheduler: Problems and Lessons Learnt.’’ In Proceedings of the Second IEEE International
Symposium on Requirements Engineering, 194–203. New York: IEEE Computer Society.

Vernadat, F. 1996. Enterprise Modeling and Integration. London: Chapman and Hall.

Webster, D. 1987. ‘‘Mapping the Design Representation Terrain: A Survey.’’ Technical Report STP-093-
87, Microelectronics and Computer Corporation, Austin, TX.

Widom, J. 1995. ‘‘Research Problems in Data Warehousing.’’ In Proceedings of the Fourth Conference on
Information and Knowledge Management, ed. N. Pissinou, A. Silberschatz, E. Park, and K. Makkai, 25–
30. New York: ACM Press.

Yu, E. 1993. ‘‘Modeling Organizations for Information Systems Requirements Engineering.’’ In Proceed-
ings of the IEEE International Symposium on Requirements Engineering, 34–41. Los Alamitos, CA: IEEE
Computer Society Press.

Yu, E., and J. Mylopoulos. 1994. ‘‘Understanding ‘Why’ in Software Process Modeling, Analysis and De-
sign.’’ In Proceedings of the Sixteenth International Conference on Software Engineering, 159–168. Los Ala-
mitos, CA: IEEE Computer Society.

Yu, E., J. Mylopoulos, and Y. Lespérance. 1996. ‘‘AI Models for Business Process Re-engineering.’’ IEEE
Expert 11, no. 4: 16–23.

Zdonik, S., and D. Maier, eds. 1989. Readings in Object-Oriented Databases. San Francisco: Morgan
Kaufmann.

42 Alex Borgida and John Mylopoulos

2 Metamodeling

Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

Metamodels—models of models—are intended to span the diversity of information

systems environments. In this chapter, we review metamodeling and its applications

using two frameworks. First, the International Organization for Standardization’s

Information Resource Dictionary System suggests a basic way of thinking about the

generation, integration, and transformation tasks involved in developing and evolv-

ing coherent distributed information systems. Second, a ‘‘diamond framework’’ em-

phasizes four possible foci of metamodeling—ontology, notation, process, and goal

—with respect to their support for system interoperation and adaptability. Five

examples of metamodeling standards and tools illustrate the wide variety of chal-

lenges and approaches available today.

2.1 Introduction

Since the Middle Ages, and revived through mathematicians such as Russell and

Gödel in the first part of the twentieth century, metaphysics, metaknowledge, and

metalogic have captured the attention of philosophers and mathematicians. ‘‘Meta-

x’’ can be read as ‘‘x about x’’ or ‘‘x behind x.’’ Thus, metalevel techniques support

abstract principles behind certain phenomena, from a specific viewpoint.

Not surprisingly, as the diversity and size of databases and information systems

grow, we find an increasing need for metadata, that is, data about data. Although

such metadata have traditionally been represented informally (e.g., in handbooks or

data dictionaries), their automated analysis and manipulation requires their formal

representation in models. Several major software vendors are developing or o¤ering

metadatabase products, also called repositories (Bernstein and Dayal 1994).

Repository data can di¤er across distributed information systems and can change

over time. Thus, interoperability and adaptability require models about models: meta-

models. Many application areas, including schema and data integration (Bernstein

2001; Catarci and Lenzerini 1993; Calvanese et al. 2001), reusable-component li-

braries (Constantopoulos et al. 1995), multimedia object modeling (Klas and Schrefl

1995), mechanical engineering (Pratt 2001), chemical engineering (Marquardt 1996),

business process engineering (Scheer 1998; Nissen et al. 1996; Koubarakis and Plex-

ousakis 2002), and even method engineering at the meta-metalevel (Iivari and Kerola

1983; Kumar and Welke 1992; Hong, Brinkkemper, and Harmsen 1995; Kelly, Lyy-

tinen, and Rossi 1996) profit from the ability of metamodels to describe a modeling

domain in a highly abstract manner.

In terms of data model theory, metamodels are related to the instantiation dimen-

sion of semantic data model abstractions (Brodie, Mylopoulos, and Schmidt 1984;

Motschnig-Pitrik and Mylopoulos 1992). As classes abstract from instances, meta-

classes abstract from classes, meta-metaclasses (M2 classes) abstract from meta-

classes, and so forth.

Metamodels o¤er elementary functionalities such as (1) defining collections of

semantically related classes, (2) grouping attributes according to di¤erent roles or

facets, (3) defining shared methods or constraints over all instances of the classes con-

tained in a metaclass, (4) defining shared class-level methods, attributes, and con-

straints, and (5) defining a common terminology framework to bridge semantic and

terminology deviations among discrete domain-related information systems. Meta-

modeling environments use such functionalities to provide six major kinds of services

to users and developers of information systems (Baumeister 1996):

� Introspection and reflection provide information about models, because metamodels

are also models (Weyhrauch 1980). This service is mainly used in metaprogramming.

In expert systems, it serves as a basis for explanation and control, for example, in

Teiresias (Davis and Lenat 1982). In relational databases, system relations give in-

formation about the available data structures. A few object-oriented programming

languages also support introspection and adaptivity in metamodels. For example,

the Common Lisp Object System (CLOS) Meta Object Protocol (Kiczales, des Riv-

ieres, and Bobrow 1991) o¤ers a programmable metaclass level through which one

can control and monitor the behavior pattern of the language without modifying

existing application code. Similar facilities are also o¤ered by logic programming

languages such as Gödel (Hill and Lloyd 1989). Attempts to extend two-level object

languages such as Cþþ with metadata also aim at these goals: Johnson and Pala-

niappan (1993) make a specifiable amount of type information about classes acces-

sible at run time, whereas Chiba and Masuda (1993) present a simple metaobject

protocol facilitating the change of method-calling conventions.

� Adaptable modeling languages allow method engineers to change the definition and

behavior of models. Information systems development methods and tools have to be

adapted to development contingencies such as uncertainty, size, time, resources, and

available skills (Davis 1982; Necco, Gordon, and Tsai 1987; Olle et al. 1991). More-

over, all of these are likely to evolve over time across di¤erent projects. Several sur-

44 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

veys (Russo, Wynekoop, and Waltz 1995; Fitzgerald 1995) call for higher levels of

adaptability. A case reported in Nissen et al. 1996 shows a need for more adaptable

tools when an informal method is extended with technical support, but at the same

time, the method must remain forward-adaptable to users’ future needs. Nokia found

it had to modify modeling techniques and processes constantly while a standardized

system development method was being introduced in order to accommodate de-

mands posed by large telecommunications applications (Aalto 1993). The developers

of UML (Rumbaugh, Jacobson, and Booch 1999) have acknowledged the need for

method adaptation by introducing the notion of stereotypes.

� Focused model interaction can be supported using metamodels as overlapping

abstractions of heterogeneous modeling formalisms. This was studied initially in the

context of heterogeneous database interoperability and information systems evolu-

tion. For example, the VODAK system (Klas and Schrefl 1995) uses a metamodeling

extension of a fully object-oriented database for the integration of, for example,

hypertext structures with traditional structured databases and multimedia informa-

tion as well as for defining certain language extensions. More ad hoc integration

formalisms, driven by applications such as distributed manufacturing, include

Wiederhold and Genesereth’s (1995) mediator approach, instantiated, for example,

in systems such as GNOSIS (Gaines et al. 1996). Recently, formal metamodels based

on description logics have been proposed as a basis for the integration of schemas

in fields such as data warehouses (Calvanese et al. 2001) and bioinformatics (Goble

et al. 2001). At a more abstract level, the resolution of modeling conflicts across mul-

tiple heterogeneous viewpoints has been the subject of much interest in distributed

cooperative software engineering; see, for instance, the special issue of IEEE Trans-

actions on Software Engineering devoted to the subject (Ghezzi and Nuseibeh 1998/

1999).

� Resource identification and indexing can be supported by metamodels that assist

search engines in locating relevent network-accessible information on the World

Wide Web (WWW) or in distributed digital libraries. Recent advances in these areas

propose various metamodeling facilities whose purpose is to collate, summarize, and

filter metadata, primarily about network-available documents. For example, the

Internet Anonymous FTP Archive (IAFA) template is a format for indexing infor-

mation that can be used to describe various Internet resources. It encodes pieces

of metadata as a record of attribute-value pairs such as ‘‘title:’’ ‘‘author:’’ ‘‘topic:’’

‘‘abstract:’’ etc. (Deutch and Emtage 1994). Harvest’s Summary Object Interchange

Format (SOIF) contains a content summary for each information object that the

Harvest gatherer collects from information resources in the network (Bowman et al.

1995). SOIF provides a means of abstracting collections of summary objects, allow-

ing Harvest brokers to retrieve SOIF content summaries for many information

Metamodeling 45

objects in a single compressed stream. The Dublin Core (Lagoze 1996) is a set of

metadata elements introduced to describe, for discovery purposes, the essential fea-

tures of networked documents in distributed digital libraries. In the design of the

Core metamodel, consideration was given to mappings between the metamodel’s

elements and those of more specialized systems, such as library cataloguing. The

MPEG-7 standard (named for the Moving Pictures Expert Group, which developed

it) is a much more sophisticated metamodel aiming at the description of metadata for

multimedia content (Avaro and Salembier 2001).

� Context adaptation of information delivery can be supported by context meta-

models that allow the description of user interests, user location, user tasks, and

other aspects needed for the personalization of information delivery (Riecken 2000).

On a broader scale, context metamodels also include awareness (Gross and Specht

2001; Prinz 1999) and traceability (Ramesh and Jarke 2001) metamodels, which

keep users aware of their present social context and collaboration history. An impor-

tant aspect of metamodeling is to provide a means of tracing and sharing reasons for

changes in ontologies, inspections, and reflections (Rossi et al. 2004) and to o¤er re-

usable components and patterns for intervening and modeling specific development

situations (Zhang and Lyytinen 2001).

� Distributed organizational cognition can be supported through the building and

adaptation of metamodels. Structured metamodels o¤er a means of sharing, inquir-

ing, and transforming multiple ways of making sense of and organizing organiza-

tional experience (Tolvanen 1998). In this sense metamodels (and their organizing

features) form important boundary objects (Carlile 2002) through which di¤erent

communities of practice related to information systems (IS) design can take the per-

spectives of the others and at the same time make their perspectives known to the

other communities (Boland and Tenkasi 1995).

In this chapter, we first employ two frameworks for understanding the principles

and uses of metamodeling. To provide a basic structural understanding of meta-

modeling environments, section 2.2 describes an elementary architecture provided

by the ISO Information Resource Dictionary System (ISO/IEC 1990) and sketches

its various interpretations, applications, and formalizations. Then, starting from the

observation that any metamodel is just one of many possible abstractions of a model,

section 2.3 organizes the universe of metamodeling techniques according to a ‘‘dia-

mond framework’’ of notation, ontology, process, and goal (Jarke et al. 1998). For

each of these elements of the framework, we briefly survey metamodel uses for adap-

tation and interoperation. In section 2.4, we briefly describe a number of specific

metamodeling standards and systems from research and practice, and section 2.5

summarizes with some general observations and challenges.

46 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

2.2 The IRDS Metamodeling Framework

Traditional modeling languages impose a certain worldview—a predefined linguistic

framework—designed with a specific ontology of domain abstractions in mind.

Examples of worldviews include entities and relationships in entity-relationship dia-

grams, processes and data flows in structured analysis, and objects and messages in

object-oriented approaches. Although such a predefined worldview makes it easier

to model a particular aspect of an application domain, it limits the application of

the particular language to exactly this aspect. Therefore, most modern modeling

methods—for example, object-oriented modeling techniques such as UML (Rum-

baugh, Jacobson, and Booch 1999)—use multiple modeling notations together to ad-

dress the di¤erent facets of a problem domain.

Managing large models with di¤erent notations poses serious problems of in-

consistency, incompleteness, evolution, and reuse. Conceptual modeling languages

incorporate ideas from knowledge representation, databases, and programming lan-

guages to provide the formal foundations necessary for system development at a level

that is not too complex for people to understand and use yet is precise and simple

enough for automated reasoning about the relationships between models (Brodie,

Mylopoulos, and Schmidt 1984).

Metamodeling goes one step further: It allows one to customize modeling formal-

isms to the habits of individual modelers and users and to specify the relationships

among models expressed in di¤erent modeling formalisms or domain ontologies.

Even two decades ago, Kotteman and Konsynski (1984) had shown that four levels

of instantiation are necessary to integrate the modeling of the usage and the evolu-

tion of information systems. A similar observation underlies the architecture of the

International Organization for Standardization (ISO) Information Resources Dictio-

nary System (IRDS) Standard (ISO/IEC 1990) depicted in figure 2.1 and explained

in the following.

Figure 2.1
Interlocking level pairs in the ISO IRDS Standard

Metamodeling 47

2.2.1 Levels and Interlocking Level Pairs

The IRDS architecture is intended to interlock distributed application usage with dis-

tributed application development. To achieve this purpose, information is organized in

four levels of instantiation that we describe from bottom to top:

� The application level includes application data and program execution traces. This

corresponds to the instance level of class-based languages.

� The Information Resources Dictionary (IRD) level includes metadata, that is, data-

base schemata and application programs, plus any intermediate specifications, and

also specifications of noncomputerized activities (e.g., workflows). It can also contain

traces of development processes interlinking these specifications. This corresponds to

the class level of class-based languages.

� The IRD definition level specifies metamodels: the languages in which schemata, ap-

plication programs, and specifications are expressed. It may also contain the specifi-

cation of possible static and dynamic interrelationships among these languages, for

instance, design process models. This corresponds to the metaclass level of class-

based languages.

� Finally, the IRD definition schema level specifies a meta-metamodel according

to which the IRD definition level objects can be described and interlinked. Meta-

metamodels thus define the language for method engineering.

As the figure shows, these four levels are grouped into interlocking level pairs. A

level pair can be intuitively understood as a database in which the upper level is the

schema and the lower level the database state. The architecture interlocks level pairs,

in that the schemas of level pairs at one level can be coordinated by the database

state of a level pair (dictionary) at the next higher level, thus creating a distributed

database:

� Application level pairs correspond to traditional application databases, consisting of

a schema and a database state.

� IRD level pairs correspond to data dictionaries, metadatabases, or repositories. At

run time, they can serve as coordinators for distributed systems (e.g., in the Open

Distributed Processing trader approach). At system evolution time, they serve as de-

sign databases.

� IRD definition level pairs serve the same purpose for distributed method engi-

neering environments, linking multiple heterogeneous data dictionaries or design

environments.

Interlocked application level pairs and IRD level pairs form a distributed applica-

tion environment, whereas interlocked IRD level pairs and IRD definition level pairs

48 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

form a distributed development environment. Thus, the architecture provides the prin-

cipal concepts for integrating the usage and the evolution of distributed systems.

2.2.2 Exploiting the Level Pair Architecture

When applying the IRDS framework to interoperable information systems, it is of

decisive importance how the interlocking of level pairs is operationally exploited.

Specifically, we can interpret the framework shown in figure 2.1 downward, upward,

and sideways:

� Reading down, the architecture supports the generation of heterogeneous distrib-

uted environments. The relationship between level nþ 1 and level n of the architec-

ture in figure 2.1 is then understood as a type-instance relationship; that is, level

nþ 1 defines a type system for descriptions at level n. Good examples are the code

generation facilities o¤ered within the Rational Rose UML modeling environment

(www.rational.com/products/rose/), the MetaEditþ method engineering environ-

ment developed at the University of Jyväskylä (Kelly, Lyytinen, and Rossi 1996),

and the KSIMapper developed at the University of Calgary (Kremer 1996).

� Reading up, level nþ 1 defines one view (of several possible) on a given distributed

system at level n. This is consistent with the prototype approach to object-oriented

modeling, which is exemplified in systems such as n-dim (Westerberg 1996). Proto-

type models insist that a metamodel has mainly the task of drawing attention to a

particular aspect of a distributed reality and is something that may equally well be

created after the individual models under it have been constructed as before. Similar

notions of a posteriori lower-bound and upper-bound schemas in semistructured data

models are being pursued in the Extended Markup Language (XML) research com-

munity (Abiteboul, Buneman, and Suciu 2000). Thus, the architecture supports the

interoperation of heterogeneous information systems with associated cross-notational

consistency checking. In the execution environment, this corresponds to the integra-

tion of data from multiple heterogeneous sources, as, for example, in data ware-

housing. In the design environment, it corresponds to the consolidation of multiple

heterogeneous method viewpoints, as discussed in detail in Ghezzi and Nuseibeh

1998/1999 and Nissen and Jarke 1999.

� Reading sideways, the architecture supports the semiautomatic transformation or

mediation between multiple level n representations using mappings defined at level

nþ 1. Vertical mappings include the forward (Lefering 1993) and reverse (Jeusfeld

and Johnen 1995) engineering of entity-relationship specifications to and from

relational-database schemata. Horizontal mappings at the application level include,

for example, information brokering from heterogeneous source representations to

personalized client representations (Jeusfeld and Papazoglou 1999). An example at

Metamodeling 49

http://www.rational.com/products/rose/
http://www.rational.com/products/rose/

the design level is the switching between graph and matrix visualizations of relation-

ships among design objects (Kelly, Lyytinen, and Rossi 1996), whereby models ob-

tain representation independence. Other examples of horizontal mappings include

data warehouse architectures (Jarke et al. 1999) and the context interchange project

at MIT (Goh et al. 1999), as well as the vision of the Semantic Web (Berners-Lee,

Hendler, and Lassila 2001).

2.2.3 Formalizing the Relationships between Levels

Regardless of whether the IRDS framework is used downward, upward, or sideways,

the formalism used at the IRD definition level determines how much freedom and

precision can be o¤ered in syntax, semantics, and presentation when supporting a

given distributed application, design, or method engineering environment. In the ISO

IRDS Standard, the formalism is ISO SQL, with a specific M2-level SQL schema.

Commercial systems such as ARIS (Scheer 1994) and RDD-100 (Alford 1992), and

also the American National Standards Institute (ANSI) version of IRDS, employ an

extended entity-relationship model.

This is not a bad choice, as recent studies have shown that such extended entity-

relationship models can be mapped nicely to description logics, thus making this

approach both user-intuitive and computationally tractable. It is not surprising,

therefore, that a version of this approach, called DAML-OIL (Horrocks 2002), is

also being considered as the metamodeling language for the Semantic Web, despite

the fact that the problem of how to map models across multiple levels of instantia-

tion has not yet been solved for this family of description logics. As a consequence,

these approaches, like their precursors in the knowledge-based systems community,

such as the KIF and KQML language underlying the Ontolingua server (Farquhar,

Fikes, and Rice 1997), tend to replace a true metamodeling approach à la IRDS by

using very large generalization hierarchies (‘‘ontologies’’) at the metadata level,

where the organizing role of the metamodel is played by the upper levels of these

hierarchies, the ‘‘upper ontology’’ (Staab et al. 2001). As an extreme, we can con-

sider CYC’s ‘‘commonsense’’ metadata structure of about a million terms organized

around such an upper ontology with limited formal support; as an experimental

metadata management system, CYC has been used for enterprise information system

integration in the Carnot project (Huhns et al. 1993).

The exploration of di¤erent applications for interoperable information systems

and their development environments has led to the recognition that domain-specific

metamodels can provide substantially more support than generic solutions. For sup-

porting such applications, the standard approach is to hard-code a specific M2 model

in the support environment. Indeed, as a result of theoretical and implementation-

level di‰culties such as Russell’s paradox, most existing languages separate meta-

level and class level explicitly, thus limiting the number of metalevels to a given

50 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

constant—usually one, sometimes two. For example, the Microsoft Repository

(Bernstein et al. 1999) encodes the meta-metamodel defined in the UML standard

in an object-oriented Common Object Model (COM)–based formalism, whereas

the ARIS Toolkit (Scheer 1994) encodes the so-called ARIS House family of

metamodels in a hard-coded entity-relationship model. MetaEditþ employs a so-

phisticated graph-oriented meta-metamodel called GOPPR (graph-object-property-

relationship-role) that proves particularly helpful for the engineering of graph-based

design methods (Kelly, Lyytinen, and Rossi 1996).

In contrast, an extensible metamodeling environment allows the syntactic, seman-

tic, and user-oriented specification of M2 models within a single environment. Amal-

gamation has been proposed as a means of switching back and forth between object

and metalevel in logic programming (Kowalski 1979). For example, the Concept-

Base system (Jarke et al. 1995) supports a deductive, object-oriented language called

Telos (Mylopoulos et al. 1990) that allows for an arbitrary number of metalevels.

The problem of infinite regress is solved by reflexive instantiation at a so-called

omega level, combined with careful semantic restrictions concerning the use of nega-

tion to avoid set-theoretic paradoxes (Jeusfeld 1992). Nissen and Jarke 1999 shows

that this formalization can be extended even to the case of distributed modular mod-

eling and operations environments. However, at a single level of analysis, the under-

lying logic, Datalog with stratified negation, is less powerful than the description

logic formalism underlying, for example, DAML-OIL. To what degree the advan-

tages of the two techniques can be combined with one another, and possibly with

more dynamically oriented formalisms such as model checking of finite-state autom-

ata specifications, is still an open research issue. Initial pragmatic solutions have been

attempted in requirements engineering (Fuxman et al. 2001; Gans et al. 2001).

2.3 Dimensions of Metamodeling

Any given metamodel enables the detection of di¤erent kinds of transformations

and conflicts and other higher-level insights and development processes. In other

words, as pointed out by philosophers (cf. Winograd and Flores 1986 for a detailed

exposition), the metamodel used constrains the action and interaction of modelers

and users alike.

However, the development of metamodels is not completely haphazard. In this

section, we first present a framework according to which metamodeling approaches

can be classified, then describe its application to interoperability and adaptability. We

analyze metamodel-based interoperability and adaptability by developing a frame-

work called the diamond model (see figure 2.2, from Jarke et al. 1998). The diamond

model consists of two parts: (1) the triangle of ontologies, notations, and processes,

which describes a possible space of choices when one is adapting or interrelating

Metamodeling 51

models; and (2) the goals of an information systems development (ISD) project,

which drive the choices made in the triangle.

The question each aspect in the triangle seeks to capture can be summarized as

follows:

1. What are underlying ontologies of the domains handled in the information

system?

2. What notations are used to capture and represent di¤erent aspects of the system

and its environment?

3. What processes are enacted when models are derived, assessed, and validated?

Each of these aspects can be independently modeled and represented using a number

of alternative representation schemes and mechanisms, which result in di¤erent types

of metamodels. Consequently, metamodels can deal with representations of domain-

related concepts and vocabularies and their organization into reference frame-

works and metamodel hierarchies (ontology-based metamodeling), specifications of

notations and notational systems (notation-oriented metamodeling), or specifications

of large-grained processes or small-grained process chunks (process-oriented meta-

modeling).

The diamond shape of the model is intended to illustrate that the model’s three

aspects are neither exclusive nor orthogonal. Each viewpoint complements the other

viewpoints, and all are required to yield ‘‘complete’’ interoperability and adaptability

Figure 2.2
Four aspects of metamodel-based environments

52 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

of the modeled environment. For each of these aspects, we find that ‘‘islands of auto-

mation’’ have been built; that is, each aspect can be modeled to some extent inde-

pendently of the others.

In the following subsections we examine each aspect of the model, its contribution

to interoperability and adaptability, and its relationships to the other aspects (lines

and circles in figure 2.2). Finally, we discuss how the di¤erent aspects interact in the

evolution of information systems engineering methods.

2.3.1 The Ontological Aspect

It is impossible to represent a system in its full detail. Therefore, it is necessary to pay

attention to a small number of abstractions based on a set of generic concepts. These

concepts should be meaningful and su‰cient to conceptualize the phenomena of the

systems development domain and to imply some properties of how the system will

operate in that domain. The enumeration (and sometimes formal specification) of

the concepts used in the conceptualization is called an ontology (Gruber 1993).

An ontology consists of a set of concepts and their relationships, forming a con-

ceptual structure that underlies the interpretation of any system model. Thus ontol-

ogy is defined by basic terms and relationships comprising a vocabulary to represent

a development area (Neches et al. 1991). All methods aimed at modeling systems are

based on some ontology.

Two distinct views of ontology can be distinguished in the IS literature (Wand

1996). As a philosophical concept, an ontology forms something fundamental from

which all universes of discourse can be formed. In the AI view of ontology, ontolo-

gies di¤er among domains.

The need to establish a fundamental ontology for IS is visible in suggestions of ge-

neric reference models for IS modeling (Wand and Weber 1989), which have recently

been formalized as metamodels in Rosemann and Green 2002. As a result of di¤er-

ences in systems (from business administration systems to automated robots), devel-

opment contingencies (users’ familiarity with concepts), and di¤erent philosophical

positions, there is no general agreement as to whether such a fundamental ontology

does exist or whether it is really needed (see, e.g., Hirschheim, Klein, and Lyytinen

1995). Heated arguments concerning what ontological constructs entity-relationship

modeling should include (entities, relationships, and/or attributes?) are examples of

this lack of agreement.

Domain-based ontologies have focused on specific reference models such as

� the ARIS House family of metamodels for business integration (Scheer 1998);

� the STEP family of standards for product planning and design (Pratt 2001);

� similar standards in telecommunication, medicine, and elecronic commerce (Brodie

1997).

Metamodeling 53

The domain theory developed for requirements engineering in the European NA-

TURE project can be cited as one of the few attempts to study the interaction be-

tween fundamental and domain-based ontologies (NATURE Team 1996).

The ontological constructs that can be defined vary from IS environment to IS en-

vironment largely depending on the semantic power of the metamodeling language

used (Harmsen and Saeki 1996). Here semantic power may vary from that in simple

entity-relationship-based formalisms like those in System Encyclopedia Manager

(ISDOS 1981) up through that o¤ered by powerful object-oriented modeling nota-

tion like GOPRR (Kelly, Lyytinen, and Rossi 1996; Tolvanen 1998). Languages like

Telos also include powerful inference mechanisms that o¤er a rich set of horizontal

and vertical integrity constraints (Jarke et al. 1995; Nissen et al. 1996). Others o¤er

specific procedural languages for specifying consistency rules and transformations

(Boloix, Sorenson, and Tremblay 1991). Recent ontology language formalisms devel-

oped in the context of the Semantic Web initiative are described in Gomez-Peres and

Corcho 2002.

Besides the choice of representation language, careful adherence to some basic dis-

tinctions and principles of ontology construction has also proven critical to success

in ontology management. An overview of such principles is given by Guarini and

Welty (2002). Examples include rules for distinguishing among seemingly similar ab-

straction mechanisms such as generalization, instantiation, disjunction, and part-of

relationships.

Another dimension on which ontological constructs can be analyzed is the scope

and power of their integration mechanisms. Most metamodeling languages cover

only a singular technique and contextual mappings between notations and ontologies

(Smolander 1992). Some environments o¤er richer mechanisms than others for spec-

ifying levels of integration between techniques (ter Hofstede and van der Weide

1993), whereas some can also handle m:n mappings between ontologies and nota-

tions (Kelly, Lyytinen, and Rossi 1996).

Generally, the more mature an application domain is, the greater the number of

stable ontologies available for that domain. For example, in electrical engineering,

the concepts for interpreting and analyzing electrical circuits are widely shared and

standardized. Suggested standards for computer-aided software engineering (CASE)

interoperability are also based on a fixed metamodel. These include Case Data Inter-

change Format (1994), used in transferring repository data among CASE tools, and

STEP, which supports integration of production data (Pratt 2001). IS development,

in contrast, because of its youth, generally lacks standardized fundamental ontolo-

gies, despite e¤orts to develop such standardized ontologies in general (Oei and

Falkenberg 1994) and in systems modeling (e.g., UML [Booch, Rumbaugh, and

Jacobson 1998]).

54 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

Development and integration of domain ontologies requires mechanisms for com-

bining and managing sets of interrelated vocabularies. Research into developing such

mechanisms has been carried out mainly by investigating principles and theories of

ontology hierarchies consisting of a shared ontology (fundamental ontological con-

structs representing ‘‘deep’’ domain structures, such as data flows), customized ontol-

ogies (domain-dependent extensions to fundamental ontologies, e.g., time extensions

to data flow diagrams [DFDs]), and application- or domain-related assertions (state-

dependent knowledge of the system to be developed, e.g., integrity constraints

defined over specific processes in DFDs in some domain) (Neches et al. 1991). A

good example of the integration of ontologies is the domain of medicine, in which

the Unified Medical Language System (UMLS) is employed as a top ontology for

integrating more specialized medical-domain ontologies (National Library of Medi-

cine 1994).

Most CASE tools o¤er a fixed set of modeling techniques and associated ontolo-

gies, because of the lack of a specific metamodeling layer in which the data semantics

are di¤erentiated from the data representations. Ontologies can be made adaptable

through three alternative mechanisms, presented here in order of decreasing degrees

of freedom to specify new ontologies:

� by providing means to specify new metamodels and expand the data semantics

� by providing means to extend an existing metamodel

� by providing means to select a subset of an existing large reference metamodel

Meta-CASE tools contain some declarative mechanisms for defining metamodels.

Examples of such meta-CASE tools include MetaView (Sorenson, Tremblay, and

McAllister 1988), ConceptBase (Jarke 1992), RAMATIC (Bergsten et al. 1989), and

MetaEditþ (Kelly, Lyytinen, and Rossi 1996). Metamodel extensions are supported

in older CASE tools like Excelerator (Marttiin et al. 1993). A reference model ap-

proach was used in some early CASE tools like PSL/PSA (Teichroew and Hershey

1977) and also in IBM’s AD/Cycle model (Mercurio et al. 1990). It has gained

increasing importance in meta-CASE tools like Maestro II (Merbeth 1991) and in

tools that maintain SAP reference models (Scheer 1998; Hernandez 1997).

Management of change at the metamodel level (metamodel evolution) has been

discussed to some extent in the method engineering literature (Harmsen, Brinkkem-

per, and Oei 1994; Marttiin, Harmsen, and Rossi 1996; Rossi et al. 2003). Concep-

tual foundations for managing such change include metamodeling hierarchies (Oei

and Falkenberg 1994) and incremental method adaptations (Tolvanen and Lyytinen

1993; Tolvanen 1998). Current tools do not, however, provide many elegant solu-

tions for managing metamodel evolutions. Most deal with them as simple model

updates into the metamodel (see, e.g., strategies for metamodel management in

Metamodeling 55

MetaEditþ [Kelly, Lyytinen, and Rossi 1996]) and through incremental adaptation

and reuse of the existing repository of metamodel components (Kelly, Lyytinen,

and Rossi 1996; Tolvanen 1998; Kelly 1998). These methods have been lately en-

hanced with reusasable metamodel components that include context models and

ports for easier pluggability (Zhang and Lyytinen 2001) and through an analysis of

ways in which metamodel components can be made reusable. There are no graceful

mechanisms for addressing consistency between the type and instance level data, and

removal of a metamodel construct also removes, in all environments, the instance

data from the repository, as no metalevel versioning and associated semantics are

available.

2.3.2 The Notational Aspect

Any ontological construct can be manipulated or communicated only by using some

notation. Notations can be classified according to their level of formality into formal

(logic, rules), semiformal (structured and object-oriented notations), and free-form or

informal notations (e.g., rich pictures in Checkland 1981). A notation’s level of for-

mality also characterizes to what extent it can be manipulated and new information

derived from the representations using computer-based tools. Independent of its level

of formality, a notation can also be classified, according to its presentation style, as

graphical, matrix, textual, tabular, or form-based.

To be useful in representing a system or its environment in some domain, a nota-

tion must be associated with rules of ontological mapping (i.e., semantics). For ex-

ample, a notation with graphical nodes and links might imply an ontology that

distinguishes between objects and relationships but could also imply an ontology

that distinguishes between states and activities. Usually higher degrees of formality

imply stricter rules regarding how notational constructs are mapped into ontological

constructs (and therefore fewer degrees of freedom in representing varied situations

in the domain of representation). This is well formalized in formal logics through

their model theory and associated axioms of model validity and satisfaction (Kleene

1967).

There is an m:n relation between notations and ontologies. Each construct in an

ontology must be related to at least one notational element (a phrase, an icon, etc.)

to enable its use, and it can be related to more than one notational element. There

are also specific rules and theories that specify what constitute good mappings

among ontological theories, ontological constructs, and their representations (Wand

and Weber 1993, 1995). For example, the concept ‘‘Entity’’ can be related to a tex-

tual string ‘‘entity’’ or to a graphical rectangle. The assignment of more than one no-

tational element to an ontological construct enables the same ontological construct

to be presented in di¤erent situations and for stakeholders with di¤erent needs. The

same construct can be mapped to di¤erent notational systems with di¤erent levels of

56 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

formality or with di¤erent presentation styles. In addition, a notation may be related

to more than one ontological ‘‘system.’’ Therefore, the interpretation of the notation

(i.e., its mapping) requires knowledge of the context in which the notation is used.

For example, a rectangle can represent an entity in data modeling, whereas it repre-

sents a terminator in the data flow view.

A variety of notations of varying complexity and formalization need to be avail-

able because systems development situations cover varying applications (e.g., real-

time systems and business reengineering) with di¤erent notational traditions, project

contingencies (e.g., developer skills and familiarity with notations vary), and di¤erent

task demands (e.g., a move from informal to formal, from fuzzy to precise). For the

same reasons, metamodeling capability is needed to integrate various notations and

their semantics (through shared ontological elements or mapping between ontologi-

cal elements).

In integrating notations, we distinguish between situations involving horizontal

and vertical integration (Lehman and Turski 1987; Zelkowitz 1993). Vertical integra-

tion maps notational elements onto development stages and therefore requires tools

and mechanisms for forward and reverse engineering and requirements tracing (Chen

and Norman 1992). Horizontal integration enforces integrity in ‘‘horizontal’’ design

representations by using integrity rules, transformations, and hypertext connectivity

to link various notational elements.

Both types of integration situations have to be represented in metamodels by map-

ping notations to one another (cycle from notations to notations) and by mapping

notations to di¤erent ontologies (relationships between notations and ontologies).

Interpretations of notations within use contexts, that is, mappings between ontologi-

cal constructs and notations, must be agreed upon within development tasks in which

the ontology and notations are used (situational method engineering). In the case of

a mature ontology, like that in electrical engineering, in which relations between the

ontological concepts and notations are stable and presumed, the choice of the use

context is unproblematic. In information system development, such fixed mappings

between concepts and notation hardly exist despite standardization e¤orts, and they

can be di‰cult to obtain because of the wide variation in modeling domains, types of

systems developed, and intensive learning e¤ects associated with system development

(Tolvanen 1998).

Recent method engineering activities, such as the definition of the Unified Model-

ing Language (Booch, Rumbaugh, and Jacobson 1998), have aimed at establishing

unified standards for notations but this unification goal may be unreachable because

of the variety of development situations any such standards must cover. What we

need instead of unified notation standards is a better (meta)modeling mechanism

that allows flexible and multiple mappings between notations and ontologies and

provides powerful tools for enforcing horizontal and vertical integration. Critical

Metamodeling 57

here is also the ease and flexibility of achieving such mappings, which must be pro-

portional to the benefits obtained from new mappings. This calls for flexibility and

ease of use with meta-CASE environments.

As noted at the beginning of the section, ontological constructs can be manipu-

lated only by using some kind of notation. Thus, all CASE tools must provide at

least one notational construct for each ontological construct they distinguish. In

early CASE tools such as PSL/PSA (Teichroew and Hershey 1977), the dominant

presentation style was textual. Since the late 1980s, graphical notations have domi-

nated. Traditional CASE tools use mostly fixed notations, whereas meta-CASE tools

support varying levels of notational adaptability. The simplest form of notational

adaptability involves o¤ering a selection of a symbol from a set of graphical symbols

or allowing a set of text aliases for a particular ontological construct. Such notational

adaptability has been supported since the late 1980s in CASE tools such as the Excel-

erator tool family (Marttiin et al. 1993). Another form of notational adaptability

involves allowing a change in any notation but those early approaches did not sup-

port changes in the presentation style, in particular changes to the graphical symbols.

This requires that a dedicated metalevel graphical editor be available to define sym-

bols. Rational Rose o¤ers stereotypes for this purpose. Symbols can be defined in

most meta-CASE tools, and some also o¤er several presentation styles. A separate

editor is needed, however, for each presentation style (Kelly, Lyytinen, and Rossi

1996; Kelly 1998; Bergsten et al. 1989).

Di‰culties in managing a variety of ontologies and notations simultaneously are

recognized in the National Institute for Standards and Technology (NIST)/

European Computer Manufacturers Association (ECMA) model (Zelkowitz 1993).

The associated manipulation of metalevel constructs also requires a notation or sev-

eral notations. Metamodel manipulation has been performed, for example, textually

in ConceptBase (Jarke 1992), graphically in MetaEdit (Smolander et al. 1991), and

by using forms in MetaEditþ (Kelly, Lyytinen, and Rossi 1996).

2.3.3 The Process Aspect

We define process as ‘‘a set of partially ordered process steps intended to produce a

desired product’’ (Heineman et al. 1994). A process (meta)model is an abstraction of

(a set of) processes. Process metamodels are closely related to both ontologies and

notation in that any process model assumes a specifc ontology about processes and

demands associated notations to represent, analyze, and enact them. Depending on

goals, a process model’s intended usage (e.g., by humans or tools, for process control

or process guidance), its level of granularity and associated ontology, and the formal-

ism used (notation) vary greatly (Finkelstein, Kramer, and Nuseibeh 1994; Curtis,

Kellner, and Over 1992; Armenise et al. 1993; Lott 1993). Process models vary in

their levels of formality; they can express a specific abstraction of process ontology

58 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

(organization, project, group, team, individual, etc.) and select a particular view (ar-

chitectural, design, definitions, etc.) of that ontology. They can support (enforce,

guide, control) process execution, assist in process analysis, aid in process under-

standing, or predict behavior.

What information is represented in process models depends thus on the underlying

assumptions of the modelers (ontologies) and the goals they pursue (Lonchamp

1993). This is reflected in distinctions between descriptive and prescriptive meta-

models (McChesney 1995). Descriptive models (e.g., traceability models) describe

how an information system is (or has been) developed (Pohl 1996; Ramesh and Jarke

2001; Rossi et al. 2004). Prescriptive models define and control the means by which a

task is to be completed and the order in which tasks are to be performed.

A number of relationships between processes and ontology-notation combinations

have been studied. On the one hand, a process model (task) can determine specific

concepts and their representations. On the other, the available ontologies and nota-

tions influence the choices that one can make in outlining a process model; for exam-

ple, the Rational Unified Process has been strongly influenced by UML language

constructs. To understand how metamodeling handles the relationships among pro-

cesses, ontologies, and notations, we distinguish three kinds of process elements that

behave di¤erently in terms of their implications for modeling relationships between

tasks and ontologies-notations:

1. Fundamental actions manipulate constructs that are used to model the system

under development; that is, they adopt concepts from the underlying ontology as

input and return them as output. Therefore, the process steps of the information

system development method are primarily determined by the ontology chosen. If

the notation for the method is not su‰cient to express all the constructs in the ontol-

ogy, one cannot model fundamental actions dealing with these constructs, either. For

example, if the notation provides no elements to represent ‘‘relationship’’ in entity-

relationship modeling, it is not possible to define a process step to create a relation-

ship between two entities.

2. Notational actions deal with notational aspects of representations (cosmetics)

without a¤ecting the underlying conceptual structure. Examples of such activity

abound: diagonalizing a matrix or designing a layout. Another example of notational

actions is the transformation of a representation from one notation into another,

when more than one notation is linked to the same ontology.

3. Process-related actions neither change concepts nor their representations but influ-

ence how processes are carried out. Examples are browsing through a decision tree or

starting, stopping, or resuming a process fragment. In addition, activities orthogonal

to uses of any method, like recording design rationales and document management

(e.g., versioning), fall into this category.

Metamodeling 59

Integrations of various process modeling languages (PMLs) are rare. The few

exceptions discussed so far, such as Viewpoints (Sommerville et al. 1995), do not

use metamodel-based techniques. The only metamodel-based exception we are aware

of is a process metamodel developed in the NATURE project that—through the no-

tion of context specialization—allows for the integration of di¤erent process model

aspects such as decision support, workflow management, and hierarchical planning

(Jarke et al. 1994; Pohl 1996; Rolland 1998; Koskinen 2000). The Process-Integrated

Modeling Environment (PRIME) demonstrates the power of process integration for

the guidance and traceability of engineering environments (Pohl et al. 1999).

An explicit process representation for process adaptability is now o¤ered by many

tools, including some configuration management tools (program files as products),

workflow management tools (shared documents and reviews as products), and

groupware tools. However, simultaneous adaptation of processes and products

(ontology and notation) is not well managed in current tools.

In most CASE tools the process model is implicit and, if defined, fixed. Although

some tools, like Maestro II (Merbeth 1991), provide an explicit process model, they

o¤er only a set of predefined process models to choose from. Some approaches seek

to substitute other constructs for a process model. These include the use of hypertext

links (e.g., HyperCASE [Cybulski and Reed 1992]) or of agent models (Yu and

Mylopoulos 1994). Adaptable process tools, on the other hand, assume fixed ontolo-

gies and notations or do not consider any specific deliverables (i.e., ontologies and

notations are not defined). Examples of the first approach are EPOS (Jaccheri and

Conradi 1993), and SPADE (Bandinelli, Fuggetta, and Ghezzi 1993). Examples of

the second approach include CPCE (Lonchamp 1995), and SCALE (Oquendo 1995).

2.3.4 The Goal Aspect

Goals drive the way situational contingencies and higher-level goals (such as quality,

economic value, and e¤ectiveness) are mapped onto decisions about processes, their

notations, ontologies, and their relationships (Castro, Kolp, and Mylopoulos 2002).

For example, on the process side, a contingency of having two teams and at the same

time the need for consistent and error-free designs requires the specification of a rigid

process model with several coordination points. On the notational side, a contin-

gency of using Smalltalk and the goal of having a parsimonious object class specifi-

cation require that class diagrams refrain from using multiple inheritance.

Goal-based interoperation and adaptation are probably the least-studied aspects of

metamodeling. The majority of IS methods do not distinguish between situational

expectations and deviations in method use (Iivari and Kerola 1983; Vlasblom, Rij-

senbrij, and Glastra 1995). Typically IS methods provide a fixed set of concepts and

notations and some procedural guidelines without adaptation possibilities. Although

60 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

in some methods the need for adaptability has been recognized (cf. Booch 1994;

Coleman et al. 1994), these methods neither include comprehensive descriptions

of method use environments nor provide adequate mechanisms for modifying the

method after the modification need has been recognized.

Some researchers have at least identified goals that drive method adaptation. We

identify four approaches:

� Goals of the ISD project (costs, satisfaction, resources, and schedule): Goals re-

lated to situational methods are studied in the S3 (situation-scenario-success) model

(Harmsen, Lubbers, and Wijers 1995) and those related to software process quality

in the GQM (goal-question-metric) approach (Basili and Rombach 1988).

� Changes in stakeholder’s values: Because use of methods and supporting tools is

essentially the same kind of process as use of any information system, it is appropri-

ate that methods meet users’ requirements. Hence, methods should continuously sat-

isfy the requirements of stakeholders—such as designers, programmers, IS users and

managers (Kumar and Welke 1992). This is, in fact, an essential condition for the

acceptance of methods, because method users will more easily learn methods, accept

them, and actually use them when the method supports the continuous evolution of

stakeholder’s requirements.

� Situational contingencies of the ISD project: Contingency theory claims that there

is no universally acceptable ISD method that is suitable for all circumstances. On the

one hand, this justifies the adaptation of methods. On the other hand, contingency

researchers (e.g., Davis 1982; Kotteman and Konsynski 1984; Sullivan 1985) have

sought to identify characteristics (called situation dependencies) that control the out-

comes of method use. These characteristics, such as the type of an information sys-

tem, the programming language applied, development culture and process maturity,

and developers’ experience, can a¤ect the adaptation of a particular method.

� Accumulated knowledge of methods (Jarke et al. 1994; Tolvanen 1998): Methods

can hardly be adapted in one step because of the dynamics of method use: Organiza-

tions learn from experiences and become handy with methods as they are used. Ac-

cordingly, methods need to be adapted, managed, and maintained continually based

on garnered experience, and there are several abstraction mechanisms available to

improve the reuse of method-related knowledge (Zhang and Lyytinen 2001).

In recent metamodeling proposals, these approaches are addressed from three

angles. First, explicit modeling of goals and means-ends relationships have been

investigated since the early 1990s, for example, in the KAOS approach (Dardenne

et al. 1993). Second, goal interoperation by multiple interdependent stakeholders is

addressed in the i* formalism proposed by Yu (1995), which allows the description

Metamodeling 61

of strategic interdependencies and strategic-goal hierarchies in a single framework.

Finally, contingency issues and goals have been related to process metamodels via

the construct of design rationale (Ramesh and Dhar 1992). Studies of requirements

traceability show that rationale metamodels and mechanisms of varying sophistica-

tion are increasingly used in practice, and indeed sometimes mandated by procure-

ment standards (Ramesh and Jarke 2001).

2.3.5 Method Engineering and Evolution: Interaction of the Aspects

In any given project, the bottom triangle in figure 2.2 suggests a set of development

methods by defining the available array of ontologies, notations, and process steps.

On top of this triangle, the current goal set defines a view that selects ontologies,

notations, and processes and the relationships among them that are of current rele-

vance. The goal set acts like a filter that drives choices among three method engineer-

ing aspects. Shifting a goal set in a project leads to the application of another view

and necessitates the selection of process steps, ontological constructs, or representa-

tions from the pool of metamodels according to changed goals. We call a change of

this type goal-driven method adaptation.

Some changes during a project cannot be accommodated solely by the adaptability

o¤ered in the current state of the metamodels. In other words, some changes call not

only for making choices within the current diamond but also for an evolution of the

diamond, in that new goals, processes, ontological constructs, notational elements,

and their relationships are added into the metamodel base (Tolvanen and Lyytinen

1993). Method evolution can be carried out by the following alternative strategies

that have varying degrees of impact on developers’ work. To reduce disruptions

in the development environment, the normal priorities among these strategies are as

follows:

1. Change the processes by leaving the notation and the ontology stable.

2. Establish new relationships between existing notations and ontological concepts.

3. Introduce new notations for existing notations.

4. Introduce new ontologies (of varying scope).

5. Change the goal.

2.4 Examples of Metamodeling Environments

In this section, we illustrate how the various aspects of metamodeling and metadata

management presented in the previous sections can be packaged into standards and

tools for metamodeling. We have chosen five example systems that are grounded in

research but also used in practice:

62 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

� The ARIS Toolkit is probably the current world market leader in business process

representation for the enterprise resource planning (ERP) context, thus showing a

prime example of an ontology-focused metamodel; a similar (and earlier) approach

in a di¤erent domain along the same lines was the Unified Medical Language System

meta-metamodel.

� The Microsoft Repository (recently renamed Metadata Engine) is shipped with

most high-end versions of the Microsoft O‰ce package and is closely linked to the

current market-leading notational metamodel standard, UML.

� The MetaEditþ environment is particularly strong in the declarative aspects of

graph-based metamodeling and method engineering.

� The ConceptBase environment has its focus on the access-oriented and integrative

aspects of metamodeling relying on a logic-based object-oriented formalism.

� The MPEG-7 multimedia metadata standard is an example of a descriptive, access-

oriented metamodel on top of the XML standard.

2.4.1 Ontology-Centric Metamodeling: The ARIS House and Toolkit

Standardized ERP systems such as those marketed by SAP and Oracle were one of

the most impressive successes in business application system standardization and in-

tegration in the 1990s. According to Scheer (1994), these systems’ main advantage is

the enormous wealth of knowledge encoded in them, which has radically reduced the

business analysis e¤orts for standard administrative tasks in enterprises. In essence,

ERP systems development is now largely a process of customizing standardized busi-

ness ontologies rather than inventing new ones.

Although ERP products support these ontologies implicitly in their code, data-

bases, and user interfaces, a number of modeling tools have been developed that

make the underlying models explicit, thus o¤ering a better understanding, design,

and maintenance capability for complex ERP environments. Examples include the

INCOME system o¤ered by PROMATIS to assist in Oracle-based ERP systems

applications (Oberweis et al. 1994) and the market-leading ARIS Toolkit developed

by IDS Scheer (Scheer 1994).

The ARIS Toolkit o¤ers a particularly intuitive metamodel structure that we

briefly describe here. Considering that ERP systems are characterized more by enor-

mous size and multiple perspectives of interest than by complexity in details of the

algorithms or individual applications, Scheer (1998) proposed the ARIS House struc-

ture of metamodel collections, which is shown in figure 2.3.

Essentially, the ARIS House elegantly combines two dimensions of ERP systems

engineering. One dimension concerns the phase structure of requirements definition

(application oriented), the design specification (system oriented), and the technical

Metamodeling 63

Figure 2.3
The ARIS House structure for collections of ERP metamodels. Adapted from (Scheer 1998)

64 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

implementation, as previously prototyped in the DAIDA metamodeling environment

(Jarke 1993). The other dimension considers the well-known perspectives of integra-

tion in sociotechnical systems, namely, data, function, organization, output, and (for

the integration itself) control.

The emphasis of ontology-based model development in the ARIS Toolkit is on

reference models at the level of requirements engineering (application domain mod-

eling). To describe in more detail the possible interrelationships among the five per-

spectives of data, function, output, organization, and control, Scheer has developed a

semiformal meta-metamodel in an extended entity-relationship notation, as shown in

figure 2.4.

The figure is organized around the notion of function. In the upper left of the fig-

ure, various inputs to the function concept are visible, and the upper right shows the

corresponding outputs. On the same level as the function itself, we see the events that

represent the control flow of the system. The context of the function is described by

environment data and goals (in the upper center) as well as the related organizational

unit. Other resource and organizational aspects are shown in the lower part of the

figure.

The five aforementioned perspectives can be understood as overlapping views

on this meta-metamodel (Scheer 1998). The metamodel overlaps could be used for

purposes of transformation or consistency checking between models defined in the

di¤erent perspectives (data, function, output, organization, control) if a formal, com-

putationally tractable formalization of the meta-metamodel were available (e.g., one

along the lines of the ConceptBase logic described in chapter 3). In practice, the

ARIS Toolkit uses the meta-metamodel as an intuitive guideline for individual integ-

rity checks or transformational functions without a seamless formal foundation.

Nevertheless, the ARIS Toolkit is probably the most comprehensive ontology-based

metamodeling environment for business applications in existence and is clearly the

leader of the world market in this domain.

2.4.2 Notation-Centric Metamodeling: The Microsoft Repository

The Microsoft Repository (MSR) (Bernstein et al. 1999), marketed under the name

of Metadata Engine, has a metamodeling language that is a combination of rela-

tional and object-oriented solutions. Although its underlying storage mechanism

is relational, the data model is based on Microsoft’s Common Object Model, a

binary-object standard.

A main strategy of MSR has been the definition of a broad range of information

metamodels for system domains relevant for Microsoft customers and original equip-

ment manufacturers. To define the relationships among objects in a repository, MSR

o¤ers structural information and some object-oriented methods and abstraction

Metamodeling 65

mechanisms. Microsoft has therefore decided to standardize all metadata schemas

(information models) within the context of a predefined metamodel of Rational’s

Unified Modeling Language. An excerpt of this metamodel—a class diagram that

shows the basic structure of UML class diagrams—is shown in figure 2.5.

Within this framework, MSR also supports a number of specific repository infor-

mation models. In addition, the application-independent kernel of MSR o¤ers fea-

tures such as fine-grained version control.

As an example of information models, figure 2.6 shows an excerpt from the Open

Information Model (OIM) (Metadata Coalition 1999), which is intended to support

Figure 2.4
A meta-metamodel representing the interactions among the di¤erent perspectives in the ARIS House.
Adapted from (Scheer 1998)

66 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

life-cycle-wide tool interoperability. OIM uses UML both as a modeling language

and as the basis for its core model. OIM is divided into submodels, or packages,

that extend UML in order to address di¤erent areas of information management.

For instance, the Data Transformations Elements package covers basic relational-

to-relational model transformations. A transformation maps a set of source objects

to a set of target objects, both represented by a transformable object set (typically

sources and targets are relational columns or whole tables). A transformation has

a function expression property to provide a description of the executed code/script.

A transformation task describes a set of transformations that must be executed

together—a logical unit of work. A transformation step executes a single task and

is used to coordinate the flow of control between tasks. A step precedence is a logi-

cal connector for steps: A step can be characterized by its preceding and succeeding

step precedence instance. A transformation package is the unit of storage for trans-

formations and consists of a set of steps, packages, and other objects. Package exe-

cutions express the concept of data lineage, covering the instances of the step

executions.

Figure 2.5
UML metamodel of UML class diagrams

Metamodeling 67

2.4.3 Declarative Method Engineering: MetaEditB

MetaEditþ (Kelly, Lyytinen, and Rossi 1996; Kelly 1998; Rossi 1998) employs a

graph-object-property-relationship-role meta-metamodel to e¤ectively specify, man-

age, and integrate graph-oriented design methods. MetaEditþ was developed spe-

cifically for rapid development and deployment of any graphically oriented design

method. To achieve this goal it o¤ers a powerful modeling environment in which to

declaratively model nearly any type of ontology (flat, hierarchical, integrity, and ex-

istential constraints) and map it to any type of notation that can be defined in its

graphical symbol editor. It also o¤ers default mappings to matrix and textual repre-

sentations and thereby enables users to input and output ontological constructs with

any type of notation. For rapid deployment it also provides a large set of repository

functions that allow extensive reuse of existing metamodels and their components.

MetaEditþ can run either in a single-user workstation environment, or simultane-

ously on many workstation clients connected by a network to a server (see figure

2.7). In the latter configuration, each client has a running instance of MetaEditþ,

including all its tools and the MetaEngine. The MetaEngine takes care of all issues

involved in communicating between the server and tools. Tools communicate with

one another only through the MetaEngine and thereby through the shared GOPRR

data in the repository.

Figure 2.6
The MSR metamodel for Data Transformation Element

68 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

Figure 2.7
Architecture of MetaEditþ

Metamodeling 69

The MetaEditþ server forms the repository holding all the data contained in

models about information systems, and also in the metamodel(s) about these models,

in addition to user and locking information. The MetaEditþ repository includes a

method specification base containing all the method specifications as instances of the

GOPRR meta-metamodel concepts; a symbol specification base containing all sym-

bols needed to represent objects, relationships, and roles; a report specification base

containing all report and other output specifications; a model information base con-

taining all the conceptual instances of the GOPRR metamodels; a representation in-

formation base containing all information (such as spatial coordinates or size) needed

to represent conceptual instances in di¤erent tools; and a user information base con-

taining all information related to various users, such as their passwords or access

rights, or what locks on data objects or services they currently hold.

GOPRR objects are typically discrete shapes in diagrams that can have properties

(strings, numbers, etc., represented in text boxes within the shapes). Relationships

can also have properties and form the hub of connections between objects, whereas

roles (also with properties) form the spokes of connections and define the manner in

which objects participate in specific relationships. Roles are normally represented as

directed lines or arcs in the graphical models; relationships may or may not have a

symbol at the hub or center of the roles. MetaEditþ also allows multiple ontological

loadings of constructs in the sense that the same construct can be an object in one

graph, whereas in another graph, it can be viewed as a property. These constructs

are ‘‘packaged’’ into hierarchically organized graphs, again with their own proper-

ties. Graphs can be included in parent graphs or attached to objects, roles, or rela-

tionships therein. MetaEditþ allows various types of representations of each graph,

in particular, graphical diagrams, textual tables, and matrix presentations.

Each graph type forms a single method; multiple methods can be defined into

interconnected methodologies. MetaEditþ o¤ers means of defining connections be-

tween and integrity constraints on di¤erent methods: which graph elements can have

subgraphs, update dependencies, value- versus name-based sharing of data etc. The

whole structure is object-oriented, allowing generalization, specialization, and poly-

morphism in the sense that the same design items can play di¤erent roles in di¤erent

notations. An example of a GOPRR specification of a data flow diagram is pre-

sented in figure 2.8.

The main purpose of MetaEditþ is the fast generation of specialized method

variants for a large variety of engineering tasks and the subsequent integration and

management of designs created by multiple method variants. Metamodels can be

specified using a set of method specification and management tools, which allow

fast and disciplined specification and management of each part and component of a

GOPRR metamodel instance. The tools are defined to encourage extensive reusabil-

70 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

ity in that all existing metamodel specifications are available during the method spec-

ification step. Figure 2.9 shows an example of a graph tool, which the method engi-

neer uses to put together a GOPRR graph type ‘‘package’’ and thereby define a

method. A large variety of tools for model editing (in diagram, matrix, or table nota-

tions), model retrieval, model linkage and annotation, method management, and en-

vironment management are o¤ered, as shown in figure 2.7. MetaEditþ o¤ers a

scripting and report definition language to specify transformation of models into all

manner of textual output: code, test scripts, documentation, configuration informa-

tion, XML export of model information, etc.

MetaEditþ is a versatile and flexible tool that is specifically dedicated to domain-

based metamodeling and associated software development tasks. It has been used in

many commercial projects, including design and full code generation for mobile

phones based on extensive domain models, managing security and privacy policies

in various types of companies, and developing business models and software solu-

tions for insurance companies. These and other software engineering applications of

MetaEditþ demonstrate the practical usefulness of this graph-based metamodeling

and integration approach that focuses on extensive domain modeling.

Figure 2.8
A GOPRR model of a data flow diagram

Metamodeling 71

2.4.4 Descriptive and Integrative Metamodeling: Telos and ConceptBase

In contrast to MetaEditþ, the formal foundation of ConceptBase is not graph

theory, but the Datalog formalism underlying deductive relational databases. Con-

ceptBase was originally developed as a repository for life-cycle-wide metadata man-

agement in information systems engineering (Jarke and Rose 1988). Its formal basis

was a version of the Telos metamodeling language (Mylopoulos et al. 1990) reaxiom-

atized in terms of Datalog with dynamically stratified negation (Jeusfeld 1992). This

enables all the results on query optimization, integrity checking, and incremental

view maintenance developed in the logic and object database communities to be

reused (Jarke et al. 1995).

On the other hand, Telos itself is an abstraction of the pioneering formalization of

the widely used structured methods by Greenspan (1984). These methods (and this

has not changed in their object-oriented successors, such as UML) o¤er multiple

modeling viewpoints, perspectives, or contexts (Motschnig-Pitrik 1995; Theodorakis

et al. 2002). Managing the relationships among these viewpoints has been a central

design issue in ConceptBase and its applications. The key feature Telos provides for

this purpose is an unlimited instantiation hierarchy with rules and constraints for

defining formal semantics across multiple levels (metaformulas). This hierarchy

allows the full range of data, metadata, metamodels, meta-metamodels, etc., to be

Figure 2.9
Part of the DFD metamodel in a graph tool in MetaEditþ

72 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

managed with full querying, deduction, and integrity-checking facilities within a

single repository.

The viewpoint resolution strategy shown in figure 2.10 (Nissen and Jarke 1999) fo-

cuses on the cooperative analysis of an observed or envisioned reality from multiple

interrelated viewpoints. In contrast to traditional design methods that aim at ortho-

gonality of modeling concepts, it emphasizes judicious use of viewpoint overlaps and

conflicts at all levels of instantiation for quality control and knowledge elicitation.

A shared meta-metamodel provides a small core ontology of the domain of mod-

eling similar to the language constructs used in engineering product and process

modeling standard approaches such as STEP. The di¤erence here is that our meta-

metamodel comes with a fairly rich definition of meta-metaconcept semantics

through metaformulas that constrain the relationships of objects within and across

metamodels, models, or even data; the e‰cient optimization of these metaformulas

constitutes a key advance in the ConceptBase implementation (Jeusfeld 1992).

Figure 2.10
Four-level information integration with ConceptBase

Metamodeling 73

Relationships between metamodels (i.e., between the constructs of di¤erent model-

ing formalisms used for representing heterogeneous viewpoints) were originally man-

aged indirectly in ConceptBase, by defining each modeling construct as an instance

of a specific meta-metamodel concept and then automatically specializing the associ-

ated metaformulas. In complex domains with many di¤erent modeling formalisms,

this leaves too many options for inter-viewpoint constraints. The definition of more

elaborate domain ontologies to which the viewpoint constructs can be related is a

fashionable solution.

In a specific modeling process, further specialization of the inter-viewpoint analysis

can be derived from the metaformulas. But again, this requires at least the identifica-

tion and documentation of the model objects in the di¤erent viewpoints that refer to

the same phenomena in reality. Thus, as figure 2.8 shows, the models need to be re-

lated not only through the shared meta-metamodel, but also by a shared grounding

in reality. The resulting relationships can be documented using practice-proven

matrix-based representations such as the ‘‘house of quality’’ from quality function

deployment (Hauser and Clausing 1988). The foregoing approach has proven quite

useful in applications such as business process analysis under varying theories of

what constitutes good or bad business practice (Nissen et al. 1996), cooperation pro-

cess analysis (Kethers 2002), reengineering of both large-scale database schemas and

application code (Jeusfeld and Johnen 1995), and structured tracing of large-scale

engineering processes (Ramesh and Jarke 2001).

A particularly powerful feature of the Telos language underlying ConceptBase is

that the underlying Datalog foundation has completely uniform representation of

objects, such that relationships can be involved in relationships, properties can have

properties, and all of these objects can be provided with formal semantics through

metaformulas. We illustrate these aspects with a meta-metamodel for requirements

traceability that has been abstracted from a large set of empirical studies (in Ramesh

and Jarke 2001) (see figure 2.11).

In the inner kernel of this model, dependencies among product objects are created

by trying to satisfy another product object (goal or requirement). However, such

configurations of dependency and satisfaction relationships among product objects

themselves evolve in a process that is documented in process objects. Each such pro-

cess evolution step can be justified by a documented rationale that is another object.

In short, this metamodel reflects much of what has been described in section 2.3 as

our overall metamodeling framework (except perhaps the notational aspect).

Finally, in the outer shell of the meta-metamodel, we have to consider who actu-

ally created, or commented on, all the objects and in what kind of media sources this

information has been captured, that is, what the contribution structure of the concep-

tual product and process models is. The role of human stakeholder communities and

media usage is currently gaining momentum with the increasing bandwidth of com-

74 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

munications technology and subsequent media enrichment of cooperative work and

play, as discussed in the next subsection.

2.4.5 Metamodels for Multimedia Access: MPEG-7

The development of the XML standard constitutes a major step in bringing meta-

data to the forefront of attention among information and communication systems

developers. Like Telos, XML is in its essence a self-descriptive data description lan-

guage: Each XML object contains tags that mark up the intended meaning of its

components.

In basic XML, these tags are just at the grammatical level of lexical analysis, cor-

responding to nested brackets denoting subobjects. They allow full flexibility of self-

description on the part of each object and can thus form the basis for relating almost

any kinds of data objects.

Even more than in the case of Telos, XML is thus a bottom-up integration mech-

anism in the sense of figure 2.1. Schemas are typically considered to be views im-

posed on existing structures of metadata, as a mere help for the user in formulating

meaningful queries in query languages such as XQuery. This approach is very suit-

able and flexible as long as it is humans who formulate the queries and the data

Figure 2.11
Meta-metamodel of requirements traceability

Metamodeling 75

objects retrieved have only limited variability in terms of representation and media

employed.

Recently, however, the vision of the World Wide Web has shifted toward that of a

‘‘Semantic Web’’ (Berners-Lee, Hendler, and Lassila 2001) in which Internet content

is not just visible to humans but also processible by machines. For multimedia

objects in particular, machine readability requires a rich set of standard metadata

that cannot be o¤ered by simple existing standards such as Dublin Core or RDF

(Resource Description Framework) but must basically include all kinds of metadata

aspects shown in figure 2.2.

MPEG-7 is a standard that has been in development since about 1999 by the Mov-

ing Pictures Expert Group to meet this challenge (Manjunath, Salembier, and Sikora

Figure 2.12
A simple MPEG-7/XML example

76 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

2002). In addition to the search, retrieval, and filtering of multimedia information,

the editing, combination, and reorganization of media as well as the personalization

of user access (Riecken 2001) are supported in a notational framework based on

XML. Figure 2.12 shows a cut-out of a MPEG-7 file used in the environment

described subsequently.

MPEG-7 metadata are contained in a kind of library of multimedia description

schemes, organized into groups (see figure 2.13). Basic elements include, for example,

data types (e.g., media time and duration) and schema tools for localization and text

annotation. Content management forms the kernel of the multimedia description

schemes; the figure shows that it addresses ontological and presentational (‘‘struc-

tural’’) aspects and also process aspects from our discussion in section 2.3; even

goal aspects such as legal and financial information are covered in the usage scheme.

Content description defines the structural and semantic aspects of multimedia meta-

data. The organizational groupings of content organization and navigation/access

allow the organization of multimedia material according to di¤erent collections

and views, whereas user interaction is responsible for handling personalization and

traceability.

Figure 2.13
Description schemes of the MPEG-7 metadata standard

Metamodeling 77

As an example of MPEG-7 metadata management, figure 2.14 shows the Movie

Classification and Categorization Application (MECCA), a high-level semantic an-

notation tool for multimedia artifacts (Klamma, Spaniol, and Jarke 2005). MECCA

serves as a multimedia environment for online video triage and collaborative ontol-

ogy creation, which is a discursive and multistage process. MECCA is being used in

the cinematic sciences by users having diverse educational backgrounds, like cine-

matic science, history of art, or graphical design. This community of practice brings

together users at various stages of their professional careers, such as full professors,

research assistants, and students. Members of the community have di¤erent interests

and points of view as a result of their educational backgrounds. In MECCA, users

first check already existing multimedia content. In addition, users can add content

compatible with MPEG-7. The next step is performed by gradually annotating and

classifying the data. Each user classification schema is kept in a separate MPEG-7

file. In order to retain the semantics of a multimedia file, individual annotations and

Figure 2.14
MECCA: An MPEG-7-based video triage system

78 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

classifications are made possible by allowing redundant, overlapping, or even diver-

gent views. These personal collections can be distributed and discussed among other

community members.

MECCA is based on the constructivist learning environment ‘‘Berliner sehen’’

(Fendt 2001). Scientists are stimulated to freely explore multimedia content, led by

the high-level semantics of the MPEG-7 content description, and to share their expe-

riences in collections with others via the Web. The front end of our video triage

application (see figure 2.14) is an enhancement of its predecessor, the Virtual Entre-

preneurship Lab (VEL) (Klamma et al. 2002). The buttons in the column on the

right-hand side of the figure reflect the domain ontology externalized by the scientists

in an ongoing discourse that organizes the content in the MPEG-7 model. Selecting a

combination of buttons instigates a similarity search in the underlying XML data-

base that returns the video thumbnails in the gallery shown in the left part of the

figure according to prestated user preferences. In the middle of this gallery is an

MPEG-7-compliant multimedia player/editor that serves di¤erent audio/video/

image/virtual reality content. The environment displays the underlying structure

with respect to the cardinality of categories and components in the classification

schema for media content being used. To serve di¤erent classification systems, fur-

ther presentation styles from one-dimensional buttons to trees (as well as a combina-

tion of both) can be selected adaptively. An additional full-text search engine allows

a comprehensive search on user collections or on the original content. Finally, the

lower left part of the interface allows the user to reorganize content in personalized

collections of multimedia objects and to annotate them with additional goals or

rationales.

As a result of discursive knowledge creation processes in communities of scientists

from the humanities, an interest has arisen in exploring distributed classification

processes. About a year ago, the MECCA environment was introduced to our col-

leagues in the humanities. Starting with meetings of six to eight community mem-

bers, the community of scientists initially defined a common classification schema

for multimedia content on a drawing table. Members wanted to define a common

vocabulary, but some terms o¤ered for inclusion in this common vocabulary were

criticized, since the disciplines of community members cover a wide range. Hence,

the community rejected some terms for inclusion, since their interpretation might

have been misleading. Some special terms were included in the common classification

scheme to allow specialists to classify the multimedia content in detail. These terms

do not conflict with the intuitive understanding of others, but because of the degree

of their specialization into a subsection of the cinematic sciences, these terms are

rarely used. Hence, researchers hope that a computer-mediated system could manage

conflicts of understanding more accurately.

Metamodeling 79

The use of MPEG-7 has been crucial for the development of MECCA. MPEG-7

allows users to express high-level multimedia semantics in a collaborative knowledge

creation process. In addition, heterogeneous information can be contextualized, since

MPEG-7 gives users the ability to manage content in diverse digital media formats.

2.5 Concluding Remarks

Metadata management and metamodeling has, for a long time, been considered a

rather boring bookkeeping exercise. The recent increase in interest in this field is

only partially reflected in the examples discussed in section 2.4.

This increase in interest is due first to the flexibility and variation in the methods

required for e‰cient systems engineering in a globalized competitive setting of ubiq-

uitous information technology. Second, there is a major drive for better information

integration and more rapid change. Third, the increasing media richness and ubiq-

uity of contexts for computer usage and computer-mediated communications have

contributed to the need for more rigorous metadata handling. In particular, the

Semantic Web prediction that future Internet tra‰c will be generated more by

machines talking to machines than simply by human-computer interaction will re-

quire even further progress in this area.

Acknowledgments

This work was supported in part by Deutsche Forschungsgemeinschaft in project

PRIME and in SFB 427 and 476, and by the European Community under IST proj-

ect SEWASIE.

References

Aalto, J.-M. 1993. ‘‘Experiences on Applying OMT to Large Scale Systems.’’ In Proceedings of the Semi-
nar on Conceptual Modeling and Object-Oriented Programming, ed. A. Lehtola and J. Jokiniemi, 39–47.
Helsinki: Finnish Artificial Intelligence Society.

Abiteboul, S., P. Buneman, and D. Suciu. 2000. Data on the Web—From Relations to Semistructured Data
and XML. San Francisco: Morgan Kaufmann.

Alford, M. 1992. ‘‘Strengthening the Systems/Software Engineering Interface for Real Time Systems.’’
In Proceedings of the Second International Symposium of the National Council on Systems Engineering
(NCOSE), 411–418. Sunnyvale, CA: NCOSE.

Armenise, P., S. Bandinelli, C. Ghezzi, and A. Morzenti. 1993. ‘‘A Survey and Assessment of Software
Process Representation Formalisms.’’ International Journal of Software Engineering and Knowledge Engi-
neering 3, no. 3: 410–426.

Avaro, O., and P. Salembier. 2001. ‘‘MPEG-7 Systems: Overview.’’ IEEE Transactions on Circuits and
Systems for Video Technology 11, no. 6: 760–764.

Bandinelli, S., A. Fuggetta, and C. Ghezzi. 1993. ‘‘Software Process Model Evolution in the SPADE En-
vironment.’’ IEEE Transactions on Software Engineering 19, no. 12: 1128–1144.

80 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

Basili, V. R., and H. D. Rombach. 1988. ‘‘The TAME Project: Towards Improvement-Oriented Software
Environments.’’ IEEE Transactions on Software Engineering 14, no. 6: 758–773.

Baumeister, M. 1996. ‘‘Attribute Grouping: Emulating Meta Models without Instantiation.’’ In Proceed-
ings of the Third International Conference on Object-Oriented Information Systems (OOIS’96), ed. D.
Patel, Y. Sun, and S. Patel, 169–179. London: Springer.

Bergsten, P., J. Bubenko, R. Dahl, M. Gustafsson, and L.-Å. Johansson. 1989. ‘‘RAMATIC—A CASE
Shell for Implementation of Specific CASE Tools.’’ TEMPORA Technical Report No. T6.1, Swedish In-
stitute for System Development (SISU), Stockholm.

Berners-Lee, T., J. Hendler, and O. Lassila. 2001. ‘‘The Semantic Web.’’ Scientific American (May). 284,
no. 5: 34–44.

Bernstein, P. A. 2001. ‘‘Generic Model Management—A Database Infrastructure for Schema Man-
agement.’’ In Proceedings of the Ninth International Conference on Cooperative Information Systems
(CoopIS’01) (Lecture Notes in Computer Science 2172), ed. C. Batini, F. Giunchiglia, P. Giorgini, and
M. Mecella, 1–6. New York: Springer.

Bernstein, P. A., T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, and D. Shutt. 1999. ‘‘Microsoft Reposi-
tory Version 2 and the Open Information Model.’’ Information Systems 24, no. 2: 71–98.

Bernstein, P. A., and U. Dayal. 1994. ‘‘An Overview of Repository Technology.’’ In Proceedings of the
Twentieth International Conference on Very Large Data Bases, ed. J. Bocca, M. Jarke, and C. Zanioli,
705–713. San Francisco: Morgan Kaufmann.

Boland, R., and R. Tenkasi. 1995. ‘‘Perspective Making and Perspective Taking in Communities of Know-
ing.’’ Organization Science 6, no. 4: 350–372.

Boloix, G., P. G. Sorenson, and J. P. Tremblay. 1991. ‘‘On Transformations Using a Metasystem
Approach to Software Development.’’ Technical report, Department of Computing Science, University of
Alberta, Edmonton.

Booch, G. 1994. Object-Oriented Analysis and Design with Applications. Redwood City, CA: Benjamin
Cummings.

Booch, G., J. Rumbaugh, and I. Jacobson. 1998. Unified Modeling Language User Guide. Reading, MA:
Addison-Wesley.

Bowman, C. M., P. Danzig, D. Hardy, U. Manber, and M. Schwartz. 1995. ‘‘The Harvest Information
Discovery and Access System.’’ Computer Networks and ISDN Systems 28, no. 1–2: 119–125.

Brodie, M. L. 1997. ‘‘Silver Bullet Shy on Legacy Mountain: When Neat Technology Just Doesn’t Work
or . . .Miracles to Save the Realm: Faustian Bargains or Noble Pursuits?’’ In Proceedings of the 16th Inter-
national Conference on Conceptual Modeling (ER’97) (Lecture Notes in Computer Science 1331), ed. D.
Embley and R. Goldstein, 183. New York: Springer.

Brodie, M. L., J. Mylopoulos, and J. W. Schmidt. 1984. On Conceptual Modeling. New York: Springer-
Verlag.

Calvanese, D., G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. 2001. ‘‘Data Integration in Data
Warehousing.’’ International Journal of Cooperative Information Systems 10, no. 3: 237–272.

Carlile, P. R. 2002. ‘‘A Pragmatic View of Knowledge and Boundaries: Boundary Objects in New Product
Development.’’ Organization Science 13, no. 4: 442–455.

Castro, J., M. Kolp, and J. Mylopoulos. 2002. ‘‘Towards Requirements-Driven Information Systems Engi-
neering: The Tropos Project.’’ Information Systems 27, no. 6: 365–390.

Catarci, T., and M. Lenzerini. 1993. ‘‘Interschema Knowledge in Cooperative Information Systems.’’ Pro-
ceedings of the International Conference on Intelligent and Cooperative Information Systems (CoopIS’93),
ed. G. Schlageter, M. Huhns, M. Papazoglou, 55–62. Los Alamitos, CA: IEEE Computer Society.

CDIF (CASE Data Interchange Format). 1994. ‘‘Framework for Modeling and Extensibility.’’ Technical
report EIA/IS-107, Electronic Industries Association, Arlington, VA.

Checkland, P. B. 1981. Systems Thinking, Systems Practice. Chichester, England: Wiley.

Chen, M., and R. J. Norman. 1992. ‘‘A Framework for Integrated CASE.’’ IEEE Software 9, no. 2: 18–
22.

Metamodeling 81

Chiba, S., and T. Masuda. 1993. ‘‘Designing an Extensible Distributed Language with a Meta-level
Architecture.’’ In Proceedings of the Seventh European Conference on Object-Oriented Programming
(ECOOP’93) (Lecture Notes in Computer Science 707), ed. O. Nierstrasz, 483–502. Berlin: Springer.

Coleman, D., P. Arnold, S. Bodo¤, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes. 1994. Object-
Oriented Development—The Fusion Method. Englewood Cli¤s, NJ: Prentice Hall.

Constantopoulos, P., M. Jarke, J. Mylopoulos, and Y. Vassiliou. 1995. ‘‘The Software Information Base:
A Server for Reuse.’’ VLDB Journal 5, no. 1: 1–42.

Curtis, B., M. I. Kellner, and J. Over. 1992. ‘‘Process Modeling.’’ Communications of the ACM 35, no. 9:
75–90.

Cybulski, J. L., and K. Reed. 1992. ‘‘A Hypertext Based Software Engineering Environment.’’ IEEE Soft-
ware 9, no. 2: 62–68.

Dardenne, A., A. van Lamsweerde, and S. Fickas. 1993. ‘‘Goal-directed Requirements Acquisition.’’
Science of Computer Programming 20: 3–50.

Davis, G.-B. 1982. ‘‘Strategies for Information Requirements Determination.’’ IBM Systems Journal 21,
no. 1: 4–30.

Davis, R., and D. Lenat. 1982. Knowledge-Based Systems in Artificial Intelligence. New York: McGraw-
Hill.

Deutsch, P., and A. Emtage. 1994. ‘‘Publishing Information on the Internet via Anonymous FTP.’’ Avail-
able at hhttp://www.ifla.org/documents/libraries/cataloging/metadata/iafa.txti.

Farquhar, A., Fikes, R., and Rice, J. 1997. ‘‘The Ontolingua Server: A Tool for Collaborative Ontology
Construction.’’ International Journal of Human-Computer Studies 46, no. 6: 707–727.

Fendt, K. 2001. ‘‘Contextualizing Content.’’ In Languages across the Curriculum, ed. M. Knecht and K.
von Hammerstein, 201–223. Columbus, OH: National East Asian Language Center.

Finkelstein, A., J. Kramer, and B. Nuseibeh. 1994. Software Process Modelling Technology. New York:
Wiley Research Science.

Fitzgerald, B. 1995. ‘‘The Use of Systems Development Methods: A Survey.’’ Economic and Social Re-
search Council research and discussion paper, University College, Cork, Ireland.

Fuxman, A., M. Pistore, J. Mylopoulos, and P. Traverso. 2001. ‘‘Model-Checking Early Requirements in
Tropos.’’ In Proceedings of the Fifth IEEE Symposium on Requirements Engineering (RE’01), 174–181.
Los Alamitos, CA: IEEE Computer Society.

Gaines, B. R., D. H. Norrie, A. Z. Lapsley, and M. L. G. Shaw. 1996. ‘‘Knowledge Management for Dis-
tributed Enterprises.’’ In Proceedings of the Tenth Knowledge Acquisition Workshop, ed. B. Gaines and M.
Musen. Available at hhttp://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.htmli.

Gans, G., M. Jarke, S. Kethers, G. Lakemeyer, L. Ellrich, C. Funken, and M. Meister. 2001. ‘‘Require-
ments Modeling for Organization Networks: A (Dis)Trust-Based Approach.’’ In Proceedings of the Fifth
IEEE Symposium on Requirements Engineering (RE’01), 154–163. Los Alamitos, CA: IEEE Computer
Society.

Ghezzi, C., and B. Nuseibeh, eds. 1998/1999. ‘‘Managing Inconsistency in Software Development.’’
Special section, IEEE Transactions on Software Engineering 24, no. 11: 906–1001 and 25, no. 6: 782–
869.

Goble, C. A., R. Stevens, G. Ng, S. Bechhofer, N. W. Paton, P. G. Baker, M. Peim, and A. Brass. 2001.
‘‘Transparent Access to Multiple Bioinformatics Information Sources.’’ IBM Systems Journal 40, no. 2:
532–551.

Goh, C. H., S. Bressane, S. E. Madnick, and M. D. Siegel. 1999. ‘‘Context Interchange: New Features and
Formalisms for the Intelligent Integration of Information.’’ ACM Transactions on Information Systems 17,
no. 3: 270–293.

Gomez-Peres, A., and O. Corcho. 2002. ‘‘Ontology Languages for the Semantic Web.’’ IEEE Intelligent
Systems 17, no. 1: 54–60.

Greenspan, S. 1984. ‘‘Requirements Modeling: A Knowledge Representation Approach to Requirements
Definition.’’ Ph.D. diss., Department of Computer Science, University of Toronto, Toronto.

82 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

hhttp://www.ifla.org/documents/libraries/cataloging/metadata/iafa.txti
hhttp://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.htmli

Gross, T., and M. Specht. 2001. ‘‘Awareness in Context-Aware Information Systems.’’ In Proceedings of
Mensch & Computer 01, ed. H. Oberquelle, R. Oppermann, and J. Krause, 173–182. Stuttgart: Teubner.

Gruber, T. R. 1993. ‘‘A Translation Approach to Portable Ontology Specifications.’’ Knowledge Acquisi-
tion 5, no. 2: 199–220.

Guarini, N., and C. Welty. 2002. ‘‘Conceptual Modeling and Ontological Analysis.’’ Keynote talk pre-
sented at the Fourteenth Conference on Advanced Information System Engineering (CAiSE’02). Toronto.
Available at hhttp://www.cs.toronto.edu/caise02/i.

Harmsen, F., S. Brinkkemper, and H. Oei. 1994. ‘‘Situational Method Engineering for Information System
Projects.’’ In Proceedings of the Internationl Federation for Information Processing Working Group 8.1
Working Conference on Comparative Review of Information Systems Design Methodologies (CRIS’94),
ed. T. W. Olle and A. A. Verrijn-Stuart, 169–194. Amsterdam: North-Holland.

Harmsen, F., I. Lubbers, and G. Wijers. 1995. ‘‘Success-Driven Selection of Fragments for Situational
Methods: The S3 Model.’’ In Proceedings of the Second International Workshop on Requirements Engineer-
ing: Foundations of Software Quality, ed. K. Pohl and P. Peters, 104–115. Aachen, Germany: Augustinus.

Harmsen, F., and M. Saeki. 1996. ‘‘Comparison of Four Method Engineering Languages.’’ In Method
Engineering: Principles of Method Construction and Tool Support, ed. S. Brinkkemper, K. Lyytinen, and
R. J. Welke, 209–231. New York: Springer.

Hauser, J. R., and D. Clausing. 1988. ‘‘The House of Quality.’’ Harvard Business Review 66, no. 5: 63–73.

Heineman, G. T., J. E. Botsford, G. Caldiera, G. E. Kaiser, M. I. Kellner, and N. H. Madhavji. 1994.
‘‘Emerging Technologies That Support a Software Process Life Cycle.’’ IBM Systems Journal 33, no. 3:
501–529.

Hernandez, J. 1997. The SAP R/3 Handbook. New York: McGraw-Hill.

Hill, P. M., and J. W. Lloyd. 1989. ‘‘Analysis of Metaprograms.’’ In Metaprogramming in Logic Program-
ming, ed. H. D. Abramson and M. H. Rogers, 23–52. Cambridge, MA: MIT Press.

Hirschheim, R., H. Klein, and K. Lyytinen. 1995. Information Systems Development—Conceptual and
Philosophical Foundations. New York: Cambridge University Press.

Hong, S., S. Brinkkemper, and F. Harmsen. 1995. ‘‘Object-Oriented Method Components for Situation-
Specific IS Development.’’ In Proceedings of the Fifth Annual Workshop on Information Technologies and
Systems, ed. S. Ram and M. Jarke, 164–173. Aachener Informatik Berichte technical report 1995-15,
RWTH Aachen, Aachen, Germany.

Horrocks, I. 2002. ‘‘DAMLþOIL—A Reasonable Web Ontology Language.’’ In Proceedings of the
Eighth International Conference on Extending Data Base Technology (EDBT) (Lecture Notes in Computer
Science 2287), ed. C. S. Jensen, K. G. Je¤ery, J. Pokorny, S. Saltenis, E. Bertino, K. Böhm, and M. Jarke,
2–14. New York: Springer.

Huhns, M. N., N. Jacobs, T. Ksiezyk, W.-M. Shen, M. P. Singh, and P. E. Cannata. 1993. ‘‘Integrating
Enterprise Information Models in Carnot.’’ In Proceedings of the First International Conference on Intelli-
gent and Cooperative Information Systems, 32–42. Los Alamitos, CA: IEEE Computer Society.

Iivari, J., and P. Kerola. 1983. ‘‘A Sociocybernetic Framework for the Feature Analysis of Information
Systems Development Methodologies.’’ In Information Systems Development Methodologies: A Feature
Analysis, ed. T. W. Olle, H. G. Sol, and C. J. Tully, 87–139. Amsterdam: North-Holland.

ISDOS (Information System Design and Optimization System). 1981. ‘‘An Introduction to the System En-
cyclopedia Manager.’’ Reference no. 81, SEM-0338-1, ISDOS Project, Department of Industrial and
Operations Engineering, University of Michigan, Ann Arbor.

ISO (International Organization for Standardization)/IEC (International Electrotechnical Commission).
1990. ‘‘Information Technology—Information Resource Dictionary System (IRDS)—Framework.’’ ISO/
IEC International Standard 10027. Geneva: ISO.

Jaccheri, M. L., and R. Conradi. 1993. ‘‘Techniques for Process Model Evolution in EPOS.’’ IEEE Trans-
actions on Software Engineering 19, no. 12: 1145–1156.

Jarke, M. 1992. ‘‘Strategies for Integrating CASE Environments.’’ IEEE Software 9, no. 2: 54–61.

Jarke, M., ed. 1993. Database Application Engineering with DAIDA. Heidelberg, Germany: Springer-
Verlag.

Metamodeling 83

hhttp://www.cs.toronto.edu/caise02/i

Jarke, M., R. Gallersdörfer, M. A. Jeusfeld, M. Staudt, and S. Eherer. 1995. ‘‘ConceptBase: A Deductive
Object Base for Meta Data Management.’’ Journal of Intelligent Information Systems 4, no. 2: 167–192.

Jarke, M., M. A. Jeusfeld, C. Quix, and P. Vassiliadis. 1999. ‘‘Architecture and Quality in Data Ware-
houses—An Extended Repository Approach.’’ Information Systems 24, no. 3: 229–253.

Jarke, M., K. Pohl, C. Rolland, and J.-R. Schmitt. 1994. ‘‘Experience-Based Method Evaluation and Im-
provement: A Process Modeling Approach.’’ In Proceedings of the International Federation for Information
Processing Working Group 8.1 Working Conference on Comparative Review of Information Systems Design
Methodologies (CRIS’94), ed. T. W. Olle and A. A. Verrijn-Stuart, 1–27. Amsterdam: North-Holland.

Jarke, M., K. Pohl, K. Weidenhaupt, K. Lyytinen, P. Marttiin, J.-P. Tolvanen, and M. Papazoglou. 1998.
‘‘Meta Modeling: A Formal Basis for Interoperability and Adaptability.’’ In Information Systems Inter-
operability, ed. B. Krämer, M. Papazoglou, and H.-W. Schmidt, 229–263. New York: Wiley Research
Science.

Jarke, M., and T. Rose. 1988. ‘‘Managing the Evolution of Information Systems.’’ In Proceedings of the
ACM International Conference on Management of Data (ACM SIGMOD’88), ed. H. Boral and P.-A. Lar-
son, 303–311. New York: ACM Press.

Jeusfeld, M. A. 1992. Change Control in Deductive Object Bases [in German]. St. Augustin, Germany:
Infix.

Jeusfeld, M. A., and U. Johnen. 1995. ‘‘An Executable Meta Model for Re-engineering Database Sche-
mas.’’ International Journal of Cooperative Information Systems 4, nos. 2–3: 237–258.

Jeusfeld, M. A., and M. Papazoglou. 1999. ‘‘Information Brokering.’’ In Information Systems Interoper-
ability, ed. B. Krämer, M. Papazoglou, and H.-W. Schmidt, 265–302. New York: Wiley Research Science.

Johnson, R., and M. Palaniappan. 1993. ‘‘MetaFlex: A Flexible Metaclass Generator.’’ In Proceedings of
the Seventh European Conference on Object-Oriented Programming (ECOOP’93) (Lecture Notes in Com-
puter Science 707), ed. O. Nierstrasz, 503–528. Berlin: Springer-Verlag.

Kelly, S. 1998. ‘‘Towards a Comprehensive MetaCASE and CAME Environment: Conceptual, Architec-
tural, Functional and Usability Advances in MetaEditþ.’’ Ph.D. diss., Department of Computer Science
and Information Systems, University of Jyväskylä.

Kelly, S., K. Lyytinen, and M. Rossi. 1996. ‘‘METAEDITþ—A Fully Configurable Multi-user and
Multi-tool CASE and CAME Environment.’’ In Advanced Information Systems Engineering (Lecture
Notes in Computer Science 1080), ed. P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou, 1–21. New
York: Springer-Verlag.

Kethers, S. 2002. ‘‘Capturing, Formalising, and Analysing Cooperation Processes—A Case Study.’’ In
Proceedings of the Tenth European Conference on Information Systems (ECIS 2002), 1113–1123. Avail-
able at hhttp://csrc.lse.ac.uk/asp/aspecis/20020138.pdfi.

Kiczales, G., J. des Rivieres, and D. Bobrow. 1991. The Art of the Metaobject Protocol. Cambridge, MA:
MIT Press.

Klamma, R., E. Hollender, M. Jarke, P. Moog, and V. Wulf. 2002. ‘‘Vigils in a Wilderness of Knowledge:
Metadata in Learning Environments.’’ In Proceedings of the IEEE International Conference on Advanced
Learning Technologies (ICALT 2002), ed. P. Kommers, V. Petrushin, Kinshuk, and I. Galeev, 519–524.
Palmerston, NZ: IEEE Learning Task Force.

Klamma, R., M. Spaniol, and M. Jarke. 2005. ‘‘MECCA: Multimedia Capturing of Collaborative Scien-
tific Discourses about Movies.’’ Informing Science 8: 3–38. Available at hhttp://inform.nu/Articles/Vol8/
indexV8summary.htmi.

Klas, W., and M. Schrefl. 1995. Metaclasses and Their Applications. Berlin: Springer-Verlag.

Kleene, S. 1967. Mathematical Logic. New York: Wiley.

Koskinen, M. 2000. ‘‘Process Metamodeling: Conceptual Foundations and Application.’’ Ph.D. diss. and
Jyväskylä Studies in Computing no. 7, Department of Computing Science and Information Systems, Uni-
versity of Jyväskylä, Jyväskylä, Finland.

Kotteman, J., and B. Konsynski. 1984. ‘‘Information Systems Planning and Development: Strategic Pos-
tures and Methodologies.’’ Journal of Management Information Systems 1, no. 2: 45–63.

84 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

hhttp://csrc.lse.ac.uk/asp/aspecis/20020138.pdfi
hhttp://inform.nu/Articles/Vol8/

Koubarakis, M., and D. Plexousakis. 2002. ‘‘A Formal Framework for Business Process Modeling and
Design.’’ Information Systems 27, no. 5: 299–320.

Kowalski, R. A. 1979. ‘‘Algorithm ¼ Logicþ Control.’’ Communications of the ACM 22, no. 7: 424–436.

Kremer, R. 1996. ‘‘Toward a Multi-user, Programmable Web Concept Mapping Shell to Handle Multiple
Formalisms.’’ In Proceedings of the Tenth Knowledge Acquisition Workshop, ed. B. Gaines and M. Musen.
Available at hhttp://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.htmli.

Kumar, K., and R. J. Welke. 1992. ‘‘Methodology Engineering: A Proposal for Situation-Specific Meth-
odology Engineering.’’ In Challenges and Strategies for Research in Systems Development, ed. W. W. Cot-
terman and J. A. Senn, 257–269. New York: Wiley.

Lagoze, C. 1996. ‘‘The Warwick Framework.’’ D-Lib Magazine (July/August).

Lefering, M. 1993. ‘‘An Incremental Integration Tool between Requirements Engineering and Program-
ming in the Large.’’ In Proceedings of the First International Symposium on Requirements Engineering,
82–89. Los Alamitos, CA: IEEE Computer Society.

Lehman, M., and W. Turski. 1987. ‘‘Essential Properties of IPSEs.’’ ACM SIGSOFT Software Engineering
Notes 12, no. 1: 52–56.

Lonchamp, J. 1993. ‘‘A Structured Conceptual and Terminological Framework for Software Process Engi-
neering.’’ In Proceedings of the Second International Conference on Software Process, 41–53. Los Alamitos,
CA: IEEE Computer Society.

Lonchamp, J. 1995. ‘‘CPCE: A Kernel for Building Flexible Collaborative Process-Centered Environ-
ments.’’ In Proceedings of the Seventh Conference on Software Engineering Environments, 95–105. Los Ala-
mitos, CA: IEEE Computer Society.

Lott, C. M. 1993. ‘‘Process and Measurement Support in SEEs.’’ ACM SIGSOFT Software Engineering
Notes 18, no. 4: 83–93.

Manjunath, B. S., P. Salembier, and T. Sikora, eds. 2002. Introduction to MPEG-7. Chichester, England:
Wiley.

Marquardt, W. 1996. ‘‘Trends in Computer-Aided Process Modeling.’’ Computers in Chemical Engineering
20, nos. 6–7: 591–609.

Marttiin, P., F. Harmsen, and M. Rossi. 1996. ‘‘A Functional Framework for Evaluating Method Engi-
neering Environments: The Case of Maestro II/Decamerone and MetaEditþ.’’ In IFIP Working Confer-
ence on Principles of Method Construction and Tool Support, ed. S. Brinkkemper, K. Lyytinen, and R. J.
Welke, 63–86. London: Chapman and Hall.

Marttiin, P., M. Rossi, V.-P. Tahvanainen, and K. Lyytinen. 1993. ‘‘A Comparative Review of CASE
Shells: A Preliminary Framework and Research Outcomes.’’ Information and Management 25, no. 1: 11–
31.

McChesney, I. R. 1995. ‘‘Toward a Classification Scheme for Software Process Modeling Approaches.’’
Information and Software Technology 37, no. 7: 363–374.

Merbeth, G. 1991. ‘‘Maestro II—das integrierte CASE-System von Softlab.’’ In CASE Systeme und Werk-
zeuge, ed. H. Balzert, 319–336. Mannheim, Germany: BI Wissenschaftsverlag.

Mercurio, V. J., B. F. Meyers, A. M. Nisbet, and G. Radin. 1990. ‘‘AD/Cycle Strategy and Architecture.’’
IBM Systems Journal 29, no. 2: 170–188.

Metadata Coalition. 1999. Open Information Model Version 1.0. Available at hwww.mdcinfo.com/OIM/
OIM10.htmli.

Motschnig-Pitrik, R. 1995. ‘‘An Integrating View on the Viewing Abstraction—Contexts and Perspectives
in Software Development.’’ Journal of Systems Integration 5, no. 1: 23–60.

Motschnig-Pitrik, R., and J. Mylopoulos. 1992. ‘‘Classes and Instances.’’ International Journal of Cooper-
ative Information Systems 1, no. 1: 61–92.

Mylopoulos, J., A. Borgida, M. Jarke, and M. Koubarakis. 1990. ‘‘Telos: Representing Knowledge about
Information Systems.’’ ACM Transactions on Information Systems 8, no. 4: 325–362.

National Library of Medicine. 1994. Unified Medical Language Systems. 5th ed. Washington, DC: U.S.
Department of Health and Human Services.

Metamodeling 85

hhttp://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.htmli

NATURE Team. 1996. ‘‘Defining Visions in Context: Models, Processes, and Tools for Requirements
Engineering.’’ Information Systems 21, no. 6: 515–547.

Necco, C. R., C. L. Gordon, and N. W. Tsai. 1987. ‘‘Systems Analysis and Design: Current Practices.’’
MIS Quarterly 11, no. 4: 461–475.

Neches, R., R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. R. Swartout. 1991. ‘‘Enabling
Technology for Knowledge Sharing.’’ AI Magazine 12, no. 3: 36–55.

Nissen, H. W., and M. Jarke. 1999. ‘‘Repository Support for Multi-perspective Requirements Engineer-
ing.’’ Information Systems 24, no. 2: 131–158.

Nissen, H. W., M. A. Jeusfeld, M. Jarke, G. Zemanek, and H. Huber. 1996. ‘‘Managing Multiple
Requirements Perspectives with Meta Models.’’ IEEE Software 13, no. 2: 37–48.

Oberweis, A., G. Scherrer, and W. Stucky. 1994. ‘‘INCOME/STAR—Methodology and Tools for the De-
velopment of Distributed Information Systems.’’ Information Systems 19, no. 8: 643–660.

Oei, J. L. H., and E. D. Falkenberg. 1994. ‘‘Harmonisation of Information System Modelling and Specifi-
cation Techniques.’’ In Proceedings of the International Federation for Information Processing Working
Group 8.1 Working Conference on Comparative Review of Information Systems Design Methodologies
(CRIS’94), ed. T. W. Olle and A. A. Verrijn–Stuart, 151–168. Amsterdam: North-Holland.

Olle, T. W., J. Hagelstein, I. G. MacDonald, C. Rolland, H. G. Sol, F. J. M. Van Assche, and A. A.
Verrijn-Stuart. 1991. Information Systems Methodologies—A Framework for Understanding. Wokingham,
England: Addison-Wesley.

Oquendo, F. 1995. ‘‘SCALE: Process Modelling Formalism and Environment Framework for Goal-
Directed Cooperative Processes.’’ In Proceedings of the IEEE International Symposium on Software Engi-
neering Environments, 106–124. Los Alamitos, CA: IEEE Computer Society.

Pohl, K. 1996. Process-Centered Requirements Engineering. New York: Wiley Research Science.

Pohl, K., K. Weidenhaupt, R. Dömges, P. Haumer, R. Klamma, and M. Jarke. 1999. ‘‘Process-Integrated
Modelling Environment (PRIME): Foundations and Implementation Framework.’’ ACM Transactions on
Software Engineering and Management 8, no. 4: 343–410.

Pratt, M. 2001. ‘‘Introduction to ISO 10303—The STEP Standard for Product Data Exchange.’’ Journal
of Computing and Information Science in Engineering 1, no. 1: 102–103.

Prinz, W. 1999. ‘‘NESSIE: An Awareness Environment for Cooperative Settings.’’ In Proceedings of the
Sixth European Conference on Computer Supported Cooperative Work (ECSCW’99), ed. S. Bødker, M.
Kyng, and K. Schmidt. 391–410. Dordrecht, Netherlands: Kluwer.

Ramesh, B., and V. Dhar. 1992. ‘‘Supporting Systems Development by Capturing Deliberations During
Requirements Engineering.’’ IEEE Transactions on Software Engineering 18, no. 6: 498–510.

Ramesh, B., and M. Jarke. 2001. ‘‘Towards Reference Models for Requirements Traceability.’’ IEEE
Transactions on Software Engineering 27, no. 1: 58–93.

Riecken, D., ed. 2000. ‘‘Personalization.’’ Special issue, Communications of the ACM 43, no. 8.

Rolland, C. 1998. ‘‘A Comprehensive View of Process Engineering.’’ In Proceedings of the Tenth Confer-
ence on Advanced Information Systems Engineering (CAiSE’98) (Lecture Notes in Computer Science
1413), ed. B. Pernici and C. Thanos, 1–24. Berlin: Springer.

Rosemann, M., and P. Green. 2002. ‘‘Developing a Meta Model for the Bunge-Wand-Weber Ontological
Constructs.’’ Information Systems 27, no. 2: 75–92.

Rossi, M. 1998. ‘‘Advanced Computer Support for Method Engineering—Implementation of CAME En-
vironment in MetaEditþ.’’ Ph.D. diss., Department of Computer Science and Information Systems, Uni-
versity of Jyväskylä.

Rossi, M., B. Ramesh, K. Lyytinen, and J.-P. Tolvanen. 2004. ‘‘Method Rationale in Method Engineer-
ing.’’ Journal of the Association for Information Systems 5, no. 9: 356–391.

Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The Unified Modeling Language Reference Manual.
Reading, MA: Addison-Wesley.

Russo, N., J. Wynekoop, and D. Waltz. 1995. ‘‘The Use and Adaptation of System Development Method-
ologies.’’ In Proceedings of the Sixth International Information Resources Management Association Interna-
tional Conference (IRMA’95), ed. M. Khosrowpour, 162. Hershey, PA: Idea Group.

86 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

Scheer, A.-W. 1994. ‘‘ARIS Toolset: A Software Product Is Born.’’ Information Systems 19, no. 8: 607–
624.

Scheer, A.-W. 1998. ARIS—Modellierungsmethoden, Metamodelle, Anwendungen. 3rd ed. Berlin: Springer.

Smolander, K. 1992. ‘‘OPRR—A Model for Methodology Modeling.’’ In Next Generation of CASE Tools
(Studies in Computer and Communication Systems), ed. K. Lyytinen and V.-P. Tahvanainen, 224–239.
Amsterdam: IOS Press.

Smolander, K., K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin. 1991. ‘‘MetaEdit—A Flexible Graph-
ical Environment for Methodology Modelling.’’ In Advanced Information Systems Engineering (Lecture
Notes in Computer Science 498), ed. R. Andersen, J. Bubenko, and A. Sølvberg, 168–193. Berlin:
Springer.

Sommerville, I., G. Kotonya, S. Viller, and P. Sawyer. 1995. ‘‘Process Viewpoints.’’ In Software Process
Technology (Lecture Notes in Computer Science 913), ed. W. Schäfer, 2–8. London: Springer-Verlag.

Sorenson, P. G., J.-P. Tremblay, and A. J. McAllister. 1988. ‘‘The Metaview System for Many Specifica-
tion Environments.’’ IEEE Software 30(March): 30–38.

Staab, S., H.-P. Schnurr, R. Studer, and Y. Sure. 2001. ‘‘Knowledge Processes and Ontologies.’’ IEEE In-
telligent Systems 16, no. 1: 26–34.

Sullivan, C. H. 1985. ‘‘Systems Planning in the Information Age.’’ Sloan Business Review 26, no. 2: 3–11.

Teichroew, D., and E. A. Hershey III. 1977. ‘‘PSL/PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems.’’ IEEE Transactions on Software Engi-
neering 27, no. 3: 41–48.

ter Hofstede, A. H. M., and T. P. van der Weide. 1993. ‘‘Expressiveness in Data Modeling.’’ Data &
Knowledge Engineering 10: 65–100.

Theodorakis, M., A. Analyti, P. Constantopoulos, and N. Spyrator. 2002. ‘‘A Theory of Contexts in In-
formation Bases.’’ Information Systems 27, no. 3: 151–192.

Tolvanen, J.-P. 1998. ‘‘Incremental Method Engineering with Modeling Tools: Theoretical Principles and
Empirical Evidence.’’ Ph.D. diss., Department of Computer Science and Information Systems, University
of Jyväskylä, and Jyväskylä Studies in Computer Science, Statistics and Economics.

Tolvanen, J.-P., and K. Lyytinen. 1993. ‘‘Flexible Method Adaptation in CASE—The Meta Modeling
Approach.’’ Scandinavian Journal of Information Systems 5, no. 1: 51–77.

Vlasblom, G., D. Rijsenbrij, and M. Glastra. 1995. ‘‘Flexibilization of the Methodology of System Devel-
opment.’’ Information and Software Technology 37, no. 11: 595–607.

Wand, Y. 1996. ‘‘Ontology as a Foundation for Meta-Modelling and Method Engineering.’’ Information
and Software Technology 38: 281–287.

Wand, Y., and R. Weber. 1989. ‘‘A Model of Systems Decomposition.’’ In Proceedings of the Tenth Inter-
national Conference on Information Systems, ed. J. I. DeGross, J. C. Henderson, and B. R. Konsynski, 41–
51. New York: ACM Press.

Wand, Y. and R. Weber. 1993. ‘‘On the Ontological Expressiveness of Information Systems Analysis and
Design Grammars.’’ Information Systems Journal 3, no. 4: 217–237.

Wand, Y. and R. Weber. 1995. ‘‘On the Deep Structure of Information Systems.’’ Information Systems
Journal 5, no. 3: 203–223.

Westerberg, A. W. 1996. ‘‘Distributed and Collaborative Computer-Aided Environments in Process-
Engineering Design.’’ In Proceedings of the International Conference on Intelligent Systems in Process
Engineering (American Institute of Chemical Engineers Symposium 92, no. 312), ed. J. Davis, G. Stepha-
nopoulos, V. Venkatasubramanian, and B. Carnahan, 184–194. New York: American Institute of Chemi-
cal Engineers.

Weyhrauch, R. W. 1980. ‘‘Prolegomena to a Theory of Mechanized Formal Reasoning.’’ Artificial Intelli-
gence 13, no. 1: 133–170.

Wiederhold, G., and M. Genesereth. 1995. ‘‘The Basis for Mediation.’’ In Proceedings of the Third Inter-
national Conference on Cooperative Information Systems (CoopIS’95), ed. S. Laufmann, S. Spaccapietra,
and T. Yokoi, 140–155.

Metamodeling 87

Winograd, T., and F. Flores. 1986. Understanding Computers and Cognition. Norwood, NJ: Ablex.

Yu, E. S. K. 1995. ‘‘Models for Supporting the Redesign of Organizational Work.’’ In Proceedings of
the Conference on Organizational Computing Systems (COCS’95), ed. N. Comstock, C. Ellis, R. Kling, J.
Mylopoulos, and S. Kaplan, 226–236. New York: ACM Press.

Yu, E. S. K., and J. Mylopoulos. 1994. ‘‘Understanding Why in Software Process Modeling, Analysis, and
Design.’’ In Proceedings of the Sixteenth International Conference on Software Engineering, Sorrento, Italy,
159–168.

Zelkowitz, M., ed. 1993. Reference Model for Frameworks of Software Engineering Environments. Special
publication no. 500–211, National Institute of Standards and Technology, Gaithersberg, MD, and Tech-
nical report no. TR/55, Ecma International, Geneva.

Zhang, A., and K. Lyytinen. 2001. ‘‘A Framework for Component Reuse in a Metamodelling Based Soft-
ware Development.’’ Requirements Engineering Journal 6, no. 2: 116–131.

88 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen

3 Metamodeling and Method Engineering with ConceptBase

Manfred A. Jeusfeld

This chapter provides a practical guide on how to use the metadata repository Con-

ceptBase to design information modeling methods by using metamodeling. After

motivating the abstraction principles behind metamodeling, the language Telos as

realized in ConceptBase is presented. First, a standard factual representation of state-

ments at any IRDS abstraction level is defined. Next, the foundation of Telos as a

logical theory is elaborated yielding simple fixpoint semantics. The principles for ob-

ject naming, instantiation, attribution, and specialization are reflected by thirty-one

logical axioms. After the presentation of the language axiomatization, user-defined

rules, constraints and queries are introduced. The presentation of the language con-

cludes with a description of active rules that allow the specification of reactions of

ConceptBase to external events. The remainder of the chapter applies the language

features described earlier in the chapter to a full-fledged information-modeling

method: The Yourdan method for Modern Structured Analysis. The notations of

the Yourdan method are designed according to the IRDS framework. Intra-

notational and internotational constraints are mapped to queries. The development

life cycle is encoded as a software process model closely related to the modeling nota-

tions. Finally, aspects managing the modeling activities are addressed by metric

definitions.

3.1 Introduction

The engineering of a modeling method is per se a software development e¤ort. The

result is software implementing a consistent set of modeling tools that are used to

represent information about some artifacts. Modeling tools obey some underlying

principles that make a dedicated environment for method engineering useful. The

strongest underlying principle is the common artifact focus: The result of applying a

method is a set of models all of which make statements about the same set of arti-

facts. Consequently, the models are interrelated. A statement in one model has impli-

cations for other statements in the same or other models about the common set of

slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/2616290

artifacts. The artifact focus of method application regards single models as view-

points on the artifact. A model does not contain all information about the artifact,

only the information that is relevant for a particular viewpoint.

A second underlying principle is modeling life cycle. Any model has a purpose.

The content of the model is the result of some modeling step and prerequisite for

some other modeling, development, or analysis step. The model content must be rep-

resented in a way that is useful for the purpose.

This chapter presents a logical approach to method engineering. It uses a simple

yet powerful logic to cover a number of aspects of method engineering. First, the set

of allowed symbols and the allowed combination of these symbols is represented

in the so-called notation level. Second, the semantics of modeling notations is inves-

tigated by incorporating a model and data level. Third, a method is defined as a

combination of several notations interrelated by internotational constraints. Fourth,

method application is represented by process models that prescribe or describe the

modeling steps of human experts. Finally, the issue of model quality is discussed.

The construction of new methods is facilitated by a multiple-perspective approach

in which a high-level metamodel (the notation definition level) encodes which model-

ing viewpoints will be supported and which interrelationships among viewpoints re-

quire method support. The chapter uses the ConceptBase metadatabase system as

method engineering tool. ConceptBase implements the logic underlying our ap-

proach and provides the necessary functions for notation definition. Furthermore, it

can be used as a prototyping environment for method application. The examples in

this chapter are tested with ConceptBase and are also available on the companion

CD-ROM to the volume.

The chapter is organized as follows. First, the metamodeling approach is intro-

duced, defining the four abstraction levels mentioned previously in a propositional

logic. Then, the propositional statements are aggregated into framelike objects using

the Telos language. After a short primer on deductive databases, we discuss pre-

defined propositions for classification, specialization, and attribution and define their

semantics through first-order logic axioms. Then, user-defined deductive rules and in-

tegrity constraints are introduced into the language framework. The description of

the framework is completed with presentations of the Telos query language and of

active rules. The remainder of the chapter presents a case study on engineering the

Yourdan system-modeling method. It starts with engineering the entity-relationship

diagramming technique in Telos using the four abstraction levels. The same principle

is applied to the second major Yourdan technique, data flow diagrams. We discuss

how interrelationships among notations can be represented as constraints in a query

language. Some of the interrelationships among notations can be derived from com-

mon patterns of instantiation. After the definition of two notations are discussed, a

software process layer is introduced that treats models as products and their creation

90 Manfred A. Jeusfeld

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4634556

as development steps. The software process model itself is created from the same ab-

straction principles as the Yourdan notations.

3.2 Modeling Is Knowledge Representation

ConceptBase has been developed within an academic context but has been applied

in both research and industrial projects. Originally, it was designed as a repository

system aiding the development of data-intensive software. The modeling notations

covered the whole range from requirements analysis to implementation. Hence, the

repository had to be able to manage quite heterogeneous modeling languages and

their interrelationships. It was decided to use the features of the Telos (Mylopoulos

et al. 1990) knowledge representation language, which has its roots in requirements

analysis (Greenspan 1984). As a knowledge representation language, Telos does not

have a rich set of predefined features. All information in Telos has the basic format:

statement number: subject is-related-to object

A Telos statement relates two things: ‘‘subject’’ and ‘‘object.’’ The statement itself is

identified by a statement number and can occur as subject or object in other state-

ments. The simplicity of this representation is the key to its extensibility. Since the

statement is identified (or reified), one can express statements about the statement it-

self. Indeed, the tokens ‘‘subject’’ and ‘‘object’’ stand for other statements defining

them. The statement structure in Telos is so universal that it can represent objects,

classes, metaclasses, attributes, specializations, classifications, queries, rules, and

constraints.

When statements are used for modeling and metamodeling, they are assigned to

IRDS levels (see section 3.12) that express their concreteness or abstractness. The fol-

lowing motivating example illustrates the abstraction levels:

statement 1: Bill earns 10000 dollars. (Token level)

statement 2: Employees earn salaries. (Class level)

statement 3: Entities can have attributes taken from a domain. (Metaclass level)

statement 4: Nodes are connected to nodes. (Meta-metaclass level)

Statements become more abstract from one level to the next. More specifically,

each statement can be regarded as an example (¼ instance) of the subsequent one.

This principle is called class abstraction. From the viewpoint of the more abstract

statement, it is called instantiation. Rather than defining what a class is, we define

the instance-to-class statement. This view allows objects to be treated completely uni-

formly independent of their abstraction level:

Metamodeling and Method Engineering with ConceptBase 91

statement 5: Bill is an instance of Employee. (Token to class)

statement 6: 10000 dollars is an instance of salary. (Token to class)

statement 7: The concept Employee is an instance of the concept entity. (Class to

metaclass)

statement 9: An entity is an instance of the concept node. (Metaclass to meta-

metaclass)

Metamodeling as well as modeling is seen as expressing statements about an arti-

fact. The artifact of metamodeling is a modeling environment: The metamodel ex-

presses what provisions the modeling environment will have. Hence, metamodeling

is just like any conceptual modeling of information systems. The only thing special

about it is that the artifact of metamodeling is modeling. In other words, a flexible

modeling environment should also be able to model modeling environments.

The Telos statement structure is so generic that it allows the expression of relations

not only between ‘‘simple’’ objects like ‘‘Bill’’ and ‘‘10000’’ but also between state-

ments themselves:

statement 10: statement 1 is an instance of statement 2.

statement 11: statement 1 is an instance of an attribute.

statement 12: statement 2 is an instance of an attribute.

statement 13: statement 5 is an instance of instantiation (InstanceOf).

statement 14: Bill is an ordinary object (Individual).

The last four statements are referring to predefined statements of the Telos language

to express objects, their instantiation, and their attributes. There is one additional

predefined statement standing for specialization (IsA). Its use is demonstrated later

in the chapter.

A Telos database is essentially a semantic network in which concepts (nodes) and

their interconnections (links) are treated uniformly as objects. An object can be at

any level of abstraction, as motivated previously. Even abstraction levels beyond

the meta-metaclass level are allowed. The feature that allows this flexibility is the ex-

plicit representation of the instance-to-class relationship. In programming languages

and databases, the type of a variable or field (e.g., INTEGER) is visible only in the

program code or schema definition. At run time, the data are held at a location in

memory of suitable size. All references to the type label INTEGER either are compiled

into memory layout or have been employed for type checking during compile time

(or database creation time). In Telos, instance-to-class relationships are data them-

92 Manfred A. Jeusfeld

selves. We express them as a binary relationship1 (x in c) with the reserved label in.

The following facts encode the class abstractions of the motivating example:

(Bill in Employee), (10000 in Integer)

(Employee in Entity), (Integer in Domain)

(Entity in Node), (Domain in Node)

The foregoing example has four abstraction levels. Hence, there are three instance-

to-class gaps between the objects. The instance-to-class relationship is not su‰cient to

express all phenomena of knowledge representation. In particular, there are relation-

ships between objects of the same (or di¤erent) abstraction levels that are not inter-

preted as instantiations. For example, the objects Bill and 10000 are connected by a

binary relationship earns. Obviously, this is considered to be an example of the fact

that employees have salaries. In Telos, we use a predicate (x m/l y) to express such

attribution relationships. We say that the object x is having an attribute relationship,

with label l and category m, to the object y. The example is completed as follows:

(Bill salary/earns 10000)

(Employee feature/salary Integer)

(EntityType connectedTo/feature DomainOrObjectType)2

(Node attribute/connectedTo Node)

The pairing of an attribute category and an attribute label crosses two abstraction

levels. For example, the category salary in the fact (Bill salary/earns 10000)

is defined at the class level in the fact (Employee feature/salary Integer). The

expressive power of this type of pairing becomes apparent when two attributes use

the same attribute category; for example:

(Employee feature/colleague Employee)

The colleague attribute is a feature of Employee just like the salary attribute.

This phenomenon is called multiple instantiation: The attribute category feature

defined as EntityType is instantiated multiple times for defining Employee. Multi-

ple instantiation is useful at all abstraction levels; for example:

(Bill colleague/col1 Mary)

(Bill colleague/col2 Jim)

Multiple instantiation also occurs for ordinary objects as well. For example, the class

Employee can have multiple instances:

(Bill in Employee)

(Mary in Employee)

(Jim in Employee)

Metamodeling and Method Engineering with ConceptBase 93

The reverse application of this principle is called multiple classification: The same

object can be an instance of multiple classes. For example, the object Bill may be

an instance of Employee and also of Pilot:

(Bill in Employee)

(Bill in Pilot)

Besides class abstraction and attribution, the third and last structural relationship

in Telos is specialization (the reverse: generalization). Whereas instantiation can be

roughly compared to the element-versus-set relationship in set theory, specialization

is the counterpart of the subset relationship. A specialization is denoted by a predi-

cate (c isA d). We say that c is defined as a subclass of d (or that d is a superclass of

c). Specialization can be applied to objects of any abstraction level. For example,

one can define a subclass Manager of Employee and a superclass ObjectType of

EntityType:

(Manager isA Employee)

(Manager feature/salary HighInteger)

(HighInteger isA Integer)

(HighInteger in Domain)

(EntityType isA ObjectType)

The subclass Manager refines the salary attribute of Employee to a subclass of

Integer. An instance of Manager is then automatically regarded as an instance of

Employee as well:

(John in Manager)

(John salary/gets 500000)

(500000 in HighInteger)

The logical foundation of Telos as presented in section 3.6 makes sure that (John

in Employee) as well as (500000 in Integer) do not need to be stated explicitly

but are derivable via built-in rules of Telos. Sometimes, we include derived facts in a

list of explicit facts. The semantics of the logical framework removes such duplica-

tions automatically. Indeed, the facts as shown previously are based on even more

basic facts using the P-predicate (explained in section 3.6), from which they are

derived.

3.3 Universal References to Objects

The factual representation of Telos statements presented in the previous section al-

ways referred to two objects and their relation. For example, the statement (John

94 Manfred A. Jeusfeld

in Manager) is a binary relationship between the objects John and Manager. The

relationship in is interpreted as ‘‘is an instance of.’’ Although John and Manager

are object names in their own right, it is unclear whether the binary relationship be-

tween the two is also an object, that is, a statement that we can refer to. In fact, Telos

allows all relationships between objects to be regarded as full-fledged objects that are

allowed to participate in further relationships. For example, the object standing for

(John in Manager) is an instance of another object standing for the fact that objects

can be instances of other objects.3 The problem now is that we have, as yet, no ex-

pression for the objects that are establishing a relationship (or link). This problem is

overcome by the following naming convention.

Objects in Telos are either node objects or link objects. All abstraction principles

then also apply to link objects. To enable this uniform application of the abstraction

principles, one has to define syntax for referring to link objects, which is accom-

plished through the following recursive definition:

R1. The reference of a node object is its label (e.g. Employee, Bill).

R2. If an object O has the reference N and has an explicit attribute with label a, then

the reference of this attribute is (N!a). The parentheses can be omitted when

there is no ambiguity in the reading of the expression. Examples: Employee!

salary, Bill!earns, EntityType!feature.

R3. If there are two objects O1 and O2 with references N1 and N2 and O1 is

an explicit instance of O2, then (N1->N2) is the reference of the instan-

tiation object. Examples: (Bill->Employee), (Employee->EntityType),

((Bill!earns)->(Employee!salary)).

R4. If there are two objects O1 and O2 with references N1 and N2 and O1 is an

explicit subclass of O2, then (N1=>N2) is the reference of the specialization

object. Example: (Employee=>Person)

The term ‘‘explicit’’ requires some explanation. As will be shown later, logical

rules can be used to define how to derive attribute, instantiation, and specialization

statements. We call a statement like (Bill in Employee) explicit if it is explicitly

stored in ConceptBase. An explicit statement is regarded as an object in its own right

that can have a reference (here (Bill->Employee)). Derived facts do not have this

object identity property. Hence, if (Bill in Employee) is a consequence of some

derivation rule, then one cannot refer to this fact: It can only occur in other rules,

queries, and constraints. In particular one cannot attach further attributes to a

derived fact.

With the reference conventions, just described, one can express instantiation and

specialization relationships between attributes:

Metamodeling and Method Engineering with ConceptBase 95

(Bill!earns in Employee!salary)

(Manager feature/salary HighInteger)

((Manager!salary) isA (Employee!salary))

The first fact corresponds to statement 10 in the motivation. The specialization defi-

nition in the third fact can be referenced by means of a rather complicated expres-

sion. Note that a reference to an object is di¤erent from its definition. The object

referred to by ((Manager!salary)=>(Employee!salary)) is indeed a specializa-

tion object between two attribute objects. On the other hand, ((Manager!salary)

isA (Employee!salary)) represents the statement that there is a specialization re-

lationship between two attributes (regardless of whether this is an explicit fact or

derived by means of some rule). We use the operator # to dereference object refer-

ences: If N is the object reference of an object O, then #N returns O.

Figure 3.1 shows some of the objects defined so far. Node objects appear as nodes.

Instance-to-class relationships appear as broken directed links (between the instance

and the class). Specialization links are thick links from the subclass to the superclass.

Attributes are shown as labeled links from the object to the attribute value (which

itself is an object). Note that the attribute Manager!salary is a subclass of the attri-

bute Employee!salary. Hence, the attribute John!gets is also regarded as an in-

stance of Employee!salary via deduction.

Our motivating example has as its highest abstraction level a meta-metaclass

Node. It uses an attribute category attribute to define a link connectedTo. This

category has not yet been defined. Indeed, we assume that a built-in object Proposi-

tion with an attribute attribute exists. It is defined as follows:

(Proposition in Proposition)

(Proposition attribute/attribute Proposition)

Figure 3.1
Graphical representation of Telos objects

96 Manfred A. Jeusfeld

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3789463/fig3-1.gel

Figure 3.2
Abstraction levels in Telos

Metamodeling and Method Engineering with ConceptBase 97

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3783705/irds-simple.gel

The first of these two statements is indeed a logical consequence of the built-in axi-

oms of Telos, as shown subsequently. It makes no di¤erence, however, if we include

the statement as factual data as well. All explicit objects are automatically regarded

as instances of Proposition, another built-in axiom of Telos. Hence, any Telos ob-

ject is an instance of Proposition and can instantiate the attribute attribute.

Figure 3.2 presents the motivating example in a graphical way. It should be ob-

served that not all definitions in the running example are shown in the figure. For

example, the instantiation of Mary and Jim into Employee is omitted. The member-

ship of an object in a certain IRDS level is based solely on its current instantiation.

Bill, Mary, 10000, etc., are regarded as tokens because they happen to have no

instances. The object Employee is a (simple) class because all its instances are tokens;

the object EntityType is a metaclass because all its instances are simple classes and

so on. From a logical point of view the levels to which objects and classes are

assigned are not relevant at all. Instead of insisting on ‘‘correct’’ assignment to levels,

Telos enforces correct use of instantiation. Nevertheless, the IRDS levels shown in

figure 3.2 are useful for enhancing the understandability of models that are placed

at di¤erent IRDS abstraction levels.

There can well be relations other than instantiation between objects placed at

di¤erent IRDS levels. Consider, for example, (EntityType attribute/author

PeterChen), with the intended meaning ‘‘The Employee concept was authored by

PeterChen.’’ Here, the object PeterChen is naturally placed at the token level,

whereas the object EntityType is placed at the metaclass level. It is important to

note that EntityType is just an object like any other object. It becomes a metaclass

here only because it has instances that themselves have instances.

The definition order should also be remarked upon. ConceptBase places no re-

striction on the order in which objects are defined, that is, created in the metadata

repository. With the instantiation strategy, one starts top-down at the level of meta-

metaclasses (called the notation definition level in IRDS terminology), then defines

metaclasses (establishing the constructs of modeling notation), and then continues

with simple classes (example models) and tokens (example objects conforming to

the models). In the classification strategy, one starts with token objects, then estab-

lishes classes to classify the tokens, then metaclasses to classify the classes, and so

on. Mixed strategies are also possible and in fact are the most likely scenario, since

some classes emerge only when one finds an example instance that cannot be classi-

fied into the existing set of classes. The only restriction imposed on object definition

strategies is the Telos axioms stated in section 3.8. In particular, one can only create

links between objects that have already been defined.

The topmost level in figure 3.2 is reserved for five predefined Telos objects. Prop-

osition is the most general object and has any other object as instances, including

itself. Individual has as instances all objects that are displayed as nodes (i.e. not

98 Manfred A. Jeusfeld

as attributes, instantiations, or attributions). The InstanceOf link of Proposi-

tion has all explicit instantiations as instances; for example Bill->Employee and

(Employee!salary->EntityType!feature). The IsA link has all specializations

as instances; for example Manager=>Employee. Finally, the attribute link has all

attributes as instances. The precise definitions of these five objects are presented in

section 3.8.

3.4 The Telos Frame Syntax

The definitions in the preceding sections employ the predicate notation that is part of

the query language of ConceptBase. The advantage of such a logical representation

is its preciseness. However, readability su¤ers in this type of representation, as all

information is decomposed into small pieces. Frame syntax is an alternate means of

expression that eliminates this problem. It provides a denser representation of object

definitions by grouping all information regarding one object into one textual frame.

In this section, we use the motivating example to introduce frame syntax:

Bill in Employee,Pilot with

salary

earns: 10000

colleague

col1: Mary;

col2: Jim

end

Mary in Employee end

Jim in Employee end

John in Manager with

salary

gets: 500000

end

500000 in HighInteger end

In the example, the attribute category salary precedes the definitions of the attri-

bute. If more than one attribute falls under the same category, then a semicolon sep-

arates them. A comma separates multiple classes of an object. Note that objects

like Mary can exist without instantiating all or even any attribute category of their

class.

The frame definition of Employee shows that the same syntax is applied for class

definitions:

Metamodeling and Method Engineering with ConceptBase 99

Employee in EntityType with

feature

salary: Integer;

colleague: Employee

end

Manager in EntityType isA Employee with

feature

salary: HighInteger

end

Pilot in EntityType end

Integer in Domain end

HighInteger in Domain isA Integer end

Employee in Domain end

Superclasses are declared within the definition of the subclass of which they are a

superclass. The subclass Manager in the example refines the attribute salary of Em-

ployee. In such cases the attribute value (HighInteger) at the subclass level must

be a subclass of the corresponding attribute value Integer of the superclass Em-

ployee. If a class has more than one superclass, then commas separate them.

We include a metaclass DomainOrObject as a superclass of Domain and

ObjectType:

EntityType in Node isA ObjectType with

connectedTo

feature: DomainOrObjectType

end

ObjectType in Node isA DomainOrObjectType end

Domain in Node isA DomainOrObjectType end

DomainOrObjectType in Node end

Because of the inclusion of this metaclass, an instance of EntityType can have ei-

ther a domain as feature (e.g., the attribute salary) or a reference to an object type

(e.g., the colleague attribute). The example is completed by the definition of the

meta-metaclass:

Node in Proposition with

attribute

connectedTo: Node

end

Figure 3.3 displays the example using the ConceptBase graph browser. The labeled

thin links are instantiations, the thick links are specializations, and the unlabeled thin

links are ordinary attributes.

100 Manfred A. Jeusfeld

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782761/Irds-Simple-1.sml.txt

Figure 3.3
Display of the Telos example in the ConceptBase graph browser

101Metamodeling and Method Engineering with ConceptBase

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4685987/fig3-3.gel

3.5 A Short Primer in Logic for Databases

The implementation of Telos in ConceptBase is based on a simple logic called Data-

log. The advantage of relying on Datalog is that the semantics of a Telos model can

be precisely defined. It is also the foundation of the expressive query language in

ConceptBase and its extensibility at all abstraction levels. A few basic concepts of

Datalog are essential to fully understand the Telos query and rule language.

I assume here that the reader has some initial knowledge of the relational-database

model and of predicate logic. In Datalog, a database is defined as a pair (DB,R),

where DB is the set of base relations and R is a set of deductive rules. A base relation

is referred to in logic by a predicate R(x1,x2,...,xk), as specified in the domain

calculus of relational-database theory. A deductive rule has the form

forall x1,x2,...

R1(x11,...) and ... Rn(xn1,...) and

not Q1(y11,...) and ... not Qm(ym1,...)

==> S(x1,x2,...)

Unlike in standard Datalog notation, the logical quantifier forall is made ex-

plicit here.4 The predicates Ri are positive literals of the condition; the predicates Qi

are negative literals. The number m may be zero; that is, a deductive rule without a

negative literal is allowed. There is exactly one conclusion literal, the predicate S. All

variables are universally quantified. If a variable occurs in a negative literal of the

condition, it must also occur in a positive literal of the condition. A deductive rule

in which the conclusion predicate also occurs in the condition is referred to as a

recursive rule.

The interpretation of a deductive database is based on Herbrand semantics. In this

type of semantics, a constant like 10 is interpreted by itself.5 A ground (¼ variable-

free) occurrence of a predicate is also interpreted by itself. A rule with empty condi-

tions must be a ground. Such a degenerated rule is also called a fact. We assume that

all facts are in DB, that is, that R does not contain rules with empty conditions. Data-

log allows only constants or variables as arguments of predicates. Then, a deductive

database (DB,R) is interpreted as the smallest set of facts (the fixpoint) fulfilling the

following conditions:

1. If R(c1,...,ck) is a fact in a base relation of DB, then R(c1,...,ck) is in the

fixpoint.

2. If there is a combination c1, c2, . . . of constants and a rule R

forall x1,x2,...

R1(x11,...) and ... Rn(xn1,...) and

not Q1(y11,...) and ... not Qm(ym1,...)

==> S(x1,x2,...)

102 Manfred A. Jeusfeld

slides1

slides2

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616309/lect04.pdf
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616313/lect05.pdf

such that the substitution s=[x1=c1,x2=c2,...] yields facts Ri[s] that are al-

ready in the fixpoint and Qj[s] that are not in the fixpoint, then S(c1,c2,...) is

also in the fixpoint.

A substitution is an operator that replaces variables in a formula with terms (in this

case, with constants). Computation of the fixpoint requires that recursive rules fulfill

a stratification condition. Stratification refers to a particular assignment of levels

(numbers) to predicates. A predicate referring to a base relation gets the level 0. A

conclusion predicate must be assigned a level that is greater than or equal to the level

of all positive literal occurrences in the condition and strictly greater than all negative

literal occurrences in the condition. If levels are assigned in this way, then the rule set

R is said to be stratified. One can prove that when a rule set is stratified, there is a

unique smallest fixpoint, the perfect model.

An example of a nonstratifiable rule set consisting of just one rule is

forall x P(x) and not Q(x) ==> Q(x)

Intuitively, nonstratifiable rule sets express paradoxes.6 Consider for this the defini-

tion of a set M as the set of all sets that do not contain themselves as elements. In

logic, this is expressed as equivalence:

forall s Set(s) and not Element(s,s) <==> Element(s,M)

We can read this formula as the conjunction of two logical implications:

forall s Set(s) and not Element(s,s) ==> Element(s,M)

forall s Element(s,M) ==> Set(s) and not Element(s,s)

The first of these implications is not stratifiable, because the implied predicate occurs

negatively in the condition.

Integrity constraints in deductive databases are special rules of the form

forall x1,x2,...

R1(x11,...) and ... Rn(xn1,...) and

not Q1(y11,...) and ... not Qm(ym1,...)

==> inconsistent

A deductive database (DB,R) is said to be consistent if the fact inconsistent is not

in its fixpoint, that is, if the fact inconsistent cannot be derived. The predicate

inconsistent may not occur in a condition of any rule. We assume that an update

to a base relation may not lead to inconsistency. If inconsistent is derivable after

an update, the update is rejected, and the database is rolled back to the state before

the update.

Metamodeling and Method Engineering with ConceptBase 103

104 Manfred A. Jeusfeld

 Integrity constraints are useful for guaranteeing that certain database states are
never reached because they represent errors. In modeling and design environments,

we are sometimes less strict when dealing with integrity constraints: Rather than
forbidding certain database states, we are interested in minimizing the number of
violations, with the goal of zero violations at the end of the modeling process. The
rationale behind this viewpoint is that the database is incomplete at the start of the
modeling process, and the integrity constraint violations are removed as the database
containing the models becomes more and more complete. If we employed traditional
integrity constraints, then the incomplete early database states would be rejected,
which would be unacceptable in a modeling environment. A way out of this dilemma

is to define ordinary deductive rules that derive violations that formally are not
regarded as integrity violations:

forall x1,x2,...

R1(x11,...) and ... Rn(xn1,...) and
not Q1(y11,...) and ... not Qm(ym1,...)
==> violator(x1,x2,...)

Current violations in the database can be computed by querying the violator pred-
icate. The solutions indicate to the modeler where the current database has to be
extended or modified in order to reach fewer violations.

Example 3.1 Consider the following rule set and check it for stratifiability (The pred-
icate R(.,.) refers to a base relation.)

forall x P(x,y) and R(x,z) and not Q(x,z) ==> L(z)
forall x,y L(x) and L(y) ==> Q(x,y)

The base relation R gets the lowest stratification level:

strat(R)=0

The first rule induces the following conditions:

strat(P) <- strat(L)

strat(Q) < strat (L)

The second rule adds the condition

strat(L) <- strat(Q)

Thus, there is no stratification for this rule set.

Example 3.2 Consider the rule set

forall x P(x,y) and R(x,z) and Q(x,z) ==> L(z)
forall x,y L(x) and L(y) ==> Q(x,y)

This rule set is stratifiable:

strat(R)=strat(P)=strat(L)=strat(Q)=0

Example 3.3 Let move(.,.) be a base relation. Consider the rule set consisting of a

single rule:

forall x,y move(x,y) and not win(y) ==> win(x)

This rule set is obviously not stratifiable, because stratification would require

strat(win) < strat(win). The example is, however, interesting, as it encodes

‘‘win’’ positions of simple games. If the move database is acyclic, that is, if there is

no cyclic path in the database matching

move(x1,x2),....,move(xk,x1)

then no fact win(x) is derived from the negation of itself. Although the rule is not

stratifiable, we still can compute a unique fixpoint. Hence, there are cases in which

the static stratification test described previously is stricter than necessary.

The companion CD-ROM to this volume contains the ‘‘win’’ example in Telos

and shows some further interesting applications of nonstratified rule sets. More on

the theoretical foundations of Datalog and its extensions can be found in Ceri, Got-

tlob, and Tanca 1990 and Chen and Warren 1996.

3.6 The Logical Foundation for Telos

The Telos object definitions shown up to now have been just pieces of text in a cer-

tain syntax. One could imagine that they were stored in a file and then looked up

by a standard word processor. The Telos language becomes useful only if some auto-

mation is o¤ered. In ConceptBase, this automation is primarily founded on a logic-

based facility that allows analysis of large sets of Telos definitions (also called a Telos

model). This facility comes in three flavors:

1. A constraint expresses a necessary condition that has to be fulfilled by the Telos

model. For example, one might specify that no employee may earn more than her

boss.

2. A deductive rule can be used to derive new predicate facts from existing ones. For

example, the boss of an employee may be derived from the head of the department

where the employee works.

3. A query class is syntactically a Telos class with a constraint definition. However,

the constraint is regarded not as a necessary condition, but as a su‰cient condition,

for an object’s being an instance of the class.

We introduced Telos through three predicates: (x in c) for class abstraction, (c

isA d) for generalization, and (x m/l y) for attribution. The key to Telos, however,

is that all these predicates are derived from a single base predicate, the P-predicate or

‘‘proposition’’:

Metamodeling and Method Engineering with ConceptBase 105

P(o,x,l,y)

The P-predicate is used to represent all explicit Telos objects. The component o is

called the object identifier, x is the source, l the label, and y the destination of the

object. The P-predicate is used to define the predicates mentioned in the foregoing

by means of four axioms:

forall o,x,c P(o,x,in,c) ==> (x in c)

forall o,c,d P(o,c,isa,d) ==> (c isA d)

forall o,x,l,y,p,c,m,d P(o,x,l,y) and P(p,c,m,d) and (o in p) ==>

(x m/l y)

forall x,m,l,y (x m/l y) ==> (x m y)

The axioms should be read as deductive rules: If the condition before the implication

sign is true for some substitution of variables, then the correspondingly substituted

predicate after the implication sign is true. We assume that these four axioms are pre-

defined, that is, that they are axioms of the logical theory (being a set of logical for-

mulas). We define a Telos database as a triple (OB,IC,R) where

� OBJ{P(o,x,l,y)|o,x,y object identifier,l label} is the finite extensional

database of Telos objects;

� IC is a finite set of integrity constraints;

� R is a finite set of deductive rules.

An element of OB is called a P-fact or Telos object. We refer to an occurrence of

P(o,x,l,y) as a P-predicate. We then assume that it occurs inside a logical formula

in which some parameters of the P-predicate can be logical variables.

The axioms discussed in this chapter are predefined entries in IC or R. Any object

in a Telos database must be an instance of some class. It has already been noted that

the object with name Proposition is predefined in Telos (in OB). Indeed, at least the

following five objects must be predefined in order to be able to define the semantics

of the Telos abstraction principles instantiation, attribution, and specialization:

P(p1,p1,Proposition,p1)

P(p2,p2,Individual,p2)

P(p3,p1,attribute,p1)

P(p4,p1,InstanceOf,p1)

P(p5,p1,IsA,p1)

For reasons of readability, we occasionally use expressions like #Individual to

refer to the identifier of an object like Individual. The expression stands for the ob-

ject identifier of Individual, here, p2. The operator # is omitted when it is clear

106 Manfred A. Jeusfeld

that we refer to the object with the given name. The purpose of the five predefined

objects becomes apparent with the following axioms (to be read as deductive rules):

forall o,x,l,y P(o,x,l,y) ==> (o in #Proposition)

forall o,l P(o,o,l,o) ==> (o in #Individual)

forall o,x,c P(o,x,in,c) ==> (o in #InstanceOf)

forall o,c,d P(o,c,isa,d) ==> (o in #IsA)

forall o,x,l,y P(o,x,l,y) and (o \== x) and (l \== in) and (l \==

isa) ==> (o in #Proposition!attribute)

These five axioms ensure that we automatically know that each object is an instance

of the class Proposition and that the membership of the four other classes is based

on the structure of the P-predicate. Where possible, we use the reference of an object

(e.g., Proposition) instead of the object identifier (p1) to enhance readability. Ob-

ject references are precisely defined in section 3.3.

The predicate (c isA d) for subclasses is supposed to be both reflexive and transi-

tive. Moreover, any instance of a subclass must also be an instance of any superclass

of that subclass:

forall o (o in Proposition) ==> (o isA o)

forall c,d,e (c isA d) and (d isA e) ==> (c isA e)

forall x,o,c,d (x in c) and P(o,c,isa,d) ==> (x in d)

Finally, instances of classes must use the attribute definitions of the class in a con-

forming way (this is referred to as the attribute-typing axiom):

forall o,x,l,y,p,c,m,d P(o,x,l,y) and P(p,c,m,d) and (o in p) ==>

(x in c) and (y in d)

The preceding formula is a predefined constraint of IC. Consider, as an example,

the attribute Bill!earns, which is an instance of Employee!salary. Then

the constraint forces Bill to be an instance of Employee and 10000 (the attri-

bute value of Bill!earns) to be an instance of Integer (the attribute value of

Employee!salary).

There are additional built-in constraints on attribute specialization and on pre-

venting malformed P-facts. They are omitted here because they are mainly of a tech-

nical nature. The complete list of axioms is presented in section 3.8. All axioms can

be transformed into Datalog with stratified negation.

3.7 From Frames to Objects and Vice Versa

The frame syntax presented in the foregoing is the standard way to express textual

definitions of Telos objects. A frame indeed clusters class membership, superclasses,

Metamodeling and Method Engineering with ConceptBase 107

and attributes into one textual object. In order to understand the precise meaning of

frames, one has to define a mapping of frames to P-predicates, because the semantics

of relationships like specialization are defined in terms of P-predicates. As an exam-

ple, consider the frame

EntityType in Node isA ObjectType with

connectedTo

feature: Domain

end

In the first step of the mapping the frame is rewritten into flat predicate facts for

classification, specialization, and attribution. It should be noted that predicate facts

establish binary relationships between named objects. Attribution is a special case,

since it has two labels as infix symbols: first the label of the attribute itself, and sec-

ond the label of the attribute category of the attribute.

(EntityType in Node)

(EntityType isA ObjectType)

(EntityType connectedTo/feature Domain)

In the second step, each predicate fact is considered individually, and we look for

an axiom in R whose conclusion predicate matches the predicate fact. We consider

only the following three axioms:

D1. forall o,x,c P(o,x,in,y) ==> (x in c)

D2. forall o,c,d P(o,c,isa,d) ==> (c isA d)

D3. forall o,x,l,y,p,c,m,d P(o,x,l,y) and P(p,c,m,d) and (o in p)

==> (x m/l y)

Before mapping a predicate fact to a P-fact, one has to check whether a fact like

(EntityType in Node) can be derived (for example, via the class membership

axiom of the specialization relationship). If not, we match the fact (EntityType in

Node) with the conclusion predicate (x in c) of rule D1, leading to a variable sub-

stitution [x=EntityType,c=Node]. In order to make (EntityType in Node) de-

ducible via rule D1, the predicate P(o,#EntityType,in,#Node) must be true for

some object that can serve as a value of variable o. If the database OB already con-

tains such an object, then nothing has to be done. If not, then a new object identifier

like o1 has to be generated and the object P(o101,#EntityType,in,#Node) can be

inserted into OB. In the same way, (EntityType isA ObjectType) is mapped to an

object P(o102,#EntityType,isa,#ObjectType).

The third fact established in step 1 (EntityType connectedTo/feature Do-

main) is an attribute definition. It is matched against rule D1, leading to a substi-

tution [x=EntityType,m=connectedTo,y=Domain,l=feature]. Its mapping to

108 Manfred A. Jeusfeld

P-predicates is more complex than that of the instantiation and specialization predi-

cates, because the attribute-typing axiom requires that we exclude attributes that

do not conform to the attribute definition at the class level. So, for the partially sub-

stituted predicate P(p,c,connectedTo,d), the predicates (EntityType in c) and

(Domain in d) must be derivable. Consequently, we can limit the search for

P(p,c,connectedTo,d) accordingly. Theoretically, more that one potential result

for the search may exist, since the same object x can be an instance of multiple

classes. However, the built-in Telos axiom A17 (see section 3.8) prevents such ambi-

guity. Once values for the variables in P(p,c,connectedTo,d) have been found, we

can insert a new object P(o103,#EntityType,feature,#Domain) into the data-

base, with o103 substituting for the variable o. Given the current state of the data-

base, the resulting substitution is [p=o11,c=Node,d=Node]. The obligation to make

(o103 in o11) true remains. Since o11 is a constant, we can use the first rule, D1, to

do so. Hence, the resulting Telos objects are

P(o101,#EntityType,in,#Node)

P(o102,#EntityType,isa,#ObjectType)

P(o103,#EntityType,feature,#Domain)

P(o104,#EntityType!feature,in,#Node!connectedTo)

It should be noted that for the sake of e‰ciency and uniformity, all object refer-

ences are resolved on the fly against the object identifiers. For example, the reference

EntityType!feature is resolved to o103. P-fact o104 shows how attribute catego-

ries are treated in Telos: They are mapped to instantiation relationships between an

attribute object and another attribute object. After object references are replaced

with identifiers, the stored P-facts will be

P(o101,o12,in,o11)

P(o102,o12,isa,o13)

P(o103,o12,feature,o14)

P(o104,o103,in,o15)

where we assume the existence of

P(o11,o11,Node,o11)

P(o12,o12,EntityType,o12)

P(o13,o13,ObjectType,o13)

P(o14,o14,Domain,o14)

P(o15,o11,connectedTo,o11)

The mapping from Telos frames to objects can be used directly for implementing

the ‘‘insert’’ operation, that is, adding new objects to the Telos database. A simi-

lar method can be employed when one wants to remove a Telos frame from the

Metamodeling and Method Engineering with ConceptBase 109

database. First, the frame is mapped to P-facts, and then the P-facts are removed

from the database.

Remark 3.1 Since only some axioms of Telos are here, the complete method for

translating a Telos frame object is a bit more complex than the preceding discussion

indicates. For example, a subclass may refine an attribute that is already defined in a

superclass of the subclass, like the Manager!salary attribute. In such a case, an in-

stance of Manager would instantiate the more specific attribute, whereas an instance

of Employee would instantiate the more general attribute. The theoretic framework

for this mapping method is called abduction. Abduction is an approach in which a

user can specify which derived predicates can be inserted (i.e., should be derivable

after an update) and which can be deleted (i.e., should no longer be derivable after

the update). Abduction has to cope with the problem that for the same predicate,

multiple deductive rules can exist. Hence, the mapping from frames to P-facts is in

principal ambiguous, and one has to develop notions of minimality to prioritize the

rule selection. In our case, we consider only the three ‘‘basic’’ rules for the instantia-

tion, attribution, and specialization predicates (see formulas D1,D2,D3 earlier in this

section).

It should be noted that this mapping method allows Telos frames to be inserted

where certain attributes are already derivable from the database. In such cases, no

new objects are inserted. Because of this, we call the method Tell and the reverse

method Untell. Users of the ConceptBase system can display the P-facts gener-

ated (removed) for a Tell (Untell) operation by setting the parameter trace mode

to ‘‘veryhigh.’’ See the ConceptBase user manual (Jarke, Jeusfeld, and Quix 2003) for

instructions.

The reification of all Telos statements is the precondition for using Telos for

method engineering, in particular for defining the semantics of certain symbols in

modeling notations. The treatments of attributes as ordinary objects allows rules

and constraints to be formulated for such objects regardless of whether they are at

data level, model level, notation level, or an even higher level. The list of Telos

axioms presented in the next section e¤ectively defines the semantics of the three

Telos relationship types: instantiation, specialization, and attribution. User-defined

relationship types and the definition of their semantics are presented in section 3.9.

3.8 Telos Predicates and Axioms

Telos has a single base relation, the P-facts, on which further predicates are defined

via logical axioms. Some of these axioms are deductive rules; others are constraints

that forbid the occurrence of certain combinations of P-facts. The list of Telos pred-

icates is as follows:

110 Manfred A. Jeusfeld

P(o,x,n,y)

This predicate ranges directly over the P-facts. We say: there is a P-fact identified by

o that links two P-facts identified by x, y; the link is labeled n.

From(o,x)

There is a P-fact identified by o whose second argument is x (the source of object o).

Label(o,n)

There is a P-fact whose third component is n (the label of object o).

To(o,y)

There is a P-fact identified by o whose fourth argument is y (the destination of object

o).

(x in c) or In(x,c)

Object x is an instance of class c, or in other words, c is a class to which object x

belongs.

(c isA d) or Isa(x,c)

Class c is a subclass of class d, or in other words, class d is a superclass of class c.

(x m/n y) or AL(x,m,n,y)

There are two objects x and y that are linked to each other by a P-fact that has label

n. That P-fact is an instance of another object, which has the label m. We say that m is

the category of the link between x and y.

(x m y) or A(x,m,y)

There are two objects x and y that are related to one another by a binary relation-

ship m.

Aid(x,m,o)

There is a P-fact o that has x as its source and has category m.

(x < y), (x > y), (x = y), (x =< y), (x >= y)

Numerical comparison between objects x and y. Both objects must be instances of

the built-in classes Integer or Real.

(x == y) or IDENTICAL(x,y) or UNIFIES(x,y)

The two objects x and y are the same.

Thirty-one rules and constraints are predefined in the variant of Telos presented

here (Jeusfeld 1992). To distinguish this axiomatization of Telos from earlier Telos

Metamodeling and Method Engineering with ConceptBase 111

definitions, we sometimes refer to it is O-Telos. The O-Telos axioms precisely define

what we understand by instantiation, specialization, and attribution. Furthermore,

they define the extension (¼ logical interpretation) of some of the predicates listed

previously.

Axiom 3.1 Identifiers of P-facts are unique, or in other words, the first field of

P-facts is a key for the remaining fields.

forall o,x1,n1,y1,x2,n2,y2

P(o,x1,n1,y1) and P(o,x2,n2,y2) ==> (x1=x2) and (n1=n2) and

(y1=y2)

Axiom 3.2 The name of an individual object is unique.

forall o1,o2,n

P(o1,o1,n,o1) and P(o2,o2,n,o2) ==> (o1=o2)

Axiom 3.3 Names of attributes are unique in conjunction with the source object, or

in other words, no object may have two attributes with the same name. This does not

necessarily hold for instantiation and specialization objects (see axiom 3.4).

forall o1,x,n,y1,o2,y2

P(o1,x,n,y1) and P(o2,x,n,y2) ==> (o1=o2) or (n=in) or (n=isa)

Axiom 3.4 The name of instantiation and specialization objects (labels in, isa) is

unique in conjunction with source and destination objects.

forall o1,x,n,y,o2 P(o1,x,n,y) and P(o2,x,l,y) and ((n=in) or

(n=isa)) ==> (o1=o2)

Axiom 3.5 Instantiation objects lead to solutions for the In predicate.

forall o,x,c P(o,x,in,c) ==> In(x,c)

Axiom 3.6 Specialization objects induce a specialization relationship Isa between

the two referenced objects.

forall o,c,d P(o,c,isa,d) ==> Isa(c,d)

Axiom 3.7 If there is an attribute with name n between two objects x and y, and this

attribute is an instance of an attribute class with name m, then a solution for the AL

predicate can be derived:

forall o,x,n,y,p,c,m,d P(o,x,n,y) and P(p,c,m,d) and In(o,p) ==>

AL(x,m,n,y)

Axiom 3.8 The ordinary attribute predicate A is based on the AL predicate by omit-

ting the attribute label n.

forall x,m,n,y AL(x,m,n,y) ==> A(x,m,y)

112 Manfred A. Jeusfeld

Axiom 3.9 If an object uses an attribute label from the class level, then it must actu-

ally be from one of the classes of the object. If some attribute predicate can be

derived for x, then it will be due to an instantiation of an attribute category defined

at the level of a class to which x belongs. Note that solutions for the A predicate can

be obtained only from the Telos axioms. User-defined rules do not interfere with this

axiom, as their attribution predicates are formally distinguished from the A predicate.

forall x,y,p,c,m,d In(x,c) and A(x,m,y) and P(p,c,m,d) ==> exists

o,n P(o,x,n,y) and In(o,p)

Axiom 3.10 The isa relation is reflexive. The object identifier #Proposition (¼ p1)

is declared in axiom 3.24.

forall c In(c,#Proposition) ==> Isa(c,c)

Axiom 3.11 The isa relation is transitive.

forall c,d,e Isa(c,d) and Isa(d,e) ==> Isa(c,e)

Axiom 3.12 The isa relation is antisymmetric.

forall c,d Isa(c,d) and Isa(d,c) ==> (c=d)

Axiom 3.13 Class membership of objects is inherited upwardly to superclasses. This

is the only ‘‘inheritance rule’’ in Telos. Inheritance of attributes by subclasses is a re-

dundant principle that is subsumed via axioms 3.13 and 3.14: Any instance of a sub-

class is also an instance of the superclasses of which it is a subclass (axiom 3.13) and

thus can instantiate the attributes of those superclasses (axiom 3.14).

forall p,x,c,d In(x,d) and P(p,d,isa,c) ==> In(x,c)

Axiom 3.14 Instance attributes are ‘‘typed’’ by attributes defined at class level.

forall o,x,l,y,p P(o,x,l,y) and In(o,p) ==> exists c,m,d

P(p,c,m,d) and In(x,c) and In(y,d)

Axiom 3.15 Subclasses that define attributes with the same name as attributes of

their superclasses must refine these attributes. Hence, the attribute definition of a

superclass is never violated by a refinement of that attribute at subclass level. Specif-

ically, the refined attribute is a specialization of the superclass attribute, and the at-

tribute value of the refined attribute is a specialization of its counterpart at superclass

level.

forall c,d,a1,a2,m,e,f Isa(d,c) and P(a1,c,m,e) and P(a2,d,m,f)

==> Isa(f,e) and Isa(a2,a1)

Axiom 3.16 If an attribute is a refinement (in a subclass) of another attribute, then it

must also refine the source and destination components of the corresponding P-fact

of the attribute. Note that the two attributes will not necessarily have the same label,

Metamodeling and Method Engineering with ConceptBase 113

as was the case in axiom 3.15. However, all refinements of the type specified in axiom

3.15 are also governed by axiom 3.16 because of the implied truth of Isa(a2,a1) in

axiom 3.15.

forall c,d,a1,a2,m1,m2,e,f

Isa(a2,a1) and P(a1,c,m1,e) and P(a2,d,m2,f) ==> Isa(d,c) and

Isa(f,e)

Axiom 3.17 For any object there is always a unique ‘‘smallest’’ attribute class with a

given label m. Hence, whenever two di¤erent attributes with the same label are appli-

cable to an instantiated object x, then there is a third attribute a3 which is specializ-

ing both other attributes a1, a2.

forall x,m,y,c,d,a1,a2,e,f

In(x,c) and In(x,d) and P(a1,c,m,e) and P(a2,d,m,f) ==> exists

g,a3,h In(x,g) and P(a3,g,m,h) and Isa(g,c) and Isa(g,d)

Axiom 3.18 Any object is an instance of the class Proposition. Any instance of

Proposition is an object.

forall o,x,n,y P(o,x,n,y) <==> In(o,#Proposition)

Axiom 3.19 Any individual object is an instance of the class Individual. Any

instance of the class Individual must be an individual object. The operator \==

stands for inequality of object identifiers. Note that an individual object is deter-

mined by its structure; that is, its identifier, source, and destination are the same.

forall o,l P(o,o,n,o) and not (n \== in) and not (n \== isa) <==>

In(o,#Individual)

Axiom 3.20 All instantiation objects are instances of the InstanceOf attribute of

Proposition. Any instance of the InstanceOf attribute of Proposition must be

an instantiation object.

forall o,x,c P(o,x,in,c) and (o \== x) and (o \== c) <==>

In(o,#Proposition!InstanceOf)

Axiom 3.21 All specialization objects are instances of the InstanceOf attribute of

Proposition. Any instance of the InstanceOf attribute of Proposition must be

a specialization object.

forall o,c,d P(o,c,isa,d) and (o \== c) and (o \== d) <==>

In(o,#Proposition!IsA)

Axiom 3.22 All attribute objects are instances of the attribute attribute of Prop-

osition. Any instance of the attribute attribute of Proposition must be an at-

tribute object.

114 Manfred A. Jeusfeld

forall o,x,n,y P(o,x,l,y) and (o \== x) and (o \== y) and (n \==

in) and (n \== isa) <==> In(o,#Proposition!attribute)

Axiom 3.23 Any object (i.e., any P-fact) is either an individual object, an instantia-

tion relationship, a specialization relationship, or a regular attribute. Note that the

axioms 3.22 and 3.23 exclude P-facts like P(o,o,n,p) and P(o,p,n,o).

forall o In(o,#Proposition) ==>

In(o,#Individual) or In(o,#Proposition!InstanceOf) or

In(o,#Proposition!IsA) or In(o,#Proposition!attribute)

Axioms 3.24–3.28 There are exactly five built-in classes (the Telos built-in classes).

ConceptBase has many more predefined classes to manage itself and to provide data

structures for its functionality, in particular, for user-defined rules, constraints, and

queries. (The object identifiers p1 to p5 used here are arbitrary. Any other set of

five di¤erent identifiers will also work.)

P(p1,p1,Proposition,p1)

P(p2,p2,Individual,p2)

P(p3,p1,attribute,p1)

P(p4,p1,InstanceOf,p1)

P(p5,p1,IsA,p1)

Axiom 3.29 Objects must be defined before they are referenced. The operator *prec

is some predefined total order on the set of object identifiers.

forall o,x,n,y P(o,x,n,y) ==> (x *prec o) and (y *prec o)

Axiom Schema 3.30 Let P(p,c,m,d) be an arbitrary object. Then any binary instan-

tiation predicate In(o,p) leads to a solution for its unary version In.p(o).

forall o In(o,p) ==> In.p(o)

Axiom Schema 3.31 Let P(p,c,m,d) be an arbitrary object. An attribute linking

objects x and y that is an instance of object p induces a binary attribute predicate

A.p.

forall o,x,l,y P(o,x,l,y) and In(o,p) ==> A.p(x,y)

The last two axiom schemas distinguish the In and A predicates as defined by the

Telos axioms from those declared in user-defined rules and constraints. User-defined

rules are always transformed into versions that use In.c and A.p predicates instead

of In and A predicates. Through this transformation, the definition of In and A can-

not be altered by user-defined rules.

User-defined rules are further restricted to In.c and A.p predicates in their con-

clusions. This completely shields the axioms from any further definition made by a

Metamodeling and Method Engineering with ConceptBase 115

user. For the sake of readability, the user-defined formulas use predicates in their

original syntax, such as

In(x,c) or (x in c)

A(x,m,y) or (x m y)

Internally, all such occurrences are replaced by predicates In.c or A.p, respectively.

Thus, internally each class object and each attribute category has its own predicate

symbol. Without this transformation, only a few rule sets would be stratifiable, as a

result of the small number of predicate symbols.

Stratification as explained in section 3.5 is based on predicate names, that is, inde-

pendent of the arguments of a predicate occurrence in a formula. This type of strati-

fication is also called static stratification. Dynamic stratification extends the principle

to predicate occurrences including their arguments. Like its static counterpart,

dynamic stratification guarantees perfect-model semantics. Any statically stratified

Datalog theory, i.e., any set of statically stratified Datalog rules, is also dynamically

stratified, but not vice versa. For the purpose of this book, it is su‰cient to assume

static stratification. I would like to mention, however, that ConceptBase supports

dynamic stratification, which is tested when a formula is evaluated rather than when

it is defined. The CD-ROM accompanying this volume includes some examples of

dynamically stratified Telos models as well as examples of Telos models that are not

dynamically stratified.

Axioms 3.1 to 3.31 can be represented in Datalog either as deductive rules or in-

tegrity constraints or as a combination of both. For example, the left-to-right direc-

tion of axioms 3.18–3.22 should be represented as a deductive rule, whereas the

right-to-left direction should be represented as an integrity rule.

The reader may wonder why these 31 axioms and axiom schemas have been

chosen. The majority of the axioms involve the interpretation of three abstraction

principles: classification (instantiation), generalization (specialization), and attribu-

tion. These three principles occur so frequently in modeling that predefining them

makes sense. As an alternative, one can start with an empty list of axioms and regard

all axioms as user-defined. The advantage of such an approach is an even greater

flexibility at the expense of interference between domain-specific rules and domain-

independent abstraction principles. For example, a user-defined rule could instantiate

an individual object to the attribute object of Proposition. This would, however,

destroy the intended interpretation of attribute and individual objects as links

and nodes. Hence, the reason for having predefined axioms is to start from a well-

understood set of abstraction principles that are protected, via axioms 3.30 and

3.31, against unwanted interference resulting from user-defined rules.

Section 3.13 presents a technique for defining more abstraction principles via

metalevel formulas. In fact, a method engineer can define her own brand of attribu-

116 Manfred A. Jeusfeld

tion, instantiation, and specialization by creating metalevel formulas. Instead of

using the labels attribute, in, and isA, she would define new attribute categories

like myAttribute, myIn, and myIsA, then constrain their interpretation through

user-defined rules.

3.9 User-Defined Constraints and Rules in Telos

The previous section introduced Telos as a framework for deductives databases with

a single base relation (the P-facts) and some deduction rules and integrity constraints.

Telos’s three predicates, (x in c), (x m/l y), and (c isA d), were defined in terms

of the P-facts according to deductive rules. A number of predefined integrity con-

straints define which Telos databases are regarded as consistent. This section presents

the logical language of Telos (as implemented in ConceptBase), which allows de-

ductive rules and integrity constraints to be formulated at any abstraction level.

ConceptBase provides a predefined object Class, which has two attributes, rule

and constraint, that allow user-defined rules and constraints to be specified:

Class in Proposition with

attribute

rule: MSFOLrule;

constraint: MSFOLconstraint

end

The acronym MSFOL in the preceding definition stands for many-sorted first-order

logic: All variables are typed by a class name. The formulas are well-formed expres-

sions over the predicates defined earlier. As a syntactic abbreviation, quantified vari-

ables are assigned to class ranges: forall x/C F is an abbreviation for forall x

(x in C) ==> F, and exists x/C F is an abbreviation for exists x (x in C) and F.

In ConceptBase, logical formulas are included between two dollar signs ($).

The example begun earlier in the chapter can now be continued. We assume that a

constraint on the lower bound of salaries is formulated:

Employee in Class with

constraint

c1: $ forall e/Employee s/Integer

(e salary s) ==> (s > 1500) $

end

The reader should be aware that Telos frames are incremental. The frame just pre-

sented has to be understood as additional information about the object Employee.

More precisely, the object is made an instance of Class, and one constraint with

label c1 is added.7

Metamodeling and Method Engineering with ConceptBase 117

Deductive rules are employed to derive new attribute relationships (x m y) or class

memberships (x in c) from the database. As an example, we model Department as

a class that can have subordinate departments. A deductive rule is used to define

when a department has another department as its part:

Department in EntityType,Class with

feature

directSubordinate: Department;

subordinate: Department

rule

r1: $ forall d1,d2/Department

(d1 directSubordinate d2) ==> (d1 subordinate d2) $;

r2: $ forall d1,d2/Department

(exists d/Department (d1 directSubordinate d) and (d

subordinate d2)) ==> (d1 subordinate d2) $

end

The two deductive rules e¤ectively realize the transitive closure of the direct-

Subordinate relation. The derived predicate subordinate can be used in other

logical formulas; for example:

Department with

constraint

c1: $ forall d1,d2/Department

(d1 subordinate d2) ==> not (d2 subordinate d1) $

end

Note that attribute labels are local to objects. Thus, the attribute Employee!c1

is distinguished from the attribute Department!c1. The logical expressions in con-

straints and deductive rules can be arbitrarily nested using the logical operators

and, or, not, forall, exists, and ==>. The predicates must be correctly typed;

that is, an attribute expression (x m y) or (x m/l y) is allowed only if the class of

which x is an instantiation has an attribute with label m. For example, the constraint

Department!c1 is valid because the variable d1 is assigned to class Department,

which has an attribute subordinate.

3.10 Query Classes

The last and most flexible incarnation of logical expressions in ConceptBase is the

query classes. A query class resembles an ordinary class with a constraint definition.

The constraint, however, is interpreted as a su‰cient condition for class membership:

All instances that match the query class definition and fulfill the constraint are

118 Manfred A. Jeusfeld

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782791/Logic-1.sml.txt

regarded as instances of the query class. As an example, we first consider a class def-

inition of Department, which has a head attribute and a constraint that each class

must have a manager:

DepartmentWithBoss in EntityType,Class isA Department with

feature

head: Manager

constraint

c2: $ forall d/DepartmentWithBoss

exists m/Manager (d head m) $

end

An attempt to create a query class with an instance without filling the head attri-

bute (like dept1) will fail. The second instance (dept2) fulfills the constraint:

dept1 in DepartmentWithBoss

end

dept2 in DepartmentWithBoss with

head

manager: John

end

The idea of a query class is to let objects like dept1 and dept2 be instances of the

superclass (Department) and to compute the membership of the query class:

Department with

feature

head: Manager

end

DepartmentWithBossQ in QueryClass isA Department with

constraint

c2: $ exists m/Manager (~this head m) $

end

The special variable ~this denotes any instance object of the query class that fulfills

the constraint. It can be regarded as an implicit universal quantification:8

DepartmentWithBossQ isA Department with

constraint

c1: $ forall this/Department

exists m/Manager (this head m) $

end

Metamodeling and Method Engineering with ConceptBase 119

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782795/Logic-2.sml.txt

The above frame appears in italics since it is not a valid Telos frame. It only shows

how the variable ‘‘this’’ is interpreted.

In many cases, it is useful to compute those objects that violate a constraint like

DepartmentWithBoss!c2. A query class with a negated constraint definition will

output the violating objects. In our example, we are interested in those departments

that do not have a head:

DepartmentWithoutBossQ in QueryClass isA Department with

constraint

c2: $ not exists m/Manager (~this head m) $

end

The classification of objects into query classes is a deductive computation. The

class membership rule of DepartmentWithoutBossQ would be

forall this/Department

(not exists m/Manager (this head m)) ==> (this in

DepartmentWithoutBossQ)

ConceptBase generates such a rule internally in its implementation of query classes.

Since the classification predicate (x in c) is used as the conclusion, a query class can

be referred to like an ordinary class in other query classes or even inside itself. The

following example shows a reference to a query class as a superclass and as a con-

stant within the constraint:

TopSalary in QueryClass isA HighInteger with

constraint

c3: $ exists e/Employee (e salary ~this) and (~this >

1000000) $

end

TopDepartmentQ in QueryClass isA DepartmentWithBossQ with

constraint

c2: $ exists m/Manager s/TopSalary (~this head m) and (m

salary s) $

end

Query classes can be considered classes that o¤er a method ask: Whenever the

method is called, those objects are returned that fulfill the constraint of the query

class. Like other Telos classes, a query class can have more than one superclass:

Academic in EntityType end

AcademicEmployee in QueryClass isA Employee,Academic end

120 Manfred A. Jeusfeld

The interpretation of the preceding frame is that any instance of AcademicEmployee

must be both an instance of Employee and Academic, or logically

forall x (x in Employee) and (x in Academic) ==> (x in

AcademicEmployee)

The rule is a means of deducing the instances of the query class. Such a deductive rule

deriving class membership is generated for each query class. The logical representa-

tion allows query classes to appear anywhere that classes can appear. For example,

the class Academic can itself be a query class. If a query class has some constraint,

then its logical representation is added to the conjunction of the precondition:

RichAcademicEmployee in QueryClass isA AcademicEmployee with

constraint

c: $ exists s/TopSalary (~this salary s) $

end

The class membership rule is in this case:

forall x (x in AcademicEmployee) and (exists s/TopSalary (x salary

s)) ==> (x in RichAcademicEmployee)

ConceptBase compiles the class membership rule from the query class. If Q is a

query class, then all objects x for which (x in Q) is true are called answer objects

of Q, or simply instances of Q. Besides the simple class membership, a query class

can also specify answer attributes. These are either attributes that the answer object

has in the database (retrieved attributes, discussed in the next section) or they are

attached to the answer object by a condition formulated in the query class constraint.

3.11 Attributes and Parameters in Queries

So far, the query classes examined have been capable only of expressing the instan-

tiation of an object in their answer set. In practical application, one needs to retrieve

properties of answer objects to query classes as well. Query classes provide two at-

tribute categories for this. Retrieved attributes are attributes that an object has inde-

pendent of the query class definition. Computed attributes are properties that are

attached to the answer object via the query class definition.

The following definition shows a typical use of retrieved attributes:

RichAcademicEmployee1 in QueryClass isA AcademicEmployee with

retrieved_attribute

salary: Integer

constraint

Metamodeling and Method Engineering with ConceptBase 121

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782799/Logic-3.sml.txt

c: $ exists s/TopSalary (~this salary s) $

end

ConceptBase generates a query rule for the retrieved attribute:

forall x,s (x in RichAcademicEmployee1) and (s in Integer) and

(x salary s) and ((s in TopSalary) and (x salary s)) ==>

Q(RichAcademicEmployee1,x,salary,s)

The class membership rule is derived from the following rule:

forall x,s Q(RichAcademicEmployee1,x,salary,s) ==> (x in

RichAcademicEmployee1)

A side e¤ect of this representation is that, in the case of our example, an object x

that has no salary (i.e., no value for the retrieved attribute) is not in the answer set of

the query class. So retrieved attributes are necessary. They are not necessarily single-

valued, however: An employee may, for example, have more than one salary. Both

would be derived via the query rule.

The destination of a retrieved attribute can be a specialization of the attribute

defined in a direct or an indirect superclass of RichAcademicEmployee. In our

case, the salary attribute is defined for the class Employee and has the destination

type Integer. Since we defined a subclass TopSalary of Integer, we can formulate

a new version of the query:

RichAcademicEmployee2 in QueryClass isA AcademicEmployee with

retrieved_attribute

salary: TopSalary

end

This equivalent query definition no longer requires the constraint of the previous ver-

sion. By coincidence, the class TopSalary is also a query class. Since the class mem-

bership rule for this query yields instantiations (s in TopSalary), this is a correct

and feasible way of referring to instances of query classes. The query rule is in this

case

forall x,s (x in RichAcademicEmployee2) and (s in TopSalary) and

(x salary s) ==> Q(RichAcademicEmployee2,x,salary,s)

The reader can verify that this version of the query rule is logically equivalent to the

previous version.

In general, a query class can have any number of retrieved attributes. The use of

retrieved attributes can be compared to a projection in classical relational algebra:

Only the required attributes are returned in the answer to the query class. The di¤er-

122 Manfred A. Jeusfeld

ence between the use of retrieved attributes and relational algebra is that retrieved

attributes can be defined in any superclass of the query class. They may also be

derived by means of a deductive rule:

DepartmentWithBossQ1 in QueryClass isA Department with

retrieved_attribute

head: Manager;

subordinate: Department

constraint

c2: $ exists m/Manager (~this head m) and not (m head

~subordinate) $

end

The query returns departments (along with their heads and subordinate departments)

in which the head of the department is not head of the subordinate department.

The second type of answer attribute, the computed attribute, is derived within the

query constraint. As an example, consider the head attribute of Department. In-

stead of attaching the head in DepartmentWithBossQ1 to departments, one can for-

mulate a query that returns instances of Manager together with the departments of

which the managers are head:

BossWithDeptQ in QueryClass isA Manager with

computed_attribute

dept: Department

constraint

c2: $ (~dept head ~this) and not (exists upper/Department

(upper subordinate ~dept)) $

end

The second part of the constraint in this example makes the query class return only

those managers in its answer who head a department that is not subordinate to an

upper-level department. Only those managers will be returned that are heads of at

least one department, because the expression ~dept stands for an existentially quan-

tified variable in the constraint:

exists ~dept/Department (~dept head ~this) and not (exists upper/

Department (upper subordinate ~dept))

The construct for computed attributes is per se redundant. Deductive rules have

the expressive power to deduce these attributes as well. However, deductive rules

are not allowed in a definition of a query class, only in that of an ordinary class. I

show the equivalent deductive rule here for the sake of clarification:

Metamodeling and Method Engineering with ConceptBase 123

Manager in Class with

attribute

dept: Department

rule

deptrule: $ forall m/Manager d/Department (d head m) ==> (m

dept d) $

end

Note that the dept attribute does not use the attribute category feature but

rather the predefined category attribute that is available to all Telos objects.

Moreover, the object Manager is classified into two classes: EntityType (see section

3.7) and Class. The latter provides the attribute category rule, which is instantiated

by deptrule, more precisely, (Manager!deptrule in Class!rule). Assuming

that deptrule is defined, the query class is expressed as follows:

BossWithDeptQ1 in QueryClass isA Manager with

retrieved_attribute

dept: Department

constraint

c2: $ (~this dept ~dept) and not (exists upper/Department

(upper subordinate ~dept)) $

end

The solution with the computed attribute is preferable here, since it does not require

extending a class by an attribute plus a deductive rule.

The final remaining feature for query classes is parameterization. A generic query

class can contain parameter definitions. Logically, a parameter definition introduces

an existentially quantified variable in the query constraint. When calling a query, a

user can supply values for parameters (parameter instantiation) or restrict a parame-

ter to some subclass of its original range (parameter specialization).

As an example, consider the definition of the class EntityType provided at the

beginning of section 3.7. It mentions an attribute feature with Domain as value. As-

sume that we are interested in getting the list of all instances of EntityType that

have some instance of Domain as feature. The filler for whatDomain will be pro-

vided not at query definition time, but at query call time. The generic query class is

then

EntityTypeByDomainQ in GenericQueryClass isA EntityType with

parameter

whatDomain: Domain

constraint

124 Manfred A. Jeusfeld

c2: $ (~this feature ~whatDomain) $

end

The constraint ensures that only those instances of EntityType are returned that

have a feature matching the parameter whatDomain. The parameter is a short-

cut for a constraint formula that has an existentially quantified variable for the

parameter:

exists ~whatDomain/Domain (~this feature ~whatDomain)

The query rule for a generic query class is built like that for an ordinary query

class. The parameter becomes a variable in the conclusion predicate:

forall x,w (x in EntityType) and (w in Domain) and (x feature w)

==> Q(EntityByDomainQ,x,whatDomain,w)

Remark 3.2 (on quantification) The query rule has a universal quantification for the

parameter variable w. This is consistent with the existential quantification of the pa-

rameter ~whatDomain in the constraint, since the constraint is part of the condition

of the rule. Consider the general example of a deductive rule:

forall x,y A(x,y) ==> B(x)

This is equivalent to the version in which the exists is pushed into the condition:

forall x (exists y A(x,y)) ==> B(x)

If a user wants to replace a parameter by an instance (parameter instantiation),

she calls a query expression of the form

QC[parameter-subst1,...,parameter-substn]

where QC is the name of the generic query class, and the parameter substitutions are

enclosed in square brackets. A parameter substitution for instantiation has the form

v/p

meaning that the query parameter p is replaced with the value v. In our example, the

query call

EntityTypeByDomainQ[Integer/whatDomain]

returns all instances of EntityType that have some feature with domain Integer,

e.g., Employee. A parameter substitution replaces the parameter variable p with the

constant value v supplied in the query call. The substitution is applied to the conclu-

sion predicate of the query and instantiates all matching parameter variables. In the

running example, the substitution for parameter variable w (whatDomain) yields the

substituted query rule

forall x (x in EntityType) and (Integer in Domain) and (x feature

Integer) ==> Q(EntityByDomainQ,x,whatDomain,Integer)

Metamodeling and Method Engineering with ConceptBase 125

A query class may have more than one parameter. A query call may provide pa-

rameter substitutions for all or some of the parameters defined for the query. The

parameters that are not substituted remain existentially quantified.

A second type of parameter substitution involves specializing the parameter. Each

parameter has a range associated with it by the query class definition (for example

Domain is the range of the parameter whatDomain). When calling the query, the

user can provide a stricter range, that is, a subclass of the original range:

NumberDomain in Node isA Domain end

Integer in NumberDomain end

Real in NumberDomain end

Here, NumberDomain is a subclass of Domain and thus a possible stricter range for

the parameter whatDomain. The syntax for parameter specialization is

p:C

where C is the name of a subclass of the original range of the parameter p. A param-

eter specialization replaces the range of the parameter’s variable in the query rule.

For example, the query call

EntityTypeByDomainQ[whatDomain:NumberDomain]

is evaluated on the substituted query rule

forall x,w (x in EntityType) and (w in NumberDomain) and (x

feature w) ==> Q(EntityByDomainQ,x,whatDomain,w)

If a generic query class contains more than one parameter, then a query call can

contain any mixture of parameter instantiations and specializations for all or part of

the query’s parameters. One parameter may not, however, be both instantiated and

specialized in the same query call.

The attribute category parameter is defined for generic query classes. It may be

combined with the categories retrieved_attribute and computed_attribute.

For example, the query class

EntityTypeByDomainQ1 in GenericQueryClass isA EntityType with

parameter, retrieved_attribute

feature: Domain

constraint

c2: $ (~this feature ~feature) $

end

returns as answer attribute the feature(s) of instances of EntityType. At the same

time, the user can parameterize this attribute. The query call expression

126 Manfred A. Jeusfeld

EntityTypeByDomainQ1[Integer/feature]

returns all instances of EntityType that have at least one feature of domain Inte-

ger and would return, in the answer, the features of Integer that the instances

have.

In principle, a query call is allowed at any position in a Telos frame where a Telos

class is allowed. ConceptBase however, allows query calls only inside Telos frames of

ordinary classes.

3.12 Views as Extended Query Classes

Views extend the functionality of generic query classes in two directions. First, they

allow complex attributes. Second, they introduce a variant of retrieved attributes that

allows answers to have fillers (or not) on specified attributes. The following definition

of the class View introduces the new features:

View in Class isA GenericQueryClass with

attribute

inherited_attribute : Proposition;

partof : SubView

end

Attributes of the category inherited_attribute are similar to retrieved attributes

of query classes, but they are not necessary for answer objects of the views; that is, an

object need not necessarily instantiate the attribute to be a solution of the view.

The partof attribute in the class View allows the definition of complex nested

views; that is, attribute values are not restricted to simple object names. They can

also represent complex objects with some further attributes. The following view

retrieves all employees with their departments and attaches the head attribute to the

departments:

EmpDept in View isA Employee with

retrieved_attribute, partof

dept : Department with

retrieved_attribute

head : Manager

end

end

The subview at EmpDept!dept is an abbreviated view definition in which the at-

tribute value (here, Department) has the role of the subview’s superclass. Concept-

Base internally decomposes the nested view definition into several nonnested view

definitions:

Metamodeling and Method Engineering with ConceptBase 127

EmpDept in View isA Employee with

retrieved_attribute, partof

dept : SV_EmpDept_dept

end

SV_EmpDept_dept in SubView isA Department with

retrieved_attribute

head : Manager

end

A view definition can have arbitrarily many subviews. Each subview can itself

have subviews. The level of nesting in the view definition determines the nesting with-

in the answer objects. In frame syntax, subviews appear as follows:

John in EmpDept with

dept

JohnsDept : Production with

head

ProdHead : Phil

end

end

Max in EmpDept with

dept

MaxsDept : Research with

head

ResHead : Mary

end

end

If one replaces retrieved_attribute with inherited_attribute in the view

definition, then the corresponding attribute may have zero fillers in the answer that

is returned. As an example, consider the following view definition:

EmpDept1 in View isA Employee with

retrieved_attribute, partof

dept : Department with

inherited_attribute

head : Manager

end

end

An employee like Mary whose department has no head might also be in the answer

set of the view:

128 Manfred A. Jeusfeld

Mary in EmpDept1 with

dept

MaxsDept : Marketing

end

To make it easier to define views, we allow some shortcuts in the view definition

for the classes of attributes. For example, if one wants all employees who work in

the same departments as John, one can use the term John.dept instead of Depart-

ment. In general, the term object.attrcat refers to the set of attribute values of

object under the attribute category attrcat, that is, all objects x such that (ob-

ject attrcat x) holds. This path expression can be extended to any length; for

example, John.dept.head refers to all managers of departments in which John is

working.

A second shortcut permitted in view definitions is the explicit enumeration of

allowed attribute values. The following view retrieves all employees who work in

the same department as John and earn 10000, 15000, or 20000 euros.

EmpDept2 in View isA Employee with

retrieved_attribute

dept : John.dept;

salary : [10000,15000,20000]

end

As mentioned before, subviews use the same syntax as normal view definitions.

Constraints can also be specified in subviews; such constraints refer to the object of

the outer frame(s).

EmpDept_likes_head in View isA Employee with

retrieved_attribute,partof

dept : Department with

retrieved_attribute, partof

head : Manager with

constraint c : $ (~this likes ~this::dept::head) $

end

end

end

The variable this in nested views always refers to the object of the main view, in this

case, an employee. Objects of nested views can be referred to using ~this::label,

where label is the corresponding attribute name of the subview. In the example, we

want to express the idea that employees must like their bosses. Because the subview

for managers is part of the subview for departments, we must use the :: operator

Metamodeling and Method Engineering with ConceptBase 129

twice: ~this::dept refers to the departments of ~this, and ~this::dept::head

refers to the heads of the departments of ~this.

3.13 Metalevel Formulas

Deductive rules and integrity constraints are formulas over the set of allowed predi-

cates. In our example, the formulas are attached to classes and make statements

about the instances of the classes. For method engineering, one has to design model-

ing notations in which the symbols like those for nodes and links have a predefined

semantics: When a model is created using these symbols, then their interpretation has

to be consistent with the definition of the modeling notation. For method engineer-

ing, the formulas range not just over instances of classes, but over instances of in-

stances of classes. As an example, consider the subclass relationship. In Telos, this is

encoded with the isA predicate. Its interpretation is defined by the Telos axioms,

namely,

forall o (o in Proposition) ==> (o isA o)

forall c,d,e (c isA d) and (d isA e) ==> (c isA e)

forall x,o,c,d (x in c) and P(o,c,isa,d) ==> (x in d)

The axiom of interest here is the last one. It quantifies over variables c, d, which

themselves are classes that stand in subclass relationship to each other.

Definition 4.1 Let f be a Datalog formula. f is called a metalevel formula i¤ a pred-

icate (x in c) with variable c occurs in f.

We say that c occurs at the class position of the predicate (x in c).

As such, metalevel formulas are nothing special. They do, however, have serious

implications for stratification in a Telos database: About half of all Telos objects

are instantiation objects. If we stratified on the predicate in for instantiation, then

we would not be allowed to use a negative literal not (x in c) in any rule that

directly or indirectly derives the predicate (x in c). Because the in predicate is so

frequently used in Telos, this would basically eradicate the use of negation. To over-

come this problem, ConceptBase applies stratification to the predicate symbol In.c,

that is, the combination of the predicate name plus the second argument. This

method, however, doesn’t work directly for metalevel formulas, since they feature

in predicates with a variable as second argument.

The problem can be overcome by partial evaluation. If the metalevel formula f

contains a positive literal Q(...,c,...), which binds the variable c, then we com-

pute the extension of Q and rewrite the metalevel formula with all facts from the ex-

tension of Q. In the case of the isA rule, we can take the predicate P(o,c,isa,d) in

the role of the predicate Q. Assume that we have two facts P(o1,Emp,isa,Person)

130 Manfred A. Jeusfeld

and P(o2,Manager,isa,Emp) in the extension of the P-predicate. Then the meta-

level formula is replaced by two partially evaluated formulas:

forall x (x in Emp) ==> (x in Person)

forall x (x in Manager) ==> (x in Emp)

The partially evaluated formulas now have constants as second arguments of the in

predicates, yielding better opportunities for stratification.

The partial-evaluation algorithm for metalevel formulas is more complex than the

foregoing example suggests. In general, there can be more than one Q-predicate for

use in partial evaluation. The system then has to select one that does not have too

many facts in its extension. (A huge extension would result in a huge number of par-

tially evaluated formulas.) In some cases, the partial evaluation must be applied

more than once to eliminate all variables at class positions of in predicates.

Example 3.1 As an example for metalevel formulas, consider cardinality of attrib-

utes. Let’s assume that we want to specify that certain attributes require a filler (nec-

essary) or have at most one filler (single):

Manager in Class with

attribute

dept: Department;

leads: Project

constraint

onDept: $ forall m/Manager d1,d2/Department

(m dept d1) and (m dept d2) ==> (d1 == d2) $;

onLead: $ forall m/Manager

exists p/Project (m leads p) $

end

Obviously, the dept attribute is single-valued and the leads attribute is necessary.

However, the constraints are formulated at the model level (here, with Manager).

We require a generic formulation of single and necessary attributes that we can reuse

for any class. To obtain such a generic formulation, we extend the class Proposi-

tion with two more attributes and define two metalevel formulas:

Proposition in Class with

attribute

single: Proposition;

necessary: Proposition

constraint

singleIC: $ forall p/Proposition!single c,d/Class x,m/VAR

P(p,c,m,d) and (x in c) ==> (forall y1,y2/VAR (y1 in d) and

(y2 in d) and (x m y1) and (x m y2) ==> (y1 == y2)) $;

Metamodeling and Method Engineering with ConceptBase 131

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3784177/SingleNecessary.sml.txt

necessaryIC: $ forall p/Proposition!necessary c,d/Class

x,m/VAR

P(p,c,m,d) and (x in c) ==> (exists y/VAR (y in d) and (x m

y)) $

end

The pseudoclass range VAR can be used when the corresponding variable gets a range

from the partial evaluation or is replaced by a constant. For example, the variable x

gets a range as a result of the partial evaluation of predicate P(p,c,m,d). The same

predicate replaces the variable m with constants. The metaformulas for single and

necessary allow their semantics to be reused simply by using the appropriate attri-

bute categories:

Manager in Class with

single

dept: Department

necessary

lead: Project

end

The partial evaluation for the single attribute works as follows: The database

implies the facts (Manager!dept in Proposition!single) and P(Manager!dept,

Manager,dept,Department). This matches the conjunction (p in Proposition!

single) and P(p,c,m,d)9 in singleIC, leading to a substitution:

[Manager!dept/p, Manager/c, dept/c, Department/d]

Applying this substitution to the singleIC formula yields the partially evaluated

formula

forall x/VAR (x in Manager) ==> (forall y1,y2/VAR (y1 in

Department) and (y2 in Department) and (x dept y1) and (x dept y2)

==> (y1 == y2))

which can be rewritten as

forall x/Manager y1,y2/Department (x dept y1) and (x dept y2) ==>

(y1 == y2)

Figure 3.4 illustrates that metalevel formulas are defined at the level of meta-

classes. These formulas define properties of the instances of classes, which are them-

selves instances of the metaclasses. Hence, if we use the metaclass level for defining

modeling notations, metalevel formulas can be employed to define part of the seman-

tics of the notational symbols (in our example, the semantics of the single and

necessary symbols). Note that the class Proposition serves as a metaclass. Since

any object is an instance of Proposition, this is a consistent use of classification. In

132 Manfred A. Jeusfeld

the figure, the token object Mary is a proper instance of Manager because neither the

singleIC nor the necessaryIC is violated. The object Bill, on the other hand,

violates both constraints.

Example 3.2 This example is about defining the meaning of transitivity, symmetry,

and similar relation properties. These properties are so basic that they are part of

any elementary textbook in algebra. Hence, it would be useful to have predefined at-

tribute categories for them rather than formulating transitivity over and over again

for specific relations like the subordinate attribute of section 3.9. The following

definitions solve the problem at the most generic level, the level of Proposition:

Proposition with

attribute

transitive: Proposition;

antisymmetric: Proposition

end

The two metalevel formulas for transitivity and antisymmetry are then defined by

RelationSemantics in Class with

rule

trans_R: $ forall x,z/VAR

(exists AC/Proposition!transitive C/Proposition y/VAR

Figure 3.4
Metalevel formulas as properties of metaclasses

Metamodeling and Method Engineering with ConceptBase 133

source

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782774/LinkSemantics.sml.txt
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686001/fig3-4.gel

M/VAR P(AC,C,M,C) and (x in C) and (y in C) and (z in

C) and (x M y) and (y M z)) ==> (x M z) $

constraint

antis_IC: $ forall AC/Proposition!antisymmetric C/Proposition

x,y/VAR M/VAR

P(AC,C,M,C) and (x in C) and (y in C) and (x M y)

==> not (y M x) $

end

The reader will recognize the pattern in the last lines of the two formulas; the final

clauses in each formula above define the scope of the variables. Because transitivity

and antisymmetry are defined at the level of the most generic object, Proposition,

these attribute categories can be applied to any attribute definition just by attaching

them as attribute categories. Consider a class Person that has an ancestor attribute

that should be antisymmetric and transitive. Given the two preceding formulas, the

attribute can be fully specified by

Person with

attribute,antisymmetric,transitive

hasAncestor: Person

end

The properties symmetry and reflexivity can be defined by similar expressions. The

full details are in the example models provided on the CD-ROM that accompanies

the volume.

ConceptBase supports metalevel formulas for rules and constraints of proper

classes, but not for query classes. Although metalevel formulas do not extend the for-

mal expressiveness of Telos, they save a lot of coding e¤ort, and they can be seam-

lessly integrated into the IRDS-based strategy for defining modeling notations. The

more metalevel formulas are expressed at the metaclass level, the deeper is the ex-

plicit knowledge about the modeling notations, in particular, the meaning of the

symbols in the modeling notations. Section 3.15.6 comes back to this issue to define

the meaning of cardinality expressions in data-modeling notations. Chapter 7 elabo-

rates on an even more complex application of metalevel formulas.

3.14 Active Rules

Rules, constraints, and queries are the principal means of expressing computation in

the ConceptBase metadatabase system. Since they are all mapped to Datalog with

negation, one can guarantee termination of any computation. Any computation be-

yond the Datalog scope is supposed to take place in application programs that inter-

act with the metadatabase system.

134 Manfred A. Jeusfeld

In order to extend the system’s computational scope, active rules have been intro-

duced in ConceptBase. An active rule has three parts. The first part, the event section,

specifies what external event activates the active rule. With ConceptBase, an external

event can be an update to the database or a calling of a query.10 An event section

binds variables to values. The second part is the condition section, a logical formula

over a superset of the variables bound by the event section. This formula is evaluated

over the database state. The last part is the action section. It consists of a sequence

of procedural calls that either update the database (insert, delete) or invoke further

query calls, including built-in queries (queries without a logical constraint that exe-

cute a piece of program code).

The class definition of active rules is as follows:

ECArule in Class with

attribute

ecarule : ECAassertion;

priority_after : ECArule;

priority_before : ECArule;

mode : ECAmode;

active : Boolean;

depth : Integer

end

The attribute ecarule holds the specifications for the event, condition and action

parts (sometimes referred to by the acronym ECA). An ECA rule is represented as

a string that starts with variable declarations:

$ v1/c1 v2/c2 ...

ON event

IF condition

DO actions-1

ELSE actions-2 $

The first line in this example contains the declaration of all variables used in the

ECAassertion. The specified classes of the variables are used only for compilation

of the rule; during the evaluation of the rule, whether the variables are instances of

the specified classes is not tested. The variables are bound to objects by event, condi-

tion, or action statements.

Possible events are the insertion (Tell) or deletion (Untell) of attributes (predi-

cate A), instantiation links (predicate In), or specialization links (predicate Isa).

For example, if the rule should be executed if an object is inserted as instance of

Manager, then the event statement is

Metamodeling and Method Engineering with ConceptBase 135

Tell(In(x,Manager))

Furthermore, an event may be a query; for example, if the event

Ask(find_instances[Employee/class])

is specified, the ECA rule is executed before the evaluation of the query find_

instances with the parameter Employee. It is possible to use a variable as a place-

holder for a parameter.

The event detection algorithm takes only extensional events into account. Events

that can be deduced using a rule or a query are not detected. However, the algorithm

cares about the predefined Telos axioms; for example, if an object is declared as an

instance of a class, the object is also an instance of the superclasses of that class.

The condition section of an active rule is a predicate evaluated on the database. It

can be either a normal literal (A, In, or Isa) or a query like In(x,EmpDept1). If the

condition contains a free variable, the actions specified in the DO block are executed

for each result for this variable. If the condition contains only constants or bound

variables and can be evaluated to TRUE, the DO action block is executed once.

Otherwise, the ELSE block is executed. By default, queries are evaluated on the state

of the object base before the database transaction started. If one wants to take new

information into account in the evaluation of a query, one has to use the new opera-

tor. For example, if one wants to check the instantiation of an object in the database

state after the e¤ect of update operations, one has to specify

new(In(x,Person)

in the condition.

Actions are specified in an active rule in a comma-separated list. The syntax is

similar to that of events, except that one can also pose queries (Ask). All variables

in Tell and Untell actions must be bound. The Tell action of an attribute

A(x,ml,y) is performed only if there is no attribute of category ml with value y for

object x. In that case, a new attribute with a system-generated label is created. If an

attribute A(x,ml,y) is to be deleted, then all attributes of category ml with value y

for object x are deleted.

Active rules are linked to transactions on the database. A transaction is a sequence

of updates (insertions or deletions) and queries. All events in active rules are derived

from the entries in the transaction. The attribute mode controls when an active rule is

evaluated. It has three possible modes:

� Immediate: The condition in the rule is evaluated immediately after the event

specified in the rule has been detected. If it evaluates to TRUE, the action is executed

immediately, too.

136 Manfred A. Jeusfeld

� ImmediateDeferred: The condition in the rule is evaluated immediately after the

event specified in the rule has been detected. If it evaluates to TRUE, the action is

executed at the end of the current transaction.11

� Deferred: The condition in the rule is evaluated at the end of the current transac-

tion. If it evaluates to TRUE, the action is executed immediately after the evaluation

of the condition.

The default mode is Immediate.

The attributes priority_after and priority_before establish a partial order

on the set of active rules. If more than one active rule has a particular event as its

trigger, the partial order determines the sequence in which the active rules are eval-

uated. The attribute active has possible values TRUE and FALSE. It allows an

active rule to be deactivated/reactivated without its having to be deleted from or

reinserted into the database.

Finally, the attribute depth controls the depth of the call tree of active rules: The

action part of an active rule can produce a new event, which triggers the call of an-

other active rule, which itself can trigger the call of further active rules. When the

nesting depth specified in depth is reached, the execution of nested active rules is

aborted. This feature prevents infinite loops. The default value for the depth is zero;

that is, no nested calls are permitted.

Example 3.3 We model a situation in which employee candidates are entered into

a database. Those candidates fulfilling a certain exception condition are put on a

‘‘watch list’’ (first ECA rule). Otherwise they are entered as ordinary employees into

the system. Those candidates placed on the watch list are removed and entered as

normal employee as soon as the system acknowledges that it has ‘‘watched’’ them.

First, the necessary classes have to be defined. The query class UnderPayed defines

an exception employee candidate:

EmployeeCandidate in Class with

attribute

salary: Integer

end

Employee isA Employee end

ToBeWatched end

AlreadyWatched end

UnderPayed in QueryClass isA EmployeeCandidate with

constraint

c1: $ exists s/Integer (~this salary s) and (s < 1000) $

end

Metamodeling and Method Engineering with ConceptBase 137

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782627/EcaExample.sml.txt

The first ECA rule is triggered whenever an instance of EmployeeCandidate is

entered into the database. When it is triggered, the exception condition UnderPayed

is checked for that candidate on the new database state. If the condition is TRUE,

the candidate is placed on the watch list; otherwise she is entered into the database

as a normal employee:

WatchForUnderpayed in ECArule with

mode m: Deferred

ecarule

er : $ e/Employee

ON Tell(In(e,EmployeeCandidate))

IF new(In(e,UnderPayed))

DO

Tell(In(e,ToBeWatched))

ELSE

Tell(In(e,Employee))

$

end

The second ECA rule is for removing a candidate from the watch list. It is trig-

gered by an instantiation of the class AlreadyWatched:

Okayed in ECArule with

mode m: Deferred

ecarule

er : $ e/EmployeeCandidate

ON Tell(In(e,AlreadyWatched))

IF TRUE

DO

Untell(In(e,ToBeWatched)),

Tell(In(e,Employee))

$

end

The second ECA rule has no ELSE part, as when the condition is false, no action is

executed. Note that the action part in this example contains two actions.

The example can be executed by inserting the following frames.

mary in EmployeeCandidate with

salary s: 500

end

mary AlreadyWatched end

138 Manfred A. Jeusfeld

3.15 Engineering the Yourdan Method

Modern Structured Analysis (Yourdan 1989) is an example of a collection of model-

ing languages that is comprehensive while still rather simple. It was proposed before

the shift in modeling to object orientation. The purpose of the Modern Structured

Analysis method (referred to here as the Yourdan method, after its originator) is to

specify a system in a semiformal way through graphical notations. A system here is

an object that receives information from the environment and reacts to it by generat-

ing output or changing its internal state. Yourdan’s method serves here as a test case

to demonstrate the metamodeling approach with Telos.

Developers of system-modeling methods have observed that a system can be

viewed from multiple perspectives. First, one represents functions (or processes) of

the system with their inputs and outputs. This is the functional perspective. Second,

the data perspective specifies about which entities of the external world the system

makes records and determines the structure of the data elements processed by the

system. Third, the control perspective augments the other two perspectives, defining

how the system reacts to control events triggered by some object (or person) from

the environment.

This section discusses the engineering of the Yourdan method in order to highlight

the various aspects of method engineering and metamodeling. The presentation starts

with the data perspective, because of its relative simplicity. A very simple notation

definition level is assumed that is then applied to the functional perspective. We

then discuss the development of internotational rules and constraints, which relate

models developed in di¤erent perspectives. Finally, process models are presented

that encode the steps of a modeling method (rather than the results of the steps,

which are encoded in the modeling notations). The Telos formalizations of the Your-

dan method are contained in the companion CD-ROM to this volume. They can be

tested directly with the ConceptBase system. The Yourdan method case study pre-

sented in this section has the following structure:

� Modeling the ERD-simple notation: This is a basic version of the entity-

relationship diagramming notation. It features entity types, relationship types, and

attributes.

� Modeling the ERD-advanced notation: This notation extends the previous one

with IsA relations and cardinalities.

� Modeling the DFD notation: This notation encodes data flow diagrams.

� Modeling internotational constraints: Constraints and queries can be used to

manage the connections between models for di¤erent perspectives of the same arti-

fact. The generation of these constraints can be managed via a richer notation defini-

tion level.

Metamodeling and Method Engineering with ConceptBase 139

sources
slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/3782867
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616317/lect06.pdf

� Modeling process model notations: The individual steps of a method can them-

selves be encoded in a notation.

3.15.1 Modeling the ERD-Simple Notation

Figure 3.2 introduced abstraction levels that can be used to define modeling nota-

tions as well as models, and their incarnations. Entity-relationship diagrams (ERDs)

are models for specifying data sets. Entity types are the denotations of sets of identi-

fiable objects (entities) that can have descriptive properties (attributes). An attribute

has a label. Its values are elements from a domain, for example, integer or string.

A relationship type denotes a set of relationships. A relationship links several partic-

ipating entities. The relationship type defines roles in which entities can participate.

For example, a product entity can be linked to a customer entity by a relationship

of type orders.

Relationship types can restrict the cardinalities of the entities that participate in a

relationship. For example, in an orders relationship there must be exactly one cus-

tomer and at least one product. The Telos model of ERD notation first defines the

base concepts Node and its attribute connectedTo mentioned in the foregoing:

Notation definition level

Node with

attribute

connectedTo: Node

end

This simple notation definition level just provides the concepts Node and Node!

connectedTo, that is, the ability to represent graphs. It is su‰cient for the moment.

We will later extend it to represent software development steps.

Notation level for a simple ERD notation

ObjectType in Node end {* used later *}

EntityType in Node isA ObjectType with

connectedTo

ent_attr: Domain

end

RelationshipType in Node isA ObjectType with

connectedTo

role: EntityType

end

Domain in Node end

Manfred A. Jeusfeld140

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782727/01-ERD-simple.sml.txt

Model level for an example ERD

Integer in Domain end

Domain String end

Date in Domain end

String isA Date end

Employee in EntityType with

ent_attr

e_name: String;

earns: Integer

end

Project in EntityType with

ent_attr

budget: Integer

end

worksFor in RelationshipType with

role

toEmp: Employee;

toProj: Project

end

The first three objects in this model define the three domains Integer, String, and

Date. The classes Integer and String are predefined in ConceptBase. The class

Date is defined here to subsume String. In other words, any instance of String is

allowed as an instance for Date. This is a technical trick for use when the details of a

particular domain are not of further interest in the modeling. The domains are part

of the model level because their instances (the values) are at the data level.

The remainder of the model defines two entity types and one relationship type.

Note that the relationship type uses the role names toEmp and toProj. Since they

point to di¤erent entity types, these role names are not displayed in an ERD. How-

ever, the Telos representation has to assign such names because the role links have to

be identifiable. An equivalent definition would be

worksFor in RelationshipType with

role

role1: Employee;

role2: Project

end

Figure 3.5 displays the model in a conventional ERD and contrasts it with the

Telos representation. The di¤erence is that the Telos representation uniformly

Metamodeling and Method Engineering with ConceptBase 141

assigns role names and attaches domains to attributes. The ERD has di¤erent graph-

ical symbol for entity types and relationship type, unlike the Telos representation,

which uses the same symbol for both. The Telos model includes this information via

the classification links (Employee in EntityType), (Project in EntityType),

and (worksFor in RelationshipType). The role links in the ERD appear un-

directed, but they always link a relationship type with an entity type. Therefore, the

role links are implicitly directed. It follows that the ERD can always be reconstructed

from the Telos representation.

The ERD-simple notation has no user-defined constraints (called balancing rules in

the Yourdan textbook) and lacks constructs for IsA relationship types and complex

object types (called associative object indicators by Yourdan). The following section

introduces these two constructs, and the CD-ROM companion to this volume gives

extensive examples of how to model constraints on ERD models and their semantics.

3.15.2 Modeling the ERD-Advanced Notation

In addition to the properties introduced in the ERD-simple notation, we might want

the following features:

1. There should be a special relationship type IsA that has one entity type as ‘‘super-

type’’ and several entity types as ‘‘subtypes.’’ There can be several IsA relationship

types that have a given entity type as supertype. Similarly, an entity type may occur

as subtype in multiple IsA relationship types. The intended semantics are that each

instance of a subtype is also an instance of the supertype of which it is a subtype.

2. A new object type should be introduced that is both an entity type and a relation-

ship type (sometimes called a complex object type). The classical example is an order

Figure 3.5
ERD versus its Telos representation

142 Manfred A. Jeusfeld

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782689/ERD-advanced.sml.txt

that has role links to several entity types but also has some attributes and may be re-

ferred to by other relationship types.

3. Cardinalities for role links should be introduced. (We will limit consideration

here to the cardinalities 1, 2, and many.) Cardinalities need to be enforced at the

data(base) level and must be used in a consistent manner. For example, one may

not specify that a role link is both ‘‘minimum 2 fillers’’ and ‘‘maximum 1 filler.’’

4. Key attributes should identify entities; that is, there should not be two di¤erent

entities with the same value for the key attribute(s).

Models for the ERD-advanced notation are included on the companion CD-ROM

to this volume.

3.15.3 Modeling the DFD and Event List Notations

Data flow diagrams consist of processes, data stores, data flows, terminators, control

processes, and control flows. The DFD notation employed here has a new element,

leveling, a way to decompose a process into a DFD consisting of DFD elements

(processes, stores, etc.). The processes in the leveled DFD can themselves be leveled

or specified by a process specification (pseudocode).

Since we are now defining a second notation, it makes sense to introduce a slightly

extended notation definition level that allows us to keep models separate from one

another and to express the idea that certain models belong to the same modeling

project.

Notation definition level with Model and Project

Node in Individual with

attribute

connectedTo: Node

end

Project in Individual with

attribute

produces: Model

end

Model in Individual with

attribute

contains: Node

end

The new metaconcept Model aggregates content (here, nodes) and can be compared

with a file containing records. The metaconcept Project aggregates several models

Metamodeling and Method Engineering with ConceptBase 143

that belong to the same modeling project. Among other things, the two new concepts

at notation definition level allow the expression of constraints on models that depend

on whether they belong to the same modeling project.

Notation level for DFD notation

Node DFD_Node in Node with

connectedTo

dataflow: DFD_Node

end

DFD_Node!dataflow with

attribute

withType: DataType

end

Process in Node isA DFD_Node with

connectedTo

leveledTo: DFD_Figure

end

Terminator in Node isA DFD_Node with

end

Store in Node isA DFD_Node with

connectedTo

withType: ObjectType

end

DataType in Node with

end

DFD_Model in Model with

connectedTo

contains: DFD_Node

end

DFD_Figure in Node,Model isA DFD_Model end

nowhere in DFD_Node end

PreliminaryBehavioralModel isA DFD_Model end

DataType in Node with

end {* reference to data dictionary *}

Manfred A. Jeusfeld144

source

slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782614/dfd.sml.txt
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616321/lect07.pdf

ObjectType in Node isA DataType with

end {* reference to ERD notation *}

The notation level for DFD makes use of the fact that some model components

(DFD_Node) can be aggregated with the model (DFD_Model). The leveling relates a

process to a DFD_Figure (a special DFD model). The leveled DFD_Figure can con-

tain data flow links whose source or destination is not part of the DFD_Figure. Such

data flows are called dangling links in the Yourdan method. The object nowhere

serves as an artificial source and destination for those data flows. The concept Pre-

liminaryBehavioralModel refers to a DFD model that is created from the event

list (see later discussion).

The DFD notation also includes the notion of a control process. A control process

has no dataflows but does have control flows. Incoming control flows are labeled by

control events denoting that some condition in the environment or in the system has

become TRUE. Outgoing control flows have no label and always connect a control

process with an ordinary process: The control process can activate the process under

certain conditions. The additional definitions for control processes are as follows:

DFD_Node in Node with

connectedTo

incomingCF: ControlProcess

end

DFD_Node!incomingCF with

attribute

withEvent: EventType

end

ControlProcess in Node isA DFD_Node with

connectedTo

outgoingCF: Process

end

Event types specify the nature of the incoming control flow. Some event types orig-

inate in the environment and are grouped in an event list. These external event types

can be associated with a terminator, which originates the event. We distinguish three

subclasses of external event types: Flow event types are defined as data inputs from

a terminator to the system; control event types state that a certain condition has be-

come TRUE in the environment; and temporal event types are TRUE when a certain

point in time has been reached. (The precise definition of these event types can be

found in textbooks about the Yourdan method.) It is worth noting that the models

presented here group some details together: here an event list is a just a list of exter-

nal event types.

Metamodeling and Method Engineering with ConceptBase 145

Notation level for event list notation

EventType in Node with

attribute

eventtext: String

end

ExternalEventType in Node isA EventType with

connectedTo

agent: Terminator;

answeredBy: Process {* links events to processes *}

end

EventList in Model with

contains

containsEvent: ExternalEventType

end

FlowEventType in Node isA ExternalEventType end

ControlEventType in Node isA ExternalEventType end

TemporalEventType in Node isA ExternalEventType end

Figure 3.6 depicts DFD notation and its relation to other Yourdan notations. In

the figure, the cross-notational links withType and withEvent originate from con-

cepts in DFD notation; it is also possible, however, to have cross-notational links

start from concepts in other notations and end in concepts in DFD notation (as

is the case in the figure for the link respondedBy of ExternalEventType). The

Manfred A. Jeusfeld146

gel

Figure 3.6
The DFD notation cross-related to other Yourdan notations

Typo: The label of the area behind "ObjectType" in Figure 3.6 should be "ERD notation"

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686009/fig3-6.gel

method engineer completing the diagram has to decide to which notation each cross-

notational link in the diagram belongs. Here, we assume that they belong to the

DFD notation. The reader may have noticed that a cross-notational link is not ren-

dered any di¤erently than other notational links (e.g., the dataflow link of the DFD

notation). The decision to put certain node and link types into a certain notation is

made to manage the complexity of a modeling notation within a method. It would

also be possible to define a single ‘‘Yourdan’’ notation that encompassed all node

and link types (i.e., the union of DFD, ERD, and all other Yourdan notations).

Such a unified notation, however, would be too complex for human modelers to

handle. Experience has shown that modeling is more successful when the modeler

concentrates on the specific aspects of the modeling task rather than the global task

of modeling a complex system.

DFD notation is interrelated with other notations in various ways. First, data

stores have object types as data structures. The class ObjectType is a reference to

ERD notation, where it serves as the common superclass of EntityType and Rela-

tionshipType. The data types attached to data flows can also be regarded as cross-

notational links: Data types are defined in data dictionaries.12 Second, the event

types attached to incoming control flows of DFD control processes can be external

event types enumerated in the event list.

Model level for an example DFD and event list

MyDFD in PreliminaryBehavioralModel with

containsDFDNode

n1: CUSTOMER;

n2: CREDITCARDCOMPANY;

n3: UpdateAccounts;

n4: Accounts

end

CUSTOMER in Terminator with

dataflow

d1: UpdateAccounts

end

CREDITCARDCOMPANY in Terminator with

dataflow

d2: UpdateAccounts

end

UpdateAccounts in Process with

dataflow

Metamodeling and Method Engineering with ConceptBase 147

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782614/dfd.sml.txt

d3: Accounts

end

Accounts in Store end

CUSTOMER!d1 with

withType

datatype: payment

end

CREDITCARDCOMPANY!d2 with

withType

datatype: maximumcredit

end

UpdateAccounts!d3 with

withType

datatype: verifiedpayment

end

payment in DataType end

maximumcredit in DataType end

verifiedpayment in DataType end

MyEventList in EventList with

containsEvent

ev1: E1;

ev2: E2

end

E1 in FlowEventType with

agent a1: CUSTOMER

eventtext t: "A customer makes a payment"

end

E2 in TemporalEventType with

eventtext t: "At 18:00 the invoices of current orders are sent

out"

end

3.15.4 Modeling Intranotational Constraints

An intranotational constraint is a constraint ranging over concepts of a single nota-

tion (e.g., the ERD notation). In this section, I consider only constraints that restrict

148 Manfred A. Jeusfeld

slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616321/lect07.pdf

the set of allowed diagrams.13 Some of these constraints are already imposed by the

choice of Telos as the language. For example, the ERD notation defines

RelationshipType in Node isA ObjectType with

connectedTo

role: EntityType

end

Telos axiom 3.14 then requires that any instance of RelationshipType that uses

the role link must end in an instance of EntityType. Furthermore, any instance

of RelationshipType is also an instance of ObjectType (by axiom 3.13).

Beyond such predefined rules of well-formedness, a notation definition should also

include internal constraints. With ConceptBase, there are two principal strategies for

encoding notational constraints. First, they can be represented as ordinary class con-

straints. Second, they can be encoded as query classes, which then return the ‘‘viola-

tors’’ of the constraint. To demonstrate this principle, let us consider the following

constraint for the ERD notation:

C1. Any entity type must have at least one describing attribute.

If we want to realize this condition as a class constraint, we have to instantiate the

concept EntityType as an instance of the built-in object Class, which defines the

attribute category constraint:

EntityType in Node,Class isA ObjectType with

connectedTo

ent_attr: Domain

constraint

c1: $ forall e/EntityType

exists a/EntityType!ent_attr From(a,e) $

end

The foregoing class constraint is a realization of constraint C1, but it has one

important drawback: No database violating the constraint will be accepted by the

ConceptBase system. In practical modeling applications, however, we want viola-

tions to be tolerated during the modeling process, that is, when we are constructing

the diagrams. During the modeling process, the models are typically incomplete.

Only at certain milestones is the incompleteness expected to be resolved, and only at

those points are violations to be regarded as unacceptable. Strict enforcement of the

constraint just defined would prevent us from defining any entity type without pro-

viding at least one entity attribute. One solution to the problem is to provide the con-

straint to the system only at the appropriate milestone in the modeling process. If the

Metamodeling and Method Engineering with ConceptBase 149

constraint is fulfilled at that point, it will be accepted by the system; otherwise, an

error message will be generated.

As noted previously, there is a second alternative for solving the problem, and it

is in most cases preferable: Represent the constraint as a query class, which then

returns the violators. This method works for all constraints that have the format

forall X A(X) ==> B(X)

The violators of such constraints are all X that fulfill the condition

A(X) and not B(X)

In the foregoing example, we can apply the pattern as follows for X=e:

A(e) = In(e,EntityType), where the In predicate is implicit by the typed quantifi-

cation e/EntityType

B(e) = exists a/EntityType!ent_attr From(a,e)

Given this transformation, we can mechanically create the query class, which com-

putes the violators of the constraint:

EntityTypeWithoutAttribute in QueryClass isA EntityType with

constraint

c1: $ not exists a/EntityType!ent_attr From(a,~this) $

end

The answer variable ~this assumes the role of the variable e in the first solution

presented, as elaborated in the section on query classes. The query class representa-

tion eliminates the problem with the first solution, in that at any point in time,

a modeler can ask for the violators of the original constraint. It is a matter for the

process model of the method to define when the query class has to return an empty

answer.

Being more complex than ERD notation in terms of number of concepts, the DFD

notation also features more intranotational constraints. Let us consider the following

constraints:

C2. Any process must have at least one ingoing and one outgoing dataflow.

C3. Data flows between terminators are forbidden.

C4. Data flows must have data types attached to them, with the exception of data

flows starting from or ending in data stores.

The following query classes encode these constraints. (Constraint C2 is split into two

query classes for the sake of readability and usability.)

150 Manfred A. Jeusfeld

ProcessWithoutInput in QueryClass isA Process with

constraint

c21: $ not exists d/DFD_Node!dataflow To(d,~this) $

end

ProcessWithoutOutput in QueryClass isA Process with

constraint

c22: $ not exists d/DFD_Node!dataflow From(d,~this) $

end

TerminatorWithForbiddenCommunication in QueryClass isA Terminator

with

constraint

c3: $ exists t/Terminator d/DFD_Node!dataflow From(d,~this)

and To(d,t) $

end

DataflowWitoutLabel in QueryClass isA DFD_Node!dataflow with

constraint

c4: $ not (exists s/Store From(~this,s) or To(~this,s)) or not

(exists dt/DataType (d withType dt)) $

end

The level of complexity of a notation can be measured in terms of the number and

size of the intranotational constraints it imposes. The more such constraints are

defined, the more is known about syntactically correct models in that notation. As

a consequence, there are also more opportunities to violate the constraints, which

makes the notation more di‰cult to handle. The method engineer should take such

considerations into account when defining a notation.

3.15.5 Modeling Internotational Constraints

In contrast to the intranotational constraints just discussed, which involve concepts

from only a single notation, internotational constraints refer to concepts from more

than one notation. Since Telos provides a uniform framework for all notations

(as well as all models, data, and process executions), such constraints look like intra-

notational constraints. In fact, the decision to assign concepts to more than one

notation is arbitrary and made for the sake of readability of the models and under-

standability of the notations themselves.

A simple example of an internotational constraint is the following:

C5. Each data store must have an object type associated with it and vice versa.

Metamodeling and Method Engineering with ConceptBase 151

Two query classes realize this constraint:

ObjectTypeWithoutStore in QueryClass isA ObjectType with

constraint

c21: $ not exists s/Store (s withType ~this) $

end

StoreWithoutType in QueryClass isA Store with

constraint

c21: $ not exists o/ObjectType (~this withType o) $

end

Realized in this way, the constraint uses the cross-notational link withType that has

been defined as part of the DFD notation. The concept ObjectType is part of the

ERD notation, whereas Store is a concept in the DFD notation. There is nothing

noteworthy or exceptional in regard to the intranotational constraint.

The concepts ObjectType and Store are closely related. They have to occur in

pairs. So apparently, they are two aspects of the same abstract thing. This observa-

tion leads indeed to a principle of method engineering that can be represented in

the notation definition level and then exploited for the detection of internotational

constraints.

In our example, both ObjectType and Store are incarnations of an abstract data

concept. Object types refer to the interrelationships among data concepts (as handled

by the ERD notation). Stores have to do with the location of data in the network of

communication processes (as handled by the DFD notation). The common abstract

object is the manifestation of the artifact focus mentioned earlier: The models and

notations are interrelated because they make statements about the same artifact

(e.g., an information system). Hence, it is logical to enrich the notation definition

level by adding such abstract concepts and then investigate the links between their

incarnations in di¤erent notations. The following richer notation definition level

may be suitable for system analysis methods like Yourdan’s.

Notation definition level with abstract concepts

Node in Individual with

attribute

connectedTo: Node

end

Project in Individual with

attribute

produces: Model

end

152 Manfred A. Jeusfeld

153Metamodeling and Method Engineering with ConceptBase

slides

source

gel

*

Figure 3.7
Incarnation of DataConcept in DFD and ERD

Model in Individual with
attribute

 contains: Node

end

DataConcept in Individual isA Node end

ActivityConcept in Individual isA Node end
ControlConcept in Individual isA Node end

The three abstract concepts here are data concept, activity concept, and control con-
cept. Whenever two di¤erent notations instantiate the same abstract concept, it
becomes necessary to check whether a cross-notational link and internotational con-
straints are required. In the case of ObjectType and Store, we have the scenario
displayed in figure 3.7.

 If we were dealing with the data concept in a single notation, there would be no
need to distinguish the Store aspect of data from the ObjectType aspect. Because
we are separating them, however, we need to synchronize their definitions. In Telos,
the synchronization is performed by the cross-notational link plus the internotational
constraints, as shown previously. The Yourdan method includes more examples of
the phenomenon. For example:

� Process and process specification are both incarnations of the activity concept.
� Control process and state transition diagrams are both incarnations of the control
concept.

*) The Telos source at the link for figure 3.7 is slightly different and more general than the source sample in the
text.

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616325/lect08.pdf
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686067/fig3-7.gel
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686059/fig3-7-sources.sml.txt

The focus on artifacts in method engineering has another consequence: When

two models involve the same artifact (like an information system), they need to be

synchronized. However, assume that we are maintaining models of di¤erent model-

ing projects in the same repository. How can we keep them separate from one an-

other? The answer lies in the objects Project and Model of the notation definition

level. If the repository stores details of several independent projects, then the nota-

tional constraints of each project need to be made ‘‘project-aware.’’ For example, if

a modeling project involves both DFD and ERD models and contains a DFD model

that itself contains a store, then there must be an object type linked to this store that

is defined in an ERD model of the same modeling project:

YourdanProject in Project end

StoreWithoutTypeV2 in QueryClass isA Store with

constraint

c21: $ exists p/YourdanProject dfd/DFD_Model (p produces dfd)

and(dfd containsDFDNode ~this) and not (exists erd/

ERD_Model o/ObjectType (p produces erd) and (erd

containsType o) and (~this withType o) $

end

The object YourdanProject is at the notation level. It subsumes all modeling proj-

ects using Yourdan notations.

Project-aware intranotational constraints such as the one just defined can be writ-

ten in various combinations and versions. For example, assume that a method engi-

neer wants to check whether a given Yourdan project violates constraint C2. In this

case, a generic query class is a facility for formalization of the constraint:

DFDwithUntypedStore in GenericQueryClass isA DFD_Model with

parameter,computed_attribute

project: YourdanProject

computed_attribute

store: Store

constraint

c21: $ (~project produces ~this) and (~this containsDFDNode

~store) and not (exists erd/ERD_Model o/ObjectType

(~project produces erd) and (erd containsType o) and

(~store withType o) $

end

The query class will return the names of all DFD models in the Yourdan project,

in addition to the name of the project to which they belong and the name of the

154 Manfred A. Jeusfeld

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686114/fig3-8-sources.sml.txt

violating store. The parameter project can also be left void, that is, unused in the

query call. In that case, the query will scan all known Yourdan projects in the repos-

itory. The attribute category computed_attribute ensures that the name of the

project and data store involved are returned together with the name of the violating

DFD model.

3.15.6 Multilevel Statements to Express Semantics

The queries discussed in the foregoing constrain the set of models that are acceptable

in an information systems development method. A violation of some intra- or inter-

notational constraint can be detected just by analyzing the models. We can regard

the set of all notational constraints on a set of modeling notations as the syntax of

the modeling notations. A characteristic of the query classes for notational con-

straints is that their variables range over objects at the IRDS model level.

Figure 3.8 displays a representation of the query class DFDwithUntypedStore of

section 3.15.5, an example of an internotational constraint. The query is defined at

the notation level: It is a subclass of DFD_Model and refers to objects defined at the

notation level. Its variables (like ~this and store) range over objects at the model

level. The query returns those DFD models that violate a certain internotational con-

straint, namely, that all data stores of a particular DFD must be linked to an object

type in an ERD model belonging to the same system development project. All intra-

and internotational constraints share the property of being defined at the notation

Figure 3.8
Internotational constraint at notation level

Metamodeling and Method Engineering with ConceptBase 155

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686104/fig3-8.gel

level and having variables ranging over objects at the model level. However, there are

more ways to express knowledge about modeling notations, namely, to express se-

mantics of certain notational symbols.

In predicate logic, the semantics of a logical theory, that is, a collection of logical

formulas, are based on sets of objects. In particular, mathematical relations with

matching arity interpret predicates. In the restricted framework of Datalog, predi-

cates are interpreted by sets of facts in which variables in the predicates have been

replaced by constants. Consider the example predicate In(x,Employee). A possible

interpretation ext computed by the fixpoint algorithm for Datalog could be:

ext(In(x,Employee)) = {In(bill,Employee), In(mary,Employee)}

Remembering that Employee is the name of a class, we can say that the interpreta-

tion of the class Employee is the set {bill,mary}. Analogously, attribute predicates

can be interpreted by relational facts:

ext(A(e,salary,s)) = {A(bill,salary,1000),A(mary,salary,2000)}

We can easily extend this type of semantics to the other IRDS abstraction levels;

for example, the semantics of the predicate In(e,EntityType) are computed using

the Datalog fixpoint mechanism and yield sets like

ext(In(e,EntityType)) = {In(Employee,EntityType),

In(Project,EntityType}

There are, however, properties of notations that do not fit directly into this simple

kind of semantics. For example, the cardinality of role links in ERD notation is

checked at the data level, whereas the semantics of cardinality tags like 1:n ought to

be defined at the notation level.

A solution to this problem is the use of metalevel formulas, which are formulated

at a metaclass level and can have variables ranging over objects that are instances of

instances of the objects occurring in the formula. Figure 3.9 shows a relationship

type worksFor whose role link to Employee has a 1:n cardinality. The example in

the data level violates the cardinality. Hence, the semantics are dependent on the

database content, whereas we consider cardinalities to be part of the notation. The

following metalevel constraint defines the semantics:

Cardinality in Class with

constraint

c1: $ forall R1,R2/RelationshipType!role

RT/RelationshipType ET1,ET2/EntityType

x/VAR

From(R1,RT) and To(R1,ET1) and

156 Manfred A. Jeusfeld

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686134/ERD-card.sml

From(R2,RT) and To(R2,ET2) and

not (R1 == R2) and

(R1 card "1..n") and (x in ET2)

==>

(exists y/VAR r1,r2/VAR rt/VAR

(r1 in R1) and (r2 in R2) and

(rt in RT) and (y in ET1) and

From(r1,rt) and To(r1,y) and

From(r2,rt) and To(r2,x)

)

$

end

The constraint refers to the notation-level concepts EntityType, Relationship-

Type, card, and "1:n". All other objects are ranged over by variables. The variables

Figure 3.9
The semantics of the notational concept ‘‘cardinality’’

Metamodeling and Method Engineering with ConceptBase 157

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686142/fig3-9.gel

R1, R2, RT, ET1, and ET2 range over objects at the model level. Possible values for

ET1 and ET2 are Employee and Project, respectively. A possible value for RT is

worksFor. The variables x, y, r1, r2, and rt range over objects at the data level.

For example, a possible value for x is proj45. So whenever an object like proj45

(x) is defined to be an instance of Project (ET2), then there must be at least one in-

stance y of class Employee (ET1) that stands in the worksFor (RT) relationship to it.

The cardinalities 1:1, 0:1, etc. can be expressed in a similar way. ConceptBase will

partially evaluate metalevel formulas to compile them into a set of simple formulas

ranging over just one IRDS level, as explained in section 3.13.

Another example of the use of metalevel formulas is the definition of disjoint spe-

cialization in UML class diagrams (see section 1.3 and figure 1.5). UML has a vari-

ant of class specialization that requires any two subclasses of the same superclass to

be disjoint; that is, no object x may be an instance of two such classes at the same

time. Whereas specialization in UML is defined at the notation level, the object x is

part of the data level. The Telos realization of the semantics of disjoint specialization

is included on the CD-ROM that accompanies the volume.

Besides specifying the semantics of notational link symbols, metalevel formulas

create opportunities to clarify the semantics of node symbols as well. Consider again

the class EntityType defined at the notation level. Its Herbrand interpretation

ext(EntityType) is the set of all its instances. Instances of instances of EntityType

are called entities and are located at the data level. Let us use the predicate (x [in]

mc) to express that the object x is an instance of some instance of mc. Then the con-

cept of an entity is formalized as

forall x/Individual c/EntityType

(x in c) ==> (x [in] EntityType)

Analogously, the set of all values is the set of all objects that are instances of some

instance of the class Domain:

forall x/Individual c/Domain

(x in c) ==> (x [in] Domain)

Both formulas are structurally derived from the generic formula

forall x/Individual c/Individual mc/Individual

(x in c) and (c in mc) ==> (x [in] mc)

By coding the generic formula in ConceptBase, one can query the data level inde-

pendent of the model level. In the ERD case, one can ask for all entities or all values

that are currently known regardless to which entity type or domain type they belong.

What’s more, one can ask for all entities that are related to some other entity regard-

158 Manfred A. Jeusfeld

less of the underlying ERD model (i.e., database schema). An example is shown in

figure 3.10: The currently known entities are mary, bill, and anne. The values

(i.e., instances of instances of Domain), are 10000, 15000, and 20000. A Concept-

Base implementation of the predicate (x [in] mc) can be found on the accompany-

ing CD-ROM.

Note that not all metalevel formulas are eligible for partial evaluation. The case of

ERD shows that the semantics of certain notational symbols can be expressed by

constraints in Telos. Moreover, in ERDs, concepts at the notation level can be used

to query objects at the data level directly. The semantics of dynamic models like data

flow diagrams are more di‰cult to capture than that of static diagrams such as

ERDs, because they express complex transformations. Mapping models of such dy-

namic notations to simulation environments appears to be more conducive to captur-

ing their semantics.

Figure 3.10
Understanding the data level from the notation level

Metamodeling and Method Engineering with ConceptBase 159

source

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686173/fig3-10.gel
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4686159/Meta-In.sml.txt

3.15.7 Modeling Process Model Notations

The notations discussed so far are languages for recording models about some arti-

fact. The models are restricted by constraints, some of them ranging over models

recorded in di¤erent notations. In addition to internotational constraints, there is an-

other relevant connection between models: Some models are created out of others. In

the case of system development, the code of a program module is constructed from

the chart of some module and the specification of the processes that are part of the

module. There is some process model that tells the modeler from which input models

a new output model can be created. We regard such a process model to be part of the

engineering of a method.

Process models can be descriptive (a structured documentation of what steps have

been performed during a modeling project) or prescriptive (a set of rules that define

which development steps are allowed in a given situation). They play a major role in

any modeling method because they are the basis for refining the modeling method as

a whole and for defining new services like the traceability of model details.

A common feature of process models is the blurring of abstraction levels. Consider

the following excerpt from a fictional software development project:

10-Oct-2004, 10:23: Mary has completed interviews with the user group and

publishes her interview report REQ14.doc.

12-Oct-2004, 15:56: John has read the report REQ14.doc and produces the event

list EL1 from it.

13-Oct-2004, 9:45: John produces the preliminary behavioral model MyDFD1 from

EL1.

The statements themselves are concrete (i.e., data level in the IRDS framework) and

cannot be instantiated. They constitute the trace of an actual modeling project. On

the other hand, some parts in the trace refer to concepts that we previously classified

into the model level: the report REQ14.doc, the event list EL1, and the preliminary

behavioral model MyDFD1 are all models whose content is at class level (i.e., they

do have instantiations). The reason for this mixture of levels is that the very activity

we are observing is producing models, not concrete data.

The concrete statements of a process trace follow patterns. The patterns for the

above example could be:

An interviewer completes interviews and publishes interview reports.

An analyst reads interview reports and produces event lists.

An analyst produces preliminary behavioral models from event lists.

160 Manfred A. Jeusfeld

slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616329/lect09.pdf

A collection of such statements (for modeling projects) is called a process model. We

can continue this abstraction and conclude that all three statements of the process

model are examples of the generic statement

An expert reads models and creates models.

which defines how process models should look; hence it is part of a notation for pro-

cess models.

Note that the term ‘‘model’’ occurs in the notation definition level of the modeling

products. Hence, the mixture of levels that was observed at the trace continues in the

more abstract statements. As such, the statements about model production have

the same nature as the statements that were used to describe various abstractions on

the product side (data, models, notations, notation definition levels). They do have

one extra property: They relate in a new way to objects defined at the product side.

Figure 3.11 relates production-oriented process models (right side of figure) to their

products (left side). The IRDS abstraction levels are applicable to the process models

as well to the products, but the levels are skewed by one level on the two sides of the

Figure 3.11
Production and product side of modeling. Note: NDL: notation description level; NL: notation level; ML:
model level; DL: data level

Metamodeling and Method Engineering with ConceptBase 161

figure. The reader should note the similarity of the situation here to that surrounding

the fact (EntityType attribute/author PeterChen), discussed in section 3.3.

There, as in this case, objects from di¤erent IRDS levels are associated with one

another.

The origin of the skewing of levels in the figure lies in the nature of models. A

model can, on the one hand, be seen as a collection of classes whose instances are

possible interpretations of the classes. On the other hand, the objects in a model

are the input to and output of various development steps; that is, they are data

themselves.

Folder SPM on the companion CD-ROM to the volume contains an example

relating to software process modeling, that is, a notation plus examples on how to

specify the modeling steps of a notation. The example also features an almost com-

plete representation of the notations of the Yourdan method. The reader is advised

to take the definitions as an example: They show how the process model integrates

with the notations defined earlier. The notational constraints are realized as query

classes and can be attached to individual modeling steps: Whenever such a step is

executed, the specified constraints should be checked.

Simplified notation level for a process model

ModelingStep in Node with

connectedTo

precedes: ModelingStep

attribute

inputObject: Node;

outputObject: Node;

postcondition: QueryClass

end

Methodology with

attribute

containsStep: ModelingStep

end

Project with

attribute

produces: Model;

uses: Methodology

end

Model level for a process model (excerpt)

YourdanProject in Project with

162 Manfred A. Jeusfeld

sources

source

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/3782867
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782920/07spm.sml.txt

produces

eventlist: EventList;

prelimbehavioralmodel: PreliminaryBehavioralModel;

processspecification: ProcessSpecification;

erd: ERD;

std: STD;

sourceProgram: SourceProgram;

testPlan: TestPlan;

testData: TestData;

testResult: TestResult

uses

methodology: YourdanMethod

end

YourdanMethod in Methodology with

containsStep

extractEventList: ExtractEventList;

mapToDFD: MapToDFD;

specifyProcess: SpecifyProcess;

codeProcess: CodeProcess;

createTestPlan: CreateTestPlan;

executeTest: ExecuteTest

end

YourdanStep in ModelingStep with

attribute

input: Proposition;

output: Proposition;

starttime: Real;

endtime: Real

end

ExtractEventList in ModelingStep isA YourdanStep with

inputObject

input1: UserRequirements

outputObject

result1: EventList

end

ProduceLeveledDFD in ModelingStep isA YourdanStep with

inputObject

prelimDFD: PreliminaryBehavioralModel

Metamodeling and Method Engineering with ConceptBase 163

outputObject

levDFD: LeveledDFD

postcondition

r1: NotLeveledNotSpecifiedProcess;

r2: BothLeveledAndSpecified;

r3: DanglingInputNotMatchedAtProcess;

r4: DanglingOutputNotMatchedAtProcess;

r5: InputNotMatchedByDangling;

r6: OutputNotMatchedByDangling;

r7: IllegallyLeveledProcess

end

Data/trace level for a process model (excerpt)

step1 in ExtractEventList with

result1 el: MyEvent_456

starttime t1: 3.0

endtime t4: 4.0

end

step2 in MapToDFD with

input1 el: MyEvent_456

output1 dfd: MyDFD_023

starttime t1: 5.0

endtime t4: 7.0

end

3.15.8 Managing Modeling Processes Using Metrics

The uniform representation of the development trace, the software process model

(here, the Yourdan example), and the process model notation together with the prod-

uct counterparts (example models, modeling notations, notation definition level)

allows complex modeling situation to be analyzed by means of queries. In particular,

one can express metrics for any of the objects defined in a project’s repository. As

example, consider the metric CodingProductivity, which measures the number of

lines of code created per time unit in a coding step. The following query class realizes

the metric in terms of two other metrics, Duration and ProgSize:

ProgSize in GenericQueryClass isA Integer with

parameter,computed_attribute

whatProg: SourceProgram

constraint

164 Manfred A. Jeusfeld

source

slides

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d3782932/10metric.sml.txt
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d2616337/lect11.pdf

c: $ (~this in COUNT_Attribute[~whatProg/objname,

SourceProgram!lines/attrcat]) $

end

Duration in GenericQueryClass isA Real with

parameter,computed_attribute

step : YourdanStep

constraint

c1 : $ exists t1,t2/Real (~step starttime t1) and (~step

endtime t2) and (~this in MINUS[t2/r1,t1/r2]) $

end

CodingProductivity in GenericQueryClass isA Real with

parameter,computed_attribute

cstep: CodeProcess

constraint

c1: $ exists sp/SourceProgram dur/Real size/Integer (~cstep

program sp) and (dur in Duration[~cstep/step]) and (size

in ProgSize[sp/whatProg]) and (~this in DIV[size/r1,dur/

r2]) $

end

The queries in this query class exploit the built-in queries (Jarke, Jeusfeld, and Quix

2003) of ConceptBase for simple arithmetic (PLUS, MINUS, DIV). The attribute

categories parameter and computed_attribute in combination ensure that the

query answer can be interpreted even if the parameter is left undefined at query call

time. For example, the query class CodingProductivity (without a filler for pa-

rameter cstep) will return the coding productivities of all coding processes (attached

as computed attribute cstep).

Metric queries can be integrated into process models as postconditions of model-

ing steps very much like the queries for checking notational constraints. More

insights on the use of metrics in software development are o¤ered in Fenton and

Pfleeger 1999.

Chapter 8 discusses in more detail how metrics can be incorporated into design

processes supported by the ConceptBase repository. The application examined in

that chapter is a repository for managing the quality of data warehouse systems.

3.16 Discussion and Conclusions

This chapter presented the use of the ConceptBase repository for metamodeling and

the engineering of modeling methods. The approach as presented here is focused on

Metamodeling and Method Engineering with ConceptBase 165

notation definition, and one might ask whether this is su‰cient to cover all aspects of

a complete method like Yourdan’s Modern Structured Analysis. The syntactic fea-

tures of the Yourdan notations for entity-relationship diagrams, data flow diagrams,

process specifications, state transitions diagrams, and so on can be translated rather

easily into suitable Telos metaclasses. Correctness rules (called balancing rules by

Yourdan) map straightforwardly into query classes. There are, however, a few soft

rules in Yourdan’s method that are naming conventions to make models easier to

read for humans (e.g., the rule that the name of a process should be a verbal phrase)

and that do not transfer readily to Telos. Such rules are vague by nature of human

communication, and a violation of such soft rules is acceptable to a certain degree.

Another aspect of method engineering besides notation definition is instructional

examples. Textbooks on modeling methods are cluttered with examples that demon-

strate features of the methods. The presentation of such examples is in fact easily

supported by the repository approach, since example models are just one IRDS level

below the notations related to those models and are represented in the same Telos

framework as the notations themselves. They have an even bigger role with our

approach, as the relation of example models to notations is now fully formalized as

a Telos instantiation relation. During the design of a new notation, the creation of

example models validates the correctness and usefulness of certain notational con-

structs. Hence, not only the student of a method is supported, but also the method

engineer in her search for the right notation definition.

A method description is incomplete if it does not contain some kind of step-by-step

instructions on how to proceed with a modeling project. Process models, as presented

in the chapter, can fill this need. The integration of correctness rules as postcondi-

tions to modeling steps goes beyond the original description of the Yourdan method.

Originally, the rules were formulated as part of the notations associated with the

models. With process models, one can precisely design when certain checks are to

be performed on the models created so far.

Finally, the quality of a collection of models can be managed using metric defini-

tions. This feature of ConceptBase covers some of the soft aspects of model develop-

ment (in teams). In the case of the Yourdan method, there are rules regarding the

desirable level of complexity in diagrams that easily map into metric definitions. A

similar metric technique can be applied to controlling the quality of modeling steps

(e.g., by measuring their productivity).

So what remains uncovered as we finish the chapter? Insights on proper usage

of modeling techniques are hard to represent as part of a notation. Proper usage

depends on the modeling expert’s knowledge of the application domain and cognitive

skills. Modeling textbooks cover proper usage in case studies with extensive com-

ments in which reasons for certain design decisions are elaborated upon. Proper

usage of modeling methods alone does not ensure good usage. One has to introduce

166 Manfred A. Jeusfeld

experience knowledge of successful usages. One way to support experience knowl-

edge with the repository approach is to keep the results of previous and current

modeling projects within the same repository. Novice modelers can then search the

archive of old projects for solutions to certain problems that may come up in current

ones on which they are working. Of course, the models of old projects would need to

be annotated and indexed for this type of use. Moreover, design decisions should be

made an integral part of the process models, and documentation of such decisions

should include the rationale behind them.

A frequently cited aspect of modeling methods is their pragmatics, that is, what re-

sources are needed to apply them, and in particular, how much time should be spent

on teaching the methods to users. If the resource requirements for individual model-

ing steps are known, then they can be included in the method definition. Essentially,

one has to create a plan for project management in which resources, time, and cost

play an important role. The plan can be encoded using a Telos-based notation for

workflow management. However, such a notation doesn’t really solve the problem

of how to allocate scarce resources (e.g., installing a help desk for questions on a

modeling method).

Finally, the decision to use Datalog as a foundation for the semantics of the Telos

definitions deserves a critical discussion. The perfect-model semantics of Datalog

eliminate any formal ambiguity in interpretation (via stratification) and are always

finite. The latter restriction precludes a complete coverage of the semantics of dy-

namic notations such as state transition diagrams or program code. Still, the syn-

tactic features of such dynamic notations and their interrelationships with other

notations can be well represented. A semantics specification powerful enough for

dynamic-modeling notations would stand in conflict with e‰ciency of model

management.

Perfect-model semantics essentially allow queries to be answered, that is determin-

ing which objects of a given finite extension fulfill the membership condition of the

query. They do not support reasoning about elements of a model (e.g., whether

some class definition is subsumed by another, as in section 1.3). One can argue that

such reasoning services can be attached to the model repository as external tools.

Notes

1. Telos statements can be expressed as binary predicate facts in infix form. Basically, the statement num-
ber is omitted because it is system-generated and carries no meaning as such. Later in the chapter, we show
how to map predicate facts into a reified form, called P-facts. This reified form is crucial for defining the
semantics of a set of Telos statements and for providing facilities for engineering the semantics of modeling
notations.

2. The metaclass DomainOrObjectType is a superclass of both ObjectType and Domain. Its definition is
presented in section 3.4, on Telos frame syntax.

Metamodeling and Method Engineering with ConceptBase 167

3. The latter object is a predefined Telos object with name instanceOf, whose definition can be found in
section 3.8. There are only five predefined Telos objects.

4. The advantage of using explicit quantifiers is that one can then also formulate logical expressions
with nested quantifications. It can be shown that any such formulation can be transformed into a set of
Datalog-style deductive rules that have the same semantics.

5. We say that constants are interpreted by themselves to express that we do not interpret them by some
(real world) object as in classical logic. Instead, the meaning of a constant such as ‘‘10’’ is just ‘‘10.’’

6. There are, however, nonstratifiable rule sets that are not at all paradoxical. They even have a unique
model. I refer the reader to articles describing stable model semantics for more information.

7. The constraint text itself is an instance of MSFOLconstraint. We omit the Telos frame that defines this
instantiation. ConceptBase will include the instantiation automatically. The same holds for rule texts,
which are automatically classified into the class MSFOLrule.

8. The query class with the explicit variable ~this is shown for illustration only. It does not represent a
syntactically correct query class. Note that the variable ~this ranges over all instances of Department,
that is, the superclass of which the query class is a subclass.

9. The predicate (p in Proposition!single) is translated from the variable range p/Proposition!
single.

10. Full-fledged active database systems provide more event types and a complex event composition lan-
guage to express sequences of events (e1 after e2), logical connectives (e1 or e2), and temporal events.
More on active databases can be found in Paton 1999.

11. Transaction is a technical term in the database domain. It stands for a sequence of operations on the
database that is executed as a whole.

12. I do not discuss the data dictionary notation in great detail here.

13. One can regard such constraints as part of the syntax definition for a notation. The syntax for a given
notation circumscribes the set of allowed statements (¼ models) in that notation.

References

Ceri, S., G. Gottlob, and L. Tanca. 1990. Logic Programming and Databases. Heidelberg: Springer-Verlag.

Chen, W., and D. S. Warren. 1996. ‘‘Computation of Stable Models and its Integration with Logical
Query Processing.’’ IEEE Transactions on Knowledge and Data Engineering 8, no. 5: 742–757.

Fenton, N. E., and S. L. Pfleeger. 1999. Software Metrics—A Rigorous and Practical Approach. 2nd ed.
Boston: PWS.

Greenspan, S. 1984. ‘‘Requirements Modeling: The Use of Knowledge Representation Techniques for
Requirements Specifications.’’ Ph.D. diss., University of Toronto.

Jarke, M., M. Jeusfeld, and C. Quix, eds. 2003. ConceptBase V6.1 User Manual. Available at hhttp://
www-i5.informatik.rwth-aachen.de/CBdoc/userManual/i.

Jeusfeld, M. 1992. Änderungskontrolle in deduktiven Objektbanken. St. Augustine: Infix-Verlag.

Mylopoulos, J., A. Borgida, M. Jarke, and M. Koubarakis. 1990. ‘‘Telos—A Language for Representing
Knowledge about Information Systems.’’ ACM Transactions on Information Systems 8, no. 4: 325–362.

Paton, N. W. 1999. Active Rules in Database Systems. New York: Springer-Verlag.

Yourdan, E. 1989. Modern Structured Analysis. Englewood Cli¤s, NJ: Prentice Hall.

168 Manfred A. Jeusfeld

hhttp://www-i5.informatik.rwth-aachen.de/CBdoc/userManual/i
hhttp://www-i5.informatik.rwth-aachen.de/CBdoc/userManual/i

4 Conceptual Modeling in Telecommunications Service Design

Armin Eberlein

This chapter demonstrates how conceptual models in Telos can be used to create an

intelligent tool called RATS that helps during the development of new telecommuni-

cations services. The focus of RATS is on the requirements engineering phase which

has provided the most challenges in the past. The RATS tool can be integrated with

currently available development approaches including formal methods. The chapter

describes the overall architecture of the tool and then focuses on the Telos conceptual

models that have been created. Emphasis is placed on the approach taken to provid-

ing intelligent support to the telecommunications service developer.

4.1 Introduction

Telecommunications technologies have brought about tremendous changes during

the last 150 years and are still developing rapidly (Bellamy 1991). These technologies

have influenced culture and social life by o¤ering new means of interaction and com-

munication among users distributed around the world. Since its invention in 1876

by Alexander Graham Bell, the telephone has experienced profound changes. Over

the years, the telecommunications network has covered most of the globe. Recent

advances in telephone mobility and quality over longer distances have resulted

in a highly complex communication medium that everybody takes for granted

nowadays.

As new telecommunications technologies become available, additional services

and service features are possible. However, the implementation of such features has

persistently proved di‰cult and has become one of the major challenges for telecom-

munications service providers (SCORE 1995). As a result, many service providers

o¤er their customers what is easy to implement, rather than what is possible and

what customers want. The introduction of any new service causes fears about how

the service will ‘‘behave’’ on the network, that is, how it will interact with already

existing services (Bouma and Velthuijsen 1994). Will the new and existing services

coexist in peace, or will they have major unwanted interactions, possibly bringing

down the whole network? The situation is further complicated by the heterogeneity

of telecommunications networks. Services have to handle equipment of di¤erent

functionalities and age, produced by a variety of vendors in a worldwide distributed

network (Reed, De Man, and B. Møller-Pedersen 1989). Furthermore, there are

always fears about the consequences of bugs in the service implementation. In Janu-

ary 1990, a single misplaced statement in an AT&T switching system caused the en-

tire Eastern seaboard of the United States to lose its telephone network for several

hours (Neumann 1995).

However, telecommunications is not the only industry that struggles with such

problems; so do other industries that use software (Standish Group 1994). The fact

of the matter is that telecommunications systems and services are founded on large,

very complex, and ever-growing software. The software component of these systems

constitutes at least 70 percent of the total e¤ort required to design them (Reed et al.

1992). In other words, many of the problems in telecommunications are actually

inherited from software engineering.

Most people who have been seriously engaged in the study and development of

software systems have concluded that one of the most problematic tasks in their de-

velopment is understanding the requirements of the system being developed and cor-

rectly transforming them into code (Sommerville 2000). Not only the functionality of

the system itself, but also the environment in which it must operate, needs to be con-

sidered during system specification (Wieringa, Dubois, and Huyts 1997). The history

of software engineering is littered with the remains of systems that did not meet their

users’ needs and did not help the enterprises, groups, or individuals for whom they

were intended. Furthermore, the majority of software errors can be traced back to

incorrectly specified requirements; however, the longer an error remains undetected,

the higher will be the cost of fixing it (Boehm 1984). This is especially true when de-

velopment is not traceable and its rationale has not been recorded. The question is

how requirements engineering can help produce high-quality telecommunications

software.

The vast complexity of telecommunications systems is characterized by the variety

of technologies they employ and the many diverse participants in their development.

A tremendous legacy has accumulated over time. This presents a very challenging

task for service developers, in that it is simply impossible for a service designer to

have an adequate understanding of all the factors to be considered during service de-

velopment. What means can be found to relieve the designer of the need to master

such a huge amount of detail? Although AI seems to be promising, little research

has yet been undertaken into the use of AI for requirements engineering in telecom-

munications (Ryan 1994).

170 Armin Eberlein

Unfortunately, traditional ways of developing telecommunications software (see

figure 4.1) have resulted in many challenges. Key among these challenges are long

development time and feature interaction. Yet another challenge for developers is

the great conceptual gap between an initial service idea and the software that eventu-

ally implements the service. Unfortunately, many telecommunications companies do

not have good software processes in place to bridge this gap.

The research outlined in this section investigates the use of advanced software

engineering, requirements engineering, and AI technologies for telecommunications

service design. This research has led to the Requirements Assistant for Telecommu-

nication Services (RATS), a service development methodology1 with a supporting

tool (the RATS tool). The methodology is based on a three-dimensional framework

originally inspired by the NATURE project (Pohl 1994). However, the framework

has been specialized for the process of development of telecommunications services,

with each dimension addressing essential aspects of service development. Progress

within this framework is achieved by following the RATS methodology guidelines,

which on the one hand clearly instruct the service designer, but on the other hand

leave the designer considerable freedom, as is necessary during development. The

aim is a complete, refined, hierarchical, and formal service specification in the Speci-

fication and Description Language (SDL) as recommended by the International

Telecommunication Union (ITU) (1999). The RATS tool has been implemented

in the knowledge representation language Telos (Mylopoulos et al. 1990). This

Figure 4.1
Traditional software development in telecommunications

Conceptual Modeling in Telecommunications Service Design 171

language has been used for several purposes: modeling of the telecommunications

domain and modeling of the RATS service development methodology, as well as

the implementation of intelligent development support.

4.2 Usage of the Tool

The main users of the RATS tool are requirements engineers (REs) and service

designers. These two groups of people use the tool during service development. The

tool assists them during requirements acquisition, modeling, analysis, traceability,

documentation, and specification. From the very beginning, all requirements are

stored in the RATS tool. Although the current version of the tool handles only the

early life cycle up to the formal specification of the telecommunications service (i.e.,

requirements and their management), the final aim is to provide assistance in all steps

of the development process.

In addition to the requirements engineer and designer, project managers can also

use the tool. The implementation of a requirements engineering life cycle model

(i.e., the RATS methodology) in the tool allows the manager of a project to identify

the current status of the project’s development. As will be explained later, each stage

of the development process has a unique label assigned to it; that is, the project man-

ager can easily check in what stage of the RATS methodology the project develop-

ment currently is.

The RATS tool contains too many technical details and telecommunications-

specific terminology to be used by the end user of the telecommunication service.

However, a browser interface could be developed that would allow browsing through

the telecommunications domain models included in the tool. Since the tool contains

information from di¤erent sources (more than eighty di¤erent telecoms’ recommen-

dations and standards, expert knowledge, and other telecommunications resources),

it is an excellent aid for new sta¤ to learn about the telecommunications domain. The

current version of RATS contains information on various telecommunications net-

works (such as the Public Switched Telephone Network [PSTN] and Integrated Ser-

vices Digital Network [ISDN]) and their associated services as well as customer

premises equipment (CPE). Extension of the tool with more domain information on

feature interaction, network interworking, switches, etc., is planned. This would en-

able new developers to learn about the telecommunications domain using conceptual

models rather than ‘‘dry’’ standards.

4.3 Integration with Other Systems

The aim of the RATS tool is to provide a smooth transition from initial service idea

to formal service specification in the ITU-recommended SDL. In order to gain max-

172 Armin Eberlein

imum benefit from the methodology, the RATS tool should be used in combination

with an SDL tool. Figure 4.2 shows a possible example development methodology

that makes use of both the RATS tool and an SDL tool (such as SDT [SDL Design

Tool] from Telelogic or Cinderella SDL from Cinderella).

When used in combination with an SDL tool, the RATS tool is used for the early

phases of requirements engineering, during which high-level goals are collected

and refined into lower-level requirements. The outcome of the refinement of the

nonfunctional-requirements (NFRs) process is either implementation constraints

or functional requirements. The functional requirements are then specified semi-

formally using a three-stage use case design process that leads to a use case notation

aligned with SDL. The current version of RATS does not allow the automated ex-

port of this functional-requirements specification into SDL tools: The developer still

needs to translate the final RATS specification into SDL. But it is envisioned that at

least a first-cut translation can be automated.

Taking the semiformal specification produced by the RATS tool as input, the

SDL tool is then used for architectural design and to produce a formal functional

requirements specification. SDL is a very powerful language for the specification of

reactive systems that can be defined with an extended state machine. Many SDL

tools have powerful modeling, verification, validation, and animation tools that help

improve the correctness and completeness of the functional specification. At this

point in the system development, the influence of nonfunctional requirements on the

Figure 4.2
Service development using RATS

Conceptual Modeling in Telecommunications Service Design 173

design has to be considered, and special care has to be taken that these requirements

are satisficed.2

4.4 Main Functions of the System

The RATS tool is an expert system that is based on various conceptual models

whose combination and interaction provide the tool user with active support during

telecommunications service design. One of the aims of the RATS project has been to

show that active development support is possible even in the intrinsically di‰cult

part of the early system development life cycle. Currently, there is a lot of support

for coding and testing and growing support for functional and architectural design,

but only very limited support for requirements engineering. Commercial support for

requirements engineering is at the moment limited to two categories of tools: model-

ing tools (such as TAU from Telelogic) and requirements management tools (such as

DOORS from Telelogic and RequisitePro from Rational). There are currently no

commercial tools that provide active support for the requirements engineering pro-

cess. It is obvious that active support is much more di‰cult to provide in the early

life cycle phases than in later phases. The objective of the RATS project was to dem-

onstrate the concept that such support is possible. The RATS tool has established

that active support is possible if a well-defined methodology is used (in this case, the

RATS methodology).

However, there is a trade-o¤ between the amount of support that can be provided

and the genericness of the tool. A generic tool is not able to provide very specific

guidance in the requirements engineering process. All currently available commercial

requirements engineering tools (i.e., the previously mentioned modeling and require-

ments management tools) are in this category. However, the more domain specific a

tool is, the more support it can provide. If a tool contains very detailed domain in-

formation expressed in conceptual models, specific guidance can be provided. But the

disadvantage is that if domain information changes frequently, as is the case in a

high-tech environment, maintenance of these models requires major e¤ort.

The RATS tool has been implemented in such a way that guidance in the require-

ments engineering process is provided in several di¤erent ways in order to provide

comprehensive assistance to the developer. Figure 4.3 shows the di¤erent categories

of guidance available to the RATS tool user.

Two kinds of guidance are distinguished in the RATS tool:

� passive guidance, which points out mistakes in the specification

� active guidance, which tells the service designer what to do

Active guidance is again subdivided into the two levels for which guidance is

provided:

174 Armin Eberlein

� class-specific guidance, which provides general help for the class level of the models

� instance-specific guidance, which provides guidance for individual instances of the

classes

As can be seen in figure 4.3, the guidance o¤ered by the RATS tool can be classi-

fied according to the objective of guidance as well as according to the kind of guid-

ance. The low-level concepts of RATS (e.g., requirements, goals, documents) and

the RATS development methodology can be viewed separately. As the abstraction

levels of the basic concepts and of the methodology are very di¤erent, the following

distinction is made according to the objectives of guidance:

� methodology-related guidance, which provides help with the RATS methodology

� object-related guidance, which provides help with the basic objects and concepts

used in the RATS methodology

The implementation of these di¤erent kinds of guidance using conceptual models will

be explained later in the chapter.

4.5 Architecture of the Tool

Before explaining some of the conceptual models used to construct the RATS tool

in detail, I present the overall architecture of the RATS tool. The architecture is

basically client-server, and the server has been implemented in ConceptBase. Since

ConceptBase supports client-server communication via the Internet, the RATS client

Figure 4.3
Categories of guidance in RATS

Conceptual Modeling in Telecommunications Service Design 175

can run on a di¤erent workstation or even a di¤erent site than the RATS server. This

enables distributed requirements engineering. The ConceptBase tool is limited, how-

ever, in that a client may communicate with only one server at a time, but many cli-

ents may be connected to the same server. The present version of ConceptBase does

not yet support concurrency control beyond the serialization of messages (Jarke,

Jeusfeld, and Staudt 1999a).

4.5.1 The RATS Client

The RATS client is still under development. It is being implemented in Java; that is,

it uses the Java interface provided by the ConceptBase team (Jarke, Jeusfeld, and

Staudt 1999b). Although the ConceptBase workbench could be used as the interface

to the RATS server, it would be very impractical, since even a very simple operation

requires many interactions with the server. Additionally, not every user of the RATS

tool can be expected to know the Telos language. For this reason, the main task of

the RATS client is to improve the usability of the tool.

The RATS client consists of three parts (see figure 4.4):

� the graphical user interface

� the client logic

� the frame generator

4.5.1.1 The Graphical User Interface The user of the RATS tool (usually a require-

ments engineer) interacts with the RATS tool via the graphical user interface (GUI).

The main tasks of the GUI are

� to display information to the user;

� to accept user input.

There are several considerations involved in the display of information:

� Information contained in the knowledge base of the RATS server needs to be

displayed to the user in an easily understandable way. This information could in-

clude requirements and their attributes; the relationships between requirements; the

contents of requirements documents, as well as their attributes; the contents of li-

braries contained in the domain models; and the progress achieved in the develop-

ment process.

� The display needs to have means for filtering requirements and for displaying a

specification at di¤erent levels of abstraction.

� Information that has been derived from the contents of the knowledge base, like the

history of a requirement or the impact of a change in requirements, needs to be

shown to the user.

176 Armin Eberlein

� The guidance given by the RATS tool needs to be displayed. This can be guidance

related to a low-level object (like a specific requirement) or to the overall RATS

methodology.

� Responses of the tool about the outcome of the operations that have been per-

formed must be displayed to the user.

Forms are used for most user input. These forms are mainly determined by the

templates of the underlying conceptual development models. The user has to com-

plete and edit the forms before the desired operation on a requirement can be per-

formed and the changes are made in ConceptBase.

4.5.1.2 The Client Logic The client logic (CL) is a transaction generator that medi-

ates between the GUI and the frame generator. The GUI passes the input of the

RATS user to the CL, which then decides how to deal with the user request. Having

decided on the appropriate strategy for processing the user request, the CL calls

methods of the GUI and the frame generator to achieve the requested operation.

Figure 4.4
The RATS tool architecture

Conceptual Modeling in Telecommunications Service Design 177

To achieve a single user operation (e.g., create a new requirement) takes several

transactions within the RATS tool. It is the task of the client logic to generate and

coordinate the appropriate sequence of actions (like ask3 the ConceptBase server,

or insert (i.e., tell) and delete (i.e., untell) objects contained in the Concept-

Base server) that achieve the desired user operation.

4.5.1.3 The Frame Generator The RATS server has been implemented in the Telos

language, which means that all interactions with the server need to be performed

using this language. Consequently, any user information and all transactions created

by the client logic need to be translated into the frame notation of Telos; this is es-

sentially the task of the frame generator (FG).

The frame generator has the additional task of performing the reverse operation,

that is, stripping o¤ a Telos frame and extracting the information to be displayed

by the GUI. The frame generator therefore acts as a two-way translator whose

actions are triggered by commands received from the client logic.

4.5.2 The RATS Server

The RATS server is implemented in ConceptBase and contains all the conceptual

models expressed in Telos. The server is subdivided into two layers:

� the development layer

� the domain layer

4.5.2.1 The Development Layer The development layer of the RATS server contains

the key components of the server. This layer is, divided yet again into three modules,

each containing several conceptual models:

� the intelligence module, containing the intelligence models

� the development module, containing the development models

� the negotiation module, containing the negotiation models

Despite their di¤erent natures and tasks, all three modules are implemented in the

Telos language and are closely linked with one another. Together, they contain the

implementation of the overall RATS development methodology. The modules pro-

vide advice to the service designer during the development of a new telecommunica-

tions service and help prevent erroneous specifications. The Telos language is well

suited to modeling the concepts involved in the RATS development methodology.

Consistency can be ensured through Telos constraints, and Telos rules provide active

guidance for the service designer. Later in the chapter, the implementation of these

models is explained in more detail.

178 Armin Eberlein

The key component in the development layer is the methodology guidelines, which

are derived from the underlying three-dimensional framework for requirements engi-

neering for telecommunications services (see figure 4.5).

4.5.2.1.1 The Three-Dimensional Requirements Engineering Framework of RATS The

RATS requirements engineering framework takes a ‘‘divide and conquer’’ approach.

Complex processes are made more accessible by splitting them into smaller sub-

processes that are, ideally, independent of one another. The framework has three

dimensions:

� completeness

� refinement

� formality

The dimensions represent three major concerns during telecommunications service

development, with each dimension having well-defined states and being independent

of the other dimensions. In theory, this has the advantage of allowing one aspect of

Figure 4.5
The three-dimensional framework of the service development process

Conceptual Modeling in Telecommunications Service Design 179

telecommunications service development to be focused on, without having to con-

sider the other dimensions at the same time. However, practice shows that one step

in the development of a service usually involves progress in more than one dimen-

sion. For instance, a specification usually becomes more complete when requirements

are refined, and formalizing a specification can help in detecting missing require-

ments, thus contributing to completeness.

Specifying states for each dimension enables the definition of milestones and met-

rics for the service development process. It also provides possibilities for assigning

responsibilities to service developers, as well as for checking on the development pro-

cess and its timeliness.

4.5.2.1.1.1 The Completeness Dimension Achieving a complete requirements specifi-

cation is challenging. Considering that about a quarter of all changes to requirements

are the result of requirements overlooked in the original specification process, it

appears that we still are not able to do a good job of completely identifying system

requirements. A commonly used approach to requirements gathering is to focus on

di¤erent aspects of system usage at di¤erent times. The telecommunications service

specification template described in ITU-T I.210 (ITU-T 1993b) recommends that

the normal behavior of a service be focused on, then the exceptional and alternative

behavior. Other software engineering methods take a similar approach.

The completeness dimension of the RATS framework also uses a similar ap-

proach. As can be seen in figure 4.5, the normal behavior, that is, the most common

usage of the service, is specified first. Focusing first on the standard usage of a system

helps developers to get the key features right. After the specification of normal be-

havior, parallel behavior is added. Exceptional behavior is added at the end and

deals with possible errors. These steps use a top-down approach to development.

The final step of the completeness dimension uses a bottom-up approach. The indi-

vidual pieces of the specification are grouped together in order to define the overall

behavior of the system. This grouping is performed in a hierarchical manner at dif-

ferent levels of abstraction.

4.5.2.1.1.2 The Refinement Dimension The refinement dimension of the RATS

framework is geared toward the Intelligent Network (IN) architecture (Thörner

1994). However, any levels of abstraction can be chosen that are appropriate for

a domain. The IN architecture uses three di¤erent planes: The service level is the

highest level and contains stand-alone commercial o¤erings to which a telecommuni-

cations customer can subscribe. The service feature (SF) level contains service com-

ponents that are reused during the construction of a service. Examples are call

forwarding and abbreviated dialing. The service-independent building blocks (SIBs)

are low-level components that are used to compose the functionality of a service fea-

ture. Authenticate and charge are examples of SIBs.

180 Armin Eberlein

4.5.2.1.1.3 The Formality Dimension The formality dimension has the highest num-

ber of states (see figure 4.5) among the dimensions of the RATS framework. The rea-

son for the high number of states is that the transition from complete informality to a

formal specification, which is the job of the formality dimension, has always been a

major challenge for developers. The formality dimension starts o¤ with an informal

statement from the customer. These informal initial requirements then have to be

grouped into various subclasses: functionality, topic, goal, information, and imple-

mentation constraints. The transitions among these subclasses that makes sense

during refinement are limited. For instance, it makes sense to refine a goal into func-

tional behavior. However, it would not be appropriate to refine functional behavior

into information. The motivation behind these constraints is the aim to generate

more concrete requirements at a lower level of abstraction out of high-level, abstract,

nonfunctional requirements. Inappropriate transitions are prevented by constraints

that are defined in the conceptual Telos models. The functional requirements of the

system are then specified using a three-stage use case design process. During the first

stage, the functional behavior is specified by textual use cases, which are written in

natural language in a relatively free style. Structured use cases, developed in the sec-

ond stage, are an enhanced version of the textual use cases and contain additional

information, such as pre-, flow, and postconditions. The most formal version of use

cases are the formalized use cases employed in the third and final stage, which are

geared toward the notation of SDL, the language recommended by the ITU for the

specification of telecommunications systems.

4.5.2.1.2 The Methodology Guidelines The development layer of the RATS server

also contains conceptual models derived from the RATS framework for require-

ments engineering (see figure 4.5). The key component of the development layer, the

methodology guidelines, were developed based on the following assumptions:

� The initial starting point of service development is an incomplete, informal, high-

level description of the desired service. The output aimed for is a complete, consis-

tent, fully formalized and refined specification of the service.

� The ideal service development takes place along a straight line from the initial

point in the development space to the desired end point. This has not been explicitly

proved; however, real-life experience underlines the feasibility of this assumption.

Development along this ‘‘ideal’’ line will never be achieved in practice. As shown

in figure 4.5, actual service development looks much more like a wavy curve oscillat-

ing around the ideal line. The task of the methodology guidelines is to ensure that the

developer does not diverge too far from the ideal line but instead stays as close as

possible to it. Table 4.1 describes, in a concise way, the actions to be performed by

the service designer, step by step, during service development.

Conceptual Modeling in Telecommunications Service Design 181

Table 4.1
RATS methodology guidelines for service development

Action By Reason Document

For service level

Outline service Customer Customer-centered
requirements
engineering

ICD

Brainstorming Customer,
REs

Encourage innovation,
increase completeness

BL

Evaluate brainstorming list Customer,
REs

Increase agreement BL

Categorize requirements REs Increase formality BL

Define service Customer,
REs

Increase completeness SDT

For service level and SF level

Group requirements into self-
contained functional blocks

REs Preparation to find
reusable functional
blocks

SDT

Add parallel behavior Customer,
REs

Increase completeness SDT

Define behavior with textual use
cases

Customer,
REs

Increase formality SDT

Refine and decompose nonfunctional
requirements and satisfy them with
textual use cases or implementation
constraints

Customer,
REs

Address nonfunctional
requirements

SDT

Organize textual use cases into
overall use cases of textual use cases

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

REs Better overview,
bottom-up approach,
increase completeness

SDT

Define states in the behavior REs Improve structure,
makes translation into
structured use cases
easier

SDT

Translate textual use cases into
structured use cases

REs Increase formality SDT

Organize structured use cases into
overall use cases of structured use
cases

REs Better overview,
bottom-up approach,
increase completeness

SDT

Add exceptional behavior

Action: Map
functionality
blocks onto
existing ones
from the
library
by: REs
Reason:
Reuse of
existing
functionality

Customer,
REs

Increase completeness SDT

For SF level

Translate structured use cases into formalized use
cases

REs Increase formality SDT

Translate formalized use cases into SDL REs Increase formality SDT/SDL
Tool

SDL design Service
designers,
customer

Formal analysis,
verification, simulation,
validation, testing,
code generation

SDT/SDL
Tool

Note: ICD: initial customer description; BL: brainstorming list; SDT: service definition template. Note
that the ‘‘map functionality blocks’’ action goes on in parallel to the other actions.

Initially, the customer states the idea for the proposed service using a textual de-

scription. All development must be validated against this initial statement, the initial

customer description (ICD). For instance, the customer might briefly state that it

wants users to be able to make a phone call from a public phone box and have the

call billed to their home telephones rather than use cash or a credit card. Without

necessarily knowing the proper telecommunications terminology, the customer is

asking for some kind of calling-card feature.

After writing the ICD, the customer conducts at least one brainstorming session,

together with telecommunications specialists, in which topics and issues, such as au-

thentication and authorization, are raised. A list of these topics and issues is com-

piled; this list is, initially, merely a collection of requirements, but later it will be

evaluated. A subsequent categorization of the collected and evaluated requirements

is performed by the requirements engineer; as it does not add content to the specifi-

cation, there is no need to involve the customer in this step. This categorization pro-

cess is necessary to increase the formality of the requirements through constraints

and to provide active guidance to the requirements engineer during the process of

refining the requirements. After this preliminary work, a template is used to define

the proposed service in a more comprehensive way. This service definition template

addresses all the topics and issues that must be considered in designing the new ser-

vice. Both parties, the customer as well as the requirements engineer, have to com-

plete the document that is developed using the service definition template.

By this point, the most common expected interactions between the system and its

users should be specified. In the case of the calling-card feature, the basic service

behavior is expected to be as follows: The user wants to make a phone call from a

public telephone using a calling card. He or she first lifts the receiver and enters

the access phone number on the keypad, then authenticates and authorizes him-

self or herself. Then he or she can dial the destination number, and a connection is

established.

Once the normal behavior of the system has been specified, the requirements need

to be grouped into functional blocks that are relatively independent of one another.

Each functional block is equivalent to a feature or subfeature of the service being

designed. This grouping into functional blocks is a first step toward the reuse of func-

tionality. From this point on, the requirements engineer should constantly be evalu-

ating whether some of these functional blocks can be mapped onto already existing

service features or subfeatures.

With the help of the question ‘‘What else should the service be able to do?’’ alter-

native or parallel behaviors must be determined and specified. In the calling-card ex-

ample, the user might want to phone another destination after the completion of the

first call. Rather than having to hang up and reauthenticate and reauthorize, the user

Conceptual Modeling in Telecommunications Service Design 183

should be able to press a key combination (e.g., ***) that allows him or her to place

another call immediately upon finishing the previous one.

After the identification and specification of alternative behaviors, the use case de-

sign process starts. Up to this point, information about the functionality required in

the system has mainly been collected without much of an e¤ort to relate aspects of

functionality to one another; relationships among these aspects are now identified as

the system’s functionality is specified with the help of textual use cases. This forces

the customer and requirements engineer to go through all possible user-system

interactions.

At this point, the nonfunctional requirements (NFRs) of the system need to be

considered, as they have a major influence on the specification process by helping

the customer and requirements engineer to decide among specification alternatives

and to identify new system requirements. This is a long process that ends only when

all the NFRs have been satisficed by either implementation constraints or functional

behavior.

It is then time to look away from the details and see how far the development of

the system has progressed, by organizing the textual use cases into a hierarchy of

overall use cases. This not only shows any gaps that may exist in the specification

but also gives a better overview of the service to be designed.

By this time a large number of specification blocks exist that need to be restruc-

tured in order to steer the specification in the direction of state transition notations.

This not only is necessary for specifying the system in SDL but is also very helpful in

relating the use cases to one another. To complete this restructuring, states have to be

defined within the specified system behavior.

After the definition of states, the notation of structured use cases can be intro-

duced; at this point, pre-, flow, and postconditions have to be considered. The whole

collection of structured use cases then has to be organized into a hierarchical use case

structure. This is a major milestone in the semiformal specification process, and at

this point it has to be ensured that the specification is as complete as possible before

any further development takes place.

One of the steps that still needs to be performed to increase completeness is to add

exceptional behavior to the specification. Here, the behavior of the service during

errors caused by the system or its users has to be outlined. The question ‘‘What can

go wrong with this service?’’ will help reveal this behavior. In the case of the calling

card, for example, the user might collapse in the phone booth after authentication

and authorization. A time-out will then disconnect the user automatically after a

specified period has elapsed.

It is questionable how much formality should be introduced into the specification

and at what level of abstraction. Since formality is not much of an advantage for

high layers of abstraction, RATS uses a higher degree of formality only for lower

184 Armin Eberlein

levels of abstraction. Therefore, formalized use cases and SDL are employed only for

service features and not for description of the top-level service.

Formalized use cases split the overall functional behavior of the system into min-

ute chunks of functionality. Each use case contains a chain of atomic actions that

describe very low-level behavior of three di¤erent kinds: input, output, and system

operation. When the service has been completely specified using formalized use cases,

the specification can be translated relatively easily into the graphical version of SDL

with the help of a compiler.

At this point, the RATS methodology converges with existing SDL design

methodologies.

4.5.2.2 The Domain Layer The domain layer of the RATS server consists of a com-

prehensive set of models describing the telecommunications domain as well as other

areas relevant to telecommunications service development. The modules in this layer

are created independently of one another and are like the development layer imple-

mented in Telos.

The knowledge contained in the domain models is accessed by the negotiation

models of the development layer during the service development process. The negoti-

ation models help find reusable components (e.g., specifications of previously defined

service features). Additionally, when used with a model browser, the domain models

can provide general information about the telecommunications domain (e.g., infor-

mation about network interoperation issues).

The current version of the RATS tool does not contain all the conceptual models

shown in figure 4.4. However, the usefulness of the approach taken can already be

seen from the currently implemented models, which contain comprehensive informa-

tion from numerous sources. There is a great deal of scope for expanding this layer.

The more comprehensive the domain models, the more active guidance can be

o¤ered to the service developer.

4.5.2.2.1 Kinds of Domain Models The information currently contained in the do-

main layer comes from various sources. The following list distinguishes three kinds

of conceptual domain models according to their origin:

� Standards Domain knowledge is extracted from standards and expressed in con-

ceptual models. The resulting standards-based models are very detailed and can be

viewed as electronic versions of standards. When used with a model browser, they

are suitable for reference and teaching purposes. However, such models usually con-

tain more information than is necessary for service development and therefore slow

down the performance of the RATS tool.

� Expert knowledge The knowledge of experts is captured and expressed in concep-

tual models. The resulting expert knowledge models are often very di¤erent from

Conceptual Modeling in Telecommunications Service Design 185

those based on standards; however, they are one of the most appropriate models for

the RATS tool, as they reflect real-world situations. Because they are created from

the viewpoint of a domain expert, the structure of these models is usually well suited

for requirements acquisition. Additionally, an expert describes only information that

is relevant for service development, thus averting the inclusion of unnecessary infor-

mation in the models.

� ‘‘Quick models’’ These models can be built from either standards or expert

knowledge. They contain only the bare minimum of information that is absolutely

essential to support the service design process and are restricted to the relevant do-

main objects, together with some characterizing keywords. This means that they

can be created in a very short time, and their small size contributes to good tool

performance.

With these three types, the RATS tool can accommodate very di¤erent kinds of do-

main models that might have been created by di¤erent people for di¤erent purposes.

This allows flexibility and adaptation of the tool for di¤erent purposes.

4.6 Method Engineering

This section examines the conceptual models contained in the RATS server. These

models are implemented in the Telos language and stored in ConceptBase. As has

been mentioned previously, the RATS server contains the following layers and

modules:

� the development layer, which consists of

� the intelligence module, containing the intelligence models

� the development module, containing the development models

� the negotiation module, containing the negotiation models

� the domain layer

4.6.1 The Intelligence Models

The intelligence models are those conceptual models of the RATS tool that contain

the most advanced approaches to intelligence. The main task of the intelligence mod-

els is to assist the service designer by providing comprehensive guidance during ser-

vice specification. This section describes how passive and active guidance have been

implemented in the RATS tool. A combination of these two kinds of guidance leads

to the overall intelligence of the RATS tool and helps to achieve the objectives of

guidance: object-related and methodology-related guidance (see figure 4.3). Finally,

the consistent use of libraries, as another task of the intelligence models, is outlined.

186 Armin Eberlein

4.6.1.1 Passive Guidance

Passive guidance is basic, but essential, during service development. As the name

suggests, passive guidance does not tell the service developer what has to be done

but rather points out inconsistencies. Thus, passive guidance is a negative response

of the tool in cases in which the user violates certain rules and constraints contained

in the conceptual models.

Passive guidance can be achieved by using rigid constraints, which prevent the in-

sertion of inconsistent objects into the knowledge base. Telos and its implementation

in ConceptBase o¤er the following rigid constraints:

� Object orientation Conceptual, object-oriented modeling using formal languages,

with their features of inheritance, classification, specialization, and instantiation, is

a means of implementing some basic forms of intelligence. These features provide

many constraints and restrictions on the definition of objects. For example, an indi-

vidual instance can have only those attributes that it inherits from its class(es). Thus,

any attempt to define an attribute that is not available on the class level will result

in an error message from the tool, because the object-oriented axioms have been

violated.

An example can be seen in figure 4.6. A formalized use case inherits all attribute

categories from all superclasses; that is, an instance of formalisedUseCase also

has a refinement status, requirements number, initiating actors, precondition, etc.

Here is an example of an instance of formalisedUseCase:

Individual f967787432556 in formalisedUseCase with

Summary,attribute

summary : "Normal procedure of user access, identification and

authentication procedure."

PreCondition,attribute

PreCon : "The system is idle."

FlowCondition,attribute

FlowCon : "User inputs the correct UPT service access code,

UPT number and authentication code at the right time."

PostCondition,attribute

PostCon : "The user access, identification and authentication

was successful. The system is ready for the identification of

the procedure."

attribute,containsAtomicActions

aa1 : f937546783720

attribute,involvedActors

user : UPTUser

Conceptual Modeling in Telecommunications Service Design 187

Figure 4.6
Passive guidance through object orientation. Attribute link (G

label
), subclass link (), instance link

(G), Telos object ()

188 Armin Eberlein

StructureLink,attribute

sl1 : f907546788765

end

However, this frame could not be inserted into the knowledge base if it were a textual

use case, since instances of textualUseCase do not inherit the attributes of the

classes structuredUseCase (e.g., attribute PreCondition) and formalisedUse-

Case (attribute containsAtomicActions). Thus object orientation helps in the cor-

rect handling of the di¤erent use case categories.

� Telos axioms Telos and its implementation in the ConceptBase tool contain sev-

eral axioms, such as the naming axiom and the multiple generalization/instantiation

axiom (see Jarke, Jeusfeld, and Staudt 1999a and Mylopoulos et al. 1990), that are

automatically enforced as soon as an object is inserted into the knowledge base. The

construction of Telos frames has to follow the syntactical rules of the language. This

applies to the definition of objects as well as attributes. Any Telos frame that does

not comply with these rules will be rejected.

� Permanent user-defined constraints and rules The various RATS models contain a

large number of permanent, user-defined constraints and rules that ensure model

consistency. The present version has over 70 user-defined constraints and 160 user-

defined rules. An attempt to insert an object into the knowledge base that would vi-

olate any of these constraints is rejected. These rules and constraints are present in all

modules of the RATS tool that have been implemented in Telos, that is, in the mod-

ules in the development layer and the domain layer. Although the constraints and

rules can contain very complex formulas, from an AI viewpoint the constraints and

rules are relatively basic AI concepts and part of virtually any Telos implementation.

An example of such a constraint is the following:

Individual GoalConstraint in Class with

attribute,constraint

GoalRefinement_con : $ forall f1/Goal f2/Requirement (f1

LogicLink f2) ==> not((f2 in Topic) or (f2 in Information))$

end

This constraint addresses the issue of refinement of NFRs. As was mentioned earlier

in the chapter, the transition from one NFR subclass to another has been restricted.

This constraint ensures that an instance of Goal can only logically be refined into

(i.e., have a LogicLink to) another Goal or Functionality or an Implementa-

tionConstraint. The constraint is expressed in negative terms (i.e., ...==>

not(f2 in...) instead of ...==> (f2 in ...)); otherwise it would implicitly en-

force completeness, which is not wanted. This constraint is only meant to prevent

the insertion of NFR refinements that are clearly against the rules.

Conceptual Modeling in Telecommunications Service Design 189

Another example is given here:

Individual RequirementsObjectConstraint in Class with

attribute,constraint

Agreement_con : $ forall f1/RequirementsObject f2/

RequirementsObject!StatusOfAgreement f3/Agent From(f2,f1) and

(f2 RejectedBy f3) ==> not(f1 StatusOfAgreement Agreed)$;

AcceptReject_con : $ forall f1/RequirementsObject f2/

RequirementsObject!StatusOfAgreement f3/Agent (From(f2,f1) and

(f2 RejectedBy f3) ==> not(From(f2,f1) and (f2 AgreedBy f3)))$

end

The constraint Agreement_con ensures that each instance of RequirementsObject

can get the status Agreed only when no agent rejects that instance of Require-

mentsObject. The constraint AcceptReject_con ensures that an instance of Re-

quirementsObject cannot simultanously be agreed on and rejected by the same

agent.

These rigid constraints are extremely helpful because they immediately challenge

the tool user when inconsistencies arise. However, they are desirable only for serious

violations of consistency, such as syntactical or methodological errors. There are

some inconsistencies, especially ones concerning incompleteness, that may be tempo-

rarily acceptable or even desirable (Balzer, Goldman, and Wile 1978). In order to ac-

commodate these, there is a need for additional constructs that allow the temporary

insertion of an object that is inconsistent or causes inconsistencies but that also indi-

cate to the user that the object needs further attention. In RATS, such constructs

have been termed soft constraints, and there are currently two categories of them:

� Temporary user-defined constraints and rules An additional set of user-defined

constraints and rules, similar to the permanent constraints mentioned previously, is

available. However, these are not constantly present in the knowledge base but are

triggered only at certain milestones at which consistency and completeness must be

checked. For instance, milestones in the development life cycle can be defined and

can have a set of check constraints associated with them. If a service designer believes

that a certain milestone in the service development has been achieved, the appropri-

ate set of check constraints is temporarily inserted into the knowledge base to verify

its consistency. Since milestones usually imply a certain degree of completeness, the

constraints need to be designed in such a way that incompleteness manifests itself as

inconsistencies. This means that many check constraints inspect a specification for

missing information. If inserted in a successive manner, check constraints even allow

the user of the tool to determine the location of each inconsistency and incomplete-

ness in the specification that the constraints identify.

190 Armin Eberlein

Here is an example of such a temporary constraint:

Agreement_con: $forall f1/RequirementsObject f1 StatusOfAgreement

Agreed)$

This constraint can be inserted into the knowledge base only if all requirements

objects have been agreed on. If there is even one instance of RequirementsObject

that does not have the status Agreed, the constraint will cause an error message.

This makes this constraint a good example of a so-called check constraint.

� Meta-attributes and state classes Telos models can have several layers of instan-

tiation. The higher the layer, the more generic the defined concepts. Attributes

defined in high layers of the models can be seen as generic meta-attributes. Some of

these meta-attributes can also be defined by metarules or metaconstraints. A meta-

attribute defined by a metarule can be used to automatically assign an object to a

state class depending on the current state of a specific object (e.g., a requirement).

Statistical calculations of the distribution of objects in various state classes can pro-

vide the system designer with a valuable insight into the progress of the specification

process.

To illustrate the functionality of meta-attributes and state classes, an example is

given: In the top layer of the intelligence models a state class called Inconsistent-

DueToIncompleteness has been defined. Additionally, there is a meta-attribute

called necessaryInc, defined by the metarule necessaryInc_rule:

necessaryInc_rule: $ forall x/VAR

(exists p/myc!necessaryInc c,d,m/VAR In(x,c) and P(p,c,m,d)

and not(exists y/VAR In(y,d) and A(x,m,y)))

==> In(x,InconsistentDueToIncompleteness)$

The metarule necessaryInc_rule reads as follows: For any instance x of c, if x

has an attribute link p with label m between the classes c and d, and p instantiates

necessaryInc, and, in addition, if there exists no instance y of d that is the destina-

tion of the attribute link p, then the instance x becomes an instance of Inconsis-

tentDueToIncompleteness.

The metaattribute necessaryInc can be used in all classes of the development

models. For example, in order to enforce the definition of parallel and exceptional

behavior as mentioned in the RATS methodology guidelines, the class Functional-

ity has the following Telos definition:

Individual Functionality isA RequirementsCategory with

attribute,necessaryInc

Choice: Functionality;

Exception: Functionality

end

Conceptual Modeling in Telecommunications Service Design 191

This definition, in connection with the state class InconsistentDueToIncom-

pleteness and the metarule necessaryInc_rule, automatically makes each re-

quirement that is an instance of the class Functionality an instance of the class

InconsistentDueToIncompleteness, if it has no parallel and/or no exceptional

behavior defined. With the help of Telos queries, either all the instances of the class

InconsistentDueToIncompleteness (i.e., all requirements that still have an in-

complete definition) can be found, or the RATS tool can be asked whether a specific

requirement is still incomplete.

Finally, the GUI can use state class information when displaying instances (e.g., a

requirement) on the screen, so that the user can better oversee the process. For in-

stance, the icon used for an incomplete requirement could be displayed in red, indi-

cating that the requirement needs further attention.

The ideas described in this section have dealt with passive guidance, which is very

helpful during service development. However, its capabilities are limited. It can only

point out errors by stating: ‘‘Don’t do that!’’ What is more valuable is showing the

user what needs to be done next: ‘‘Do this!’’ The next section deals with this topic.

4.6.1.2 Active Guidance A very important characteristic of an expert system is the

ability to give advice actively to the user of the system tool. There are several means

by which active guidance can be provided using the Telos language, and some of the

possibilities are outlined here. The first two types of guidance are defined on the class

level; they thus provide class-specific guidance for certain classes, but they do not

provide guidance for instances of the classes.

� Strings assigned to classes Classes contain strings that point out the next steps that

normally have to be performed with the instances of the various classes. This infor-

mation is similar to that provided by a design manual, which says what steps usually

need to be taken for a certain object. For instance, the class InitialCustomer-

Description contains a string called description1 describing what needs to be

done with the instances of this class. Such strings are usually textual descriptions of

actions to be performed.

Individual InitialCustomerDescription in Class isA

RequirementsDocument with

attribute

Brainstorming : BrainstormingList;

CreatedBy : Agent;

AffiliationOfCustomer : String;

PlaceOfCreation : String

attribute,description

192 Armin Eberlein

description1 : "This description contains a high level

overview/summary of the product. This will be a textual

description of the product and should be very brief (max. 1/2

page). It is written solely by the customer and expresses his

ideas about the product to be developed."

end

� Guidance derived from models Some rough guidance can be derived from the way

in which the models have been designed. However, this approach to providing guid-

ance demands models that are oriented toward the development process rather than

the conceptual inheritance of characteristics. In some cases, these two orientations

might be the same; however, this cannot generally be assumed. In those cases in

which these two orientations di¤er, the models would become very complicated if

they additionally included guidance. The RATS development models have been cre-

ated to give priority to conceptual inheritance rather than the development process.

This means that only a very small amount of guidance can be derived from the devel-

opment models. One example in which this principle has been used is the class Re-

quirementsObject contained in the development models. RequirementsObject

has an attribute called Action, which points again to the class Requirements-

Object. This means that any instance of RequirementsObject must be trans-

formed by an Action into a new instance of RequirementsObject.

These two types of active guidance are related to the class level of the development

models and thus provide class-specific guidance, which can be very helpful as general

advice. However, class-specific guidance gives the same advice for each instance of a

certain class and does not deal with the development needs particular to of an indi-

vidual instance, such as a particular use case or a brainstorming list. It is most help-

ful if the expert system is able to point out very specifically to the requirements

engineer what should be done with a particular instance in order to proceed with

its development. Therefore, more advanced approaches to active guidance o¤er

instance-specific guidance with the help of intelligence models:

� Intelligence rules and intelligence objects Intelligence rules assign intelligence

objects to specific instances of any class, depending on the actual state of the partic-

ular instance. The intelligence objects contain the necessary information to further

develop the instance concerned. Intelligence rules can be very complex; however,

they allow sophisticated, instance-specific active guidance. Using a generic query, all

the intelligence objects assigned to a particular instance can be retrieved.

The functionality provided by intelligence rules and intelligence objects is illus-

trated by two examples. The first example looks at object-related guidance and is

shown in figure 4.7. Depending on the development state of the specification of the

Universal Personal Telecommunication (UPT) service, the object-related intelligence

Conceptual Modeling in Telecommunications Service Design 193

rules automatically create links from the instance UPT_Specification to the rele-

vant object-related intelligence objects. These links are updated immediately by the

object-related intelligence rules as soon as a change takes place in the RATS server.

The intelligence rule that links Int8 to UPT_Specification in this example is rela-

tively simple:

Individual RequirementsStructureIntelligence in Class with

attribute,rule

ToDo1_rule : $forall f1/RequirementsStructure (exists e1/

Requirement (f1 contains e1) and not(e1 StatusOfAgreement

Agreed)) ==> (f1 IntelligenceObject Int8)$

attribute,comment

comment1 : "The ‘ToDo1_rule’ assigns the Intelligence ‘Int8’

to all requirements structures which contain requirements

which are not all agreed on."

end

If a user of the RATS tool would like to know what needs to be done with regard

to the current version of UPT_Specification, he or she asks the RATS tool for ad-

vice, using the generic query for object-related guidance NextStepForObject to-

gether with the parameter UPT_Specification:

Figure 4.7
Example of the implementation of instance-specific, object-related active guidance

194 Armin Eberlein

Individual NextStepForObject in GenericQueryClass isA

ObjectRelatedIntelligence with

attribute,parameter

obj : ObjectWithIntelligence

attribute,constraint

con : $(~obj IntelligenceObject this)$

attribute,comment

comment1 : "This query finds the Instances of

ObjectRelatedIntelligence which are relevant for the concerned

ObjectWithIntelligence (obj)."

end

This query retrieves all those intelligence objects that are linked to the UPT_

Specification. In this example, it is assumed that the UPT service definition is

nearly complete; just one requirement has not yet been agreed on by all stakeholders.

This causes the object-related intelligence rule to link the intelligence object Int8,

defined as follows, to the UPT_Specification:

Individual Int8 in ObjectRelatedIntelligence with

ToDo,attribute

ToDo1 : "This requirements structure contains requirements

which still have not got the status ‘Agreed’. Try to get

status ‘Agreed’ for all requirements contained in this

requirements structure."

end

Using the generic query for object-related guidance, the service designer is asked to

get the status Agreed for all requirements in the UPT service definition requirements

document.

The second example explains methodology-related guidance, which helps with

progress in the overall RATS methodology. The implementation is illustrated in fig-

ure 4.8 and is similar to that for the object-related guidance described previously.

Whereas object-related guidance is concerned with low level issues, methodology-

related guidance deals with high level methodological issues. It assists with overall

service design, guiding the designer through the process of developing the whole ser-

vice. Depending on the development state of the UPT service, methodology-related

intelligence rules create links from the instance UPT to the relevant methodology-

related intelligence objects. In the example of figure 4.8, it is assumed that the follow-

ing rule assigns Int1006 to the UPT object:

Individual FunctionalBlockIntelligence in Class with

attribute,rule

Conceptual Modeling in Telecommunications Service Design 195

AddAlternativeBehaviour_rule1 : $forall f1/FunctionalBlock

(exists e1/Specification e2/Functionality (f1 definedIn e1)

and (e1 contains e2) and not(e2 in RejectedRequirement) and

not(exists e3/Functionality (e2 Choice e3))) ==> (f1

IntelligenceObject Int1006)$

attribute,comment

comment2 : "The ‘AddAlternativeBehaviour_rule1’ assigns the

Intelligence ‘Int1006’ to all Functional Blocks (i.e. Service,

SF or SIB) which still contain functional requirements which

have no alternative behaviour assigned to them."

end

Int1006 is the intelligence object that asks the designer to specify alternative

behavior:

Individual Int1006 in MethodologyRelatedIntelligence with

ToDo,attribute

ToDo1 : "The service designer has to add alternative

behaviour. Q: What else should the service / service feature

be able to do?"

Figure 4.8
Example of the implementation of instance-specific, methodology-related active guidance

196 Armin Eberlein

attribute,nextStep

nextStep1 : Int1007

end

If the tool user wants the tool to tell him or her what has to be done next in order

to progress in the RATS methodology, he or she can pose the following query:

Individual NextStepInMethodology in GenericQueryClass isA

MethodologyRelatedIntelligence with

attribute,parameter

obj : FunctionalBlock

attribute,constraint

con2 : $not(exists e1/NextStepsInMethodology[~obj/obj] (this

doFirst e1))$

attribute,comment

comment2 : "This query finds exactly the next step which needs

to be done according to the methodology for a certain instance

of FunctionalBlock (i.e. for an Instance of Service). It does

need the query NextStepsInMethodology and needs the rule

MethodologyRelatedIntelligenceRule!doFirst_rule in order to

work. This query is very slow."

end

This query finds exactly the next step that has to be performed. In order to find the

one intelligence object that describes the next step, this query uses another generic

query called NextStepsInMethodology that retrieves all intelligence objects that

are linked to the functional block UPT. The query NextStepsInMethodology is

defined as follows:

Individual NextStepsInMethodology in GenericQueryClass isA

MethodologyRelatedIntelligence with

attribute,parameter

obj : FunctionalBlock

attribute,constraint

con1 : $(~obj IntelligenceObject this)$

attribute,comment

comment1 : "This query does not necessarily make too much

sense. It can come up with several instances of

MethodologyRelatedIntelligence. It mainly serves as help for

the query NextStepInMethodology."

end

One di¤erence between intelligence objects that belong to the object-related guid-

ance and those that belong to the methodology-related guidance is that the latter

Conceptual Modeling in Telecommunications Service Design 197

ones are linked with one another (compare figures 4.7 and 4.8). The query Next-

StepInMethodology selects the very first intelligence object in the chain of intelli-

gence objects that have been returned by the query NextStepsInMethodology.

� Parameter rules and parameter queries Intelligence objects can be associated with

parameter queries. These queries contain complex rules that enable them to ask for

specific parameters that help with further development of the service specification.

Since these queries are linked to a particular intelligence object, which is linked in

turn with a particular instance, the outcome of the query is specific to that particular

instance and to the stage of development of that particular instance.

Going back to the example described in figure 4.7, the RATS tool will inform the

service designer that there is the object-related parameter query ParametersFor-

Int8 connected to the intelligence object Int8. This query allows the user to ask

the tool what parameters there are that are related to the UPT service definition.

With the help of object-related parameter rules, the query ParametersForInt8

finds those requirements contained in the UPT service definition that have not yet

been agreed on by all stakeholders. In this case, there is only one requirement, the

one with requirements ID f907546788765. Having received this information, the

service designer can then proceed by again asking the tool what needs to be done to

complete the requirement f907546788765. This new query and its associated pa-

rameter queries will then point out the names of all those stakeholders who have

not yet agreed to this requirement and also why they have not agreed. This provides

the service designer with the information necessary to proceed with the definition of

the UPT service.

As can be seen in figure 4.8, there are similar parameter queries and rules for

methodology-related guidance. These parameter queries will retrieve those objects

that need further work. In the example shown in figure 4.8, two requirements are dis-

played that still need alternative behavior specified. Applying now the generic query

for object-related guidance, the tool user can get additional instructions regarding the

further development of these two requirements.

4.6.1.3 Intelligence Integration This section brings together the di¤erent aspects of

intelligence. The previous example of the UPT service is used here as well to show

how the di¤erent approaches to intelligence previously described work together in

the RATS tool to achieve comprehensive overall intelligence. It should be noted

that the various contributions to overall intelligence are distributed across all the

layers of the RATS tool.

Assume again that the UPT service is to be defined in the requirements document

called UPT_Specification. First of all, object orientation and Telos axioms ensure

that the definition of UPT_Specification is an instance of the class Specifica-

tion (which is a subclass of RequirementsDocument). This allows the UPT_

198 Armin Eberlein

Specification to inherit all the attributes defined in the class Specification.

Some of these attributes represent predefined headings that show the tool user the

issues to be addressed during service definition.

It is further assumed that the development of the UPT service has already reached

the point at which all functional behavior has been expressed in textual use cases.

Meta-attributes and state classes will assign all requirements and documents that

have not yet been completely developed to the class InconsistentDueToIncom-

pleteness, which is a subclass of InconsistentObject. The GUI clearly indicates

such objects by highlighting them. In order to show the service designer what to do

next, methodology-related intelligence rules will find the current state of the develop-

ment cycle and, with the help of intelligence objects, point out the next steps to be

completed in order to progress in the specification of the UPT service. In this exam-

ple, the tool will tell the designer to refine and decompose the nonfunctional require-

ments and to satisfy them with textual use cases and/or implementation constraints.

Methodology-related parameter rules and parameter queries will list all those NFRs

that require further decomposition at this point in the development process. Assum-

ing that a certain goal needs to be refined further, the designer can now ask the

RATS tool what needs to be done to achieve the goal. Object-related intelligence

rules and intelligence objects will tell the designer that the goal needs to be refined

into further goals, functionality, or implementation constraints. If the designer

ignores this recommendation and tries to refine the goal into a topic, permanent

user-defined constraints will reject this attempt.

4.6.2 The Development Models

4.6.2.1 The Overall Methodology The development models of the RATS tool con-

tain the implementation of the RATS methodology, the theoretical framework of

which is shown in figure 4.5 and the guidelines for which are described in table 4.1.

It seems to be sensible to define states (or milestones) within the RATS develop-

ment process, with one action to be performed as long as the development process is

in a particular state. This means that each action (i.e., each row) in table 4.1 repre-

sents a state in the development life cycle. In order to describe the actions that the

service designer has to perform within each state, a methodology-related intelligence

object has been defined for each state. Thus, the RATS methodology guidelines are

implemented by linking each action of table 4.1 to a state, which in turn is associated

with a methodology-related intelligence object describing the action to be performed

as long as the development process is in that state.

The current state of the development process is determined by methodology-

related intelligence rules, which link the service to be developed with the appropriate

methodology-related intelligence objects. Since several of the methodology-related

Conceptual Modeling in Telecommunications Service Design 199

intelligence rules might be true at a certain point in time, a service can have several

intelligence objects associated with it (see figure 4.9). For instance, during the initial

specification, in which only the basic service behavior is outlined, the rules for the

two states ‘‘Add alternative behavior!’’ and ‘‘Add exceptional behavior!’’ are both

true. The intelligence objects that are linked to a particular service are retrieved by

the previously described generic query NextStepsInMethodology. In order to un-

ambiguously assign a service to one single state, the states are sequentially linked

with one another in the same order in which they occur during development (see fig-

ures 4.8 and 4.9). The earliest of all the states assigned to the service is then the cur-

rent development state of the service. RATS determines the current development

state by using the query NextStepInMethodology, which in turn calls the query

NextStepsInMethodology. Actions that can be performed in parallel with other

actions (see table 4.1) cause branching within the chain of intelligence objects (like

Int1020 in figure 4.9).

Transitions from one state to the next are achieved by performing appropriate

actions (see figure 4.10). An important benefit of this approach is automatic process

iteration. If, for instance, a service has already been specified using structured use

cases (i.e., Int1012 is now linked to the service, which means that service develop-

ment is now in state 1012), and the customer adds a new requirement to the spec-

ification, rules will automatically initiate reengineering of the service from the

appropriate point of the life cycle. Depending on the kind of change the customer is

making, reengineering will start at a particular stage in the life cycle (see figure 4.11),

Figure 4.9
Determination of the current development state of a service or SF

200 Armin Eberlein

Figure 4.10
Development process iterations

Figure 4.11
Excerpt from the metamodel of the development models. Attribute link (G

label
), subclass link (), in-

stance link (G), Telos object ()

Conceptual Modeling in Telecommunications Service Design 201

and that stage may be di¤erent for di¤erent types of changes. Adding a high-level

nonfunctional requirement to an already existing requirements specification will

cause a fallback to a very early state (in this case, state 1008), whereas adding minor

low-level functionality (e.g., change of an announcement) will set the development

process back by only a few states (in this example, to state 1011). This automatic

process iteration to the nearest possible state in the life cycle is an excellent means

of ensuring that reengineering e¤ort is kept to a minimum when requirements

change.

4.6.2.2 Implementation of the Requirements Engineering Concepts The development

models contained in the development layer of the RATS tool (see figure 4.4) contain

the implementation of the requirements engineering concepts used in the RATS

methodology. This section focuses on the implementation of these concepts in

object-oriented class hierarchies. The models comprise an abstract layer of classes

and attributes that define generic characteristics that are used by many more-specific

objects. One of the most generic concepts is modeled by the class Requirements-

Object (see figure 4.11). A requirements object is such a general concept that any

requirement (e.g., a use case, a goal, a service feature) and any requirements struc-

ture (e.g., a specification, an overall use case, a service) is an instance of the class

RequirementsObject and thus inherits all its attributes.

Some of the attributes of the class RequirementsObject can be seen in figure

4.11. Any requirements object is annotated with the date and the time of its initial

creation (attribute CreationDateAndTime) and its last modification (attribute

LastModificationDateAndTime). Requirements objects can be linked with one

another via the attribute Action. Links of this type are usually related to actions

performed on a requirements object (e.g., decomposition of a requirement) and

are created during meetings. Each meeting is annotated with its date, time, and

location, together with the names of the people participating. A meeting addi-

tionally results in a change to the requirements documents; for instance, a brain-

storming list is used as starting point for a meeting during which the service being

developed is more precisely specified in a service definition document. The partici-

pants at the meeting (modeled by the class Agent), as well as their a‰liations, are

recorded.

The agreement status of a requirements object is very important, and therefore

each requirements object needs to have exactly one agreement status assigned to it.

This is achieved by combining two meta-attributes for the definition of the agreement

status:

attribute,necessaryInc,singleCon

StatusOfAgreement: AgreementStatus

202 Armin Eberlein

� The necessaryInc meta-attribute marks each requirements object as incomplete if

it has no attribute StatusOfAgreement defined. This meta-attribute belongs to the

soft constraints of the RATS tool and allows temporary incompleteness.

� The singleCon meta-attribute ensures with a rigid constraint that this attribute is

instantiated only once.

The attribute RequirementsObject!StatusOfAgreement itself has two attrib-

utes: AgreedBy and RejectedBy (see figure 4.11). These two attributes allow the

user to list the opinions of the stakeholders regarding a particular requirements ob-

ject. In order to see if a requirements object has been changed since a stakeholder

(dis)agreed with it, the date of (dis)agreement is annotated as well (see figure 4.11).

If the LastModificationDateAndTime is more recent than the date of (dis)agree-

ment of stakeholders, then it might be worth pointing out to them the change in the

requirements object and seek their approval of the change.

4.6.2.2.1 Requirements Documents Requirements documents are implemented in

the RATS methodology as a special requirements structure, which is in turn a

Figure 4.12
Excerpt from the RequirementsDocument subclass hierarchy. Attribute link (G

label
), subclass link (),

instance link (G), Telos object ()

Conceptual Modeling in Telecommunications Service Design 203

requirements object (see the subclass hierarchy presented in figure 4.12). This means

that instances of the class RequirementsDocument inherit all the attributes,

the constraints and rules defined for the classes RequirementsStructure and

RequirementsObject.

The definition of the class RequirementsStructure again uses the necessary-

Inc meta-attribute as a means of allowing gradual development by tolerating tem-

porary incompleteness during the definition of requirements structures (i.e., also of

requirements documents):

Individual RequirementsStructure isA RequirementsObject with

attribute,necessaryInc

contains: Requirement

end

In order to illustrate in more detail how attributes are inherited within the object-

oriented subclass hierarchy, the relatively simple example of the class Brain-

stormingList is given in table 4.2. This table shows the links between the

BrainstormingList attributes as they are displayed to the tool user and the class

attributes with which they are implemented.

Table 4.2
Assignment of BrainstormingList attributes to class attributes

BrainstormingList attribute Class attribute

Name of service First part of the name of the BrainstormingList object defined
as instance of the class BrainstormingList or name of instance
of class Project that has a BrainstormingList attribute to
the BrainstormingList object

Date and time of creation RequirementsObject!CreationDateAndTime

Date and time of last modification RequirementsObject!LastModificationDateAndTime

Created in meeting RequirementsObject!Action!atMeeting

Location of meeting Meeting!LocationOfMeetinga

Date and times of meeting Meeting!DateOfMeeting, Meeting!StartTimeOfMeeting,
Meeting!StopTimeOfMeetinga

Participants of meeting Meeting!ParticipantsOfMeetinga

A‰liation of participants Agent!Name, Agent!Function, Agent!Company,
Agent!Department, Agent!Addressb

Status of agreement RequirementsObject!StatusOfAgreement

Agreed by RequirementsObject!StatusOfAgreement!AgreedBy

Rejected by RequirementsObject!StatusOfAgreement!RejectedBy

a. The appropriate meeting is found via the attribute RequirementsObject!Action!atMeeting.
b. The appropriate participants are found via the attributes RequirementsObject!Action!atMeeting
and Meeting!ParticipantsOfMeeting.

204 Armin Eberlein

The attributes of the class Template determine the headings in each template.

For example, the attributes of the class ServiceDefinitionTemplate reflect the

main headings of the template used for telecommunications service development.

Subheadings are implemented as attributes of the main headings. Before a new tele-

communications service is specified, the template is copied; that is, the Service-

DefinitionTemplate is stored under a new name (e.g., UPT_Specification for

the specification of the Universal Personal Telecommunication service) and made an

instance of the class Specification instead of Template. Figure 4.13 shows the

complete list of attributes, and figure 4.14 illustrates parts of the implementation.

Those attributes that establish links between the requirements contained in the spec-

ification have their own attribute of the category RequirementsDocument!con-

tainsRequirements!RequirementsNumber. This attribute is used to construct

the requirements number of each requirement in the requirements document.

Figure 4.13
The service definition template

Conceptual Modeling in Telecommunications Service Design 205

4.6.2.2.2 Requirements Some parts of the Requirement subclass hierarchy are

shown in figure 4.15. Each individual concept is implemented as a Telos class and is

connected via attributes to the other classes with which it has relationships. Most

subclasses have some subclass-specific attributes, but all subclasses also inherit all

the attributes of their superclasses.

Some of the general requirements attributes, which each requirements subclass

inherits, are shown in figure 4.16. The meaning and usage of these attributes as

follows:

� Requirements ID: Each requirement has a unique identifier, which is the name

under which the requirement is stored in ConceptBase.

� Requirements Number: Requirements contained within a requirements structure

are hierarchically numbered using appropriate number levels (e.g., 4.6.2.10).

Figure 4.14
Specifications and their templates. Attribute link (G

label
), subclass link (), instance link (G), Telos

object ()

206 Armin Eberlein

� Date and Time of Creation: This is the date and time at which the requirement

was created.

� Date and Time of Last Modification: This is the date and time at which the re-

quirement was last modified.

� by Agent: This attribute of the structure link stores the name of the requirements

engineer who inserted the requirement into the RATS tool.

� Source: This attribute names the stakeholder who initially stated the requirement

and wanted it to be considered.

Figure 4.15
Excerpt from the Requirement subclass hierarchy. Attribute link (G

label
), subclass link (), instance

link (G), Telos object ()

Conceptual Modeling in Telecommunications Service Design 207

� Justification: Here the rationale and goals behind the requirement are outlined.

This attribute is crucial for requirements traceability, especially when the existence

of the requirement has to be justified at a later point.

� Priority: Each requirement must have a priority assigned to it. There are currently

three levels of priority, depending on the importance of the requirement:

n Mandatory: This requirement is absolutely essential.
n Desirable: This requirement should be implemented.
n Optional: It would be good to fulfill this requirement.

� Status of Refinement: This attribute states to what extent the requirement has

been developed. Depending on the requirements subclass, this attribute can have dif-

ferent meanings. It shows the extent to which

n a topic has been addressed;
n information has been considered;
n a goal has been satisfied;
n functionality has been achieved;
n an implementation constraint has been considered.

There are three values possible for this attribute:

Figure 4.16
Excerpt from general requirements attributes. Attribute link (G

label
), subclass link (), instance link

(G), Telos object ()

208 Armin Eberlein

n Not Refined: The requirement has only been stated; it has not yet been further

developed.
n Partially Refined: The refinement process of this requirement has started;

however, further development is necessary.
n Completely Refined: This requirement has been developed to the point that it

is fully satisfied by successive requirements.

� Status of Agreement: Inclusion of a requirement can make sense only if all the

involved parties agree to it, as well as to its specification.

n Agreed: Stakeholders unanimously consent to the requirement and its specifica-

tion.
n Pending: Some stakeholders agree to the definition of the requirement, some

do not. This disagreement has to be settled by negotiation and by editing the

requirement.
n Rejected: All parties have agreed that this requirement should be deleted.

� Agreed By: This attribute lists all those stakeholders who have given their consent

to the requirement.

� Rejected By: This attribute lists all those stakeholders who have not given their

consent to the requirement.

There are two more requirements subclasses with additional attributes that are

worth mentioning:

� NewRequirement: Any requirement automatically becomes an instance of the

class NewRequirement if there is no history link pointing to it. In such a case an ad-

ditional attribute must be specified, giving the justification for the new requirement

(see figure 4.17).

� RejectedRequirement: Any requirement automatically becomes an instance of

the class RejectedRequirement if it has Rejected as its agreement status. In this

case an additional attribute must be specified, giving the reason for the rejection of

the requirement (see figure 4.17).

There are two rules that ensure any requirement that satisfies either of the conditions

just mentioned becomes an instance of the appropriate requirements subclass.

Individual RequirementRule in Class with

attribute,rule

RejectedRequirement_rule : $ forall f1/Requirement (f1

StatusOfAgreement Rejected) ==> (f1 in RejectedRequirement) $;

NewRequirement_rule : $ forall f1/Requirement not(exists e1/

Requirement (e1 HistoryLink f1)) ==> (f1 in NewRequirement) $

attribute,comment

Conceptual Modeling in Telecommunications Service Design 209

comment2 : "The RejectedRequirement_rule automatically makes

each requirement which has the status Rejected into an

instance of class RejectedRequirement.";

comment7 : "The NewRequirement_rule automatically makes each

requirement which has no History-link pointing to it into an

instance of class NewRequirement."

end

� Nonfunctional requirements Nonfunctional requirements (i.e., information, topics,

goals, and implementation constraints) have no additional subclass-specific attrib-

utes. These classes have been defined only to provide subclass-specific guidance and

to improve performance by restricting the search space for Telos queries. The use of

the general requirements attributes for nonfunctional requirements is therefore the

same as for functional requirements and hence is covered by the following item in

the list.

� Functional requirements All functional requirements belong to (i.e., are subclasses

of) the class Functionality. As can be seen in figure 4.18, this class has two

attributes (Choice and Exception) to link a functional requirement with other

requirements specifying parallel and exceptional behavior. These two attributes are

instances of the meta-attribute necessaryInc and thus must be specified for each

functional requirement at some point during the development life cycle.

Figure 4.17
An excerpt from subclass-specific requirements attributes. Attribute link (G

label
), subclass link (), in-

stance link (G), Telos object ()

210 Armin Eberlein

Functional requirements are decomposed using a three-stage use case design pro-

cess. The Telos model containing the use case subclass hierarchy is shown in figure

4.18. All the di¤erent kinds of use cases are defined as subclasses of the class Use-

Case and thus inherit the attributes, rules, and constraints of this class. Specifying

the di¤erent kinds of overall use cases as subclasses of the use cases with which

they are associated (e.g., OverallUseCaseOfStructuredUseCases is a subclass of

structuredUseCase) allows the recursive inclusion of use cases, as well as of over-

all use cases, hierarchically in high-level overall use cases.

In order to illustrate the inheritance of attributes, the class OverallUseCaseOf-

StructuredUseCases is employed as an example. Table 4.3 shows the implemen-

tation of the attributes of OverallUseCaseOfStructuredUseCases. Names of

attributes are shown as they are displayed to the tool user.

4.6.2.2.3 Information Retrieval In addition to displaying and enabling browsing

through requirements and the contents of requirements structures in a straightfor-

ward way, a knowledge-based development tool needs to provide a set of powerful

query facilities that are able to retrieve specific information from the knowledge

base. Some queries employed by the RATS tool are hidden from the user, as they

Figure 4.18
Another excerpt from subclass-specific requirements attributes. Attribute link (G

label
), subclass link (),

instance link (G), Telos object ()

Conceptual Modeling in Telecommunications Service Design 211

are automatically executed by the client logic of the RATS client in order to display

relevant information to the user. Other queries, however, have to be issued directly

by the user. These are mostly queries related to requirements management, such as

the history of a requirement or the impact of a change to a requirement. To give an

example, a query about the impact of a requirements change can be implemented in

the frame syntax of the Telos language as follows:

Individual ChangeOfRequirementAffectsLogically in

GenericQueryClass isA Requirement with

attribute,parameter

R : Requirement

attribute,constraint

con : $ (~R LogicLink this) or (exists e1/Requirement ((e1 in

ChangeOfRequirementAffectsLogically[~R/R]) and (e1 LogicLink

this)))$

end

As can be seen in its constraint definition, the query calls itself (i.e., it is a recursive

query). This demands that the query be an instance of the system class Magic. Addi-

Table 4.3
Assignment of OverallUseCaseOfStructuredUseCases attributes to class attributes

Attribute of
OverallUseCaseOfStructuredUseCases Class attribute

Requirements ID Name of the Telos object to be defined

Requirements No Requirement!RequirementsNo

Date and time of creation RequirementsObject!CreationDateAndTime

Date and time of last modification RequirementsObject!LastModificationDateAndTime

Created by Requirement!HistoryLink!byAgent

Source of requirement Requirement!Source

Reason for requirement Requirement!HistoryLink!Reason

Priority Requirement!Priority

Status of refinement Requirement!StatusOfRefinement

Status of agreement RequirementsObject!StatusOfAgreement

Agreed by RequirementsObject!StatusOfAgreement!AgreedBy

Rejected by RequirementsObject!StatusOfAgreement!RejectedBy

Use case title UseCase!UseCaseTitle

Involved actors UseCase!involvedActors

Use case summary structuredUseCase!Summary

Precondition structuredUseCase!PreCondition

Flowcondition structuredUseCase!FlowCondition

Postcondition structuredUseCase!PostCondition

212 Armin Eberlein

tionally, since the query allows the user to ask for the impact of a change in any re-

quirement, a parameter R is defined that is used to specify the requirement that is to

be changed. This makes the query generic; it is thus necessary to define the query as

an instance of GenericQueryClass. The advantage of the definition provided here

is that despite its being recursive, loops of logical links do not cause the query to

crash. However, the query can be very slow to return an answer when a considerable

number of requirements have been defined.

4.6.2.2.4 Intermodel Consistency The RATS tool has in its domain layer many do-

main models (see figure 4.4) that contain domain knowledge conceptually expressed

in Telos. An attempt has been made to create these domain models as independently

of one another as possible. This has great advantages during modeling, as it sepa-

rates the various domain areas and allows the use of di¤erent kinds of domain mod-

els. However, the independence of the models results in the danger of inconsistent use

of their contents, raising the topic of intermodel consistency.

The RATS tool makes use of rules and constraints to guarantee meaningful usage

of the libraries contained in the domain models, taking care that elements taken

from di¤erent domain libraries fit together. There are several ways in which this is

achieved. Using passive guidance, permanent as well as temporary user-defined con-

straints can be employed. However, in order to provide active guidance, intelligence

rules and intelligence objects are necessary. The following discussion illustrates the

latter approach. It shows a Telos rule that is part of a pool of object-related intelli-

gence rules. The rule ensures that service definitions specify only basic network ser-

vices that are also o¤ered by at least one of the networks in the service being

specified. In cases in which the basic service specified is not provided by any network,

the tool user is informed with the help of the object-related intelligence object Int25.

In order to define the intelligence rule, we first have to specify another rule that

makes sure that a link is created between the network and the services it o¤ers:

Individual NWRule in Class with

rule,attribute

offers_rule : $forall f1/NW e1/Library

(exists e2/BasicNWService (f1 offers e2) and (e1 in e2)) ==>

(f1 offers e1)$

end

Now we can specify the intelligence rule:

NetworkAndBasicServicesFitTogether_rule : $forall f1/Specification

(exists e1/NW e2/Library

(exists e3/NegotiationObject (f1 contains e3) and (e3

linksToLibrary e1)) and

Conceptual Modeling in Telecommunications Service Design 213

(exists e5/NegotiationObject (f1 contains e5) and (e5

linksToLibrary e2)) and not(e1 == e2) and not(e1 offers e2))

==> (f1 IntelligenceObject Int25)$

The functionality of this rule is illustrated in figure 4.19, again using the example of

the UPT service. To make the example more intuitive, meaningful names have been

selected rather than the names created automatically by the RATS client. The values

of the di¤erent variables (f1, e1, e2, etc.) in this particular example are shown in the

figure. Using these values, the rule states that if the UPT specification contains at

least one network and at least one basic service, then all the specified basic network

services need to be o¤ered by at least one of the specified networks; if this is not

the case, the intelligence object Int25 is assigned to the UPT_Specification. In the

example of figure 4.19, the dashed attribute ISDN!offers is not generated by the

offers_rule; that is, the network and the basic services included in the UPT speci-

fication do not fit together, and the NetworkAndBasicServicesFitTogether_

rule links Int25 to the UPT_Specification.

The way intelligence rules are defined is of crucial importance. For instance, the

rule here is not triggered when the specification is still incomplete. If any of the five

links (l1, l2, l3, l4, or l5) has not yet been specified, the UPT service definition is in-

complete, but not inconsistent; thus the rule is not supposed to be triggered. Such a

case is considered in the preceding definition of the rule.

Figure 4.19
Example of intermodel inconsistency. Attribute link (G

label
), subclass link (), instance link (G), Telos

object ()

214 Armin Eberlein

The preceding description makes clear that intermodel consistency is ensured by

the intelligence models; however, as can be seen in figure 4.19, it also involves parts

of the negotiation models (e.g., the object NegotiationObject). Nevertheless, since

active help for the resolution of inconsistency was one of the aims in the development

of the RATS tool, intermodel consistency has been implemented as part of the intel-

ligence models rather than of the negotiation models.

4.6.3 The Negotiation Models

The negotiation models perform several tasks. Their main task is to provide an inter-

face between the development models and the domain models. This interface allows

the use of di¤erent kinds of domain models. Furthermore, as a result of this inter-

face, active, domain-specific guidance can be o¤ered, together with the ability to re-

use previously defined domain objects and requirements specifications. Intermodel

consistency could in theory be another task of this layer; however, RATS provides

this by means of the intelligence models. Currently, much of the potential functional-

ity of the negotiation models belongs to the future development of the RATS tool.

4.6.4 The Domain Models of the Domain Layer

The RATS domain models are at various stages of implementation. The most com-

plete one is the model containing information on network transport capability. The

other models are not yet or only partially implemented. The following sections

therefore give only some introductory information on each domain model. Imple-

mentational details are given only for the model containing the network transport

capability.

� Customer profile The customer profile model contains information about each

customer. For this purpose it includes templates for relevant customer information.

The database holds information about the customers themselves, the subscribed net-

works, the subscribed bearer, tele- and supplementary services, the interface struc-

ture, the CPE, and the local exchange to which the customers are connected.

Depending on the kind of customer (i.e., private or business) an appropriate template

is used. Figure 4.20 shows an abridged version of a possible customer profile tem-

plate for a private customer.

� Customer premises equipment The CPE model contains the characteristics of the

various kinds of equipment that can be installed at the end of the network on the

customer’s premises. This can be a private automatic branch exchange (PABX), an

ISDN or analog telephone, a local area network (LAN), etc. Since CPE is directly

connected to a network, the CPE and network transport capability models are

closely linked. The CPE model contains information about the features, abilities,

and characteristics of the various pieces of CPE (e.g., display, camera, encryption

Conceptual Modeling in Telecommunications Service Design 215

facility, redial function), as well as their connection to the network (e.g., access inter-

faces, connection points). CPEs suitable for use with ISDN can also be classified

according to their ISDN reference points (R-, S-, T-interface), as well as their func-

tional groups (Terminal Equipment [TE] 1/2, Terminal Adapter [TA], Network Ter-

minator [NT] 1/2), according to ITU-T 1993c. Additionally, the CPE’s interface

structures (e.g., 2BþD16) (ITU-T 1993d) are included in the description.

� Network transport capability The network transport capability model contains the

capabilities of the various telecommunications networks and is one of the major do-

main models. Each network (e.g., PSTN, ISDN) for which services are to be devel-

oped with the assistance of the RATS tool needs to be conceptually modeled in the

network transport capability model using Telos. The current version of RATS con-

tains a very comprehensive model of the ISDN network. Relevant information has

been collected from many sources, such as standards (e.g., I.xxx [ITU-T 1988–2000]

and ETS 300 xxx [ETSI 1990–1997]) and books (e.g., Bellamy 1991; Kessler 1998;

PTT Telecom 1993), as well as various ISDN Internet pages (e.g., Kegel 1996). The

present version of the ISDN model includes the following information:

n generic network characteristics (e.g., 64 kbps)
n combinations of network characteristics (e.g., 64 kbps, unrestricted, 8 kHz, struc-

tured) recommended by international bodies (e.g., ITU-T, European Telecommuni-

cation Standards Index [ETSI])
n basic ISDN services (bearer services and teleservices) characterized by service

attributes (see figure 4.21)

Figure 4.20
Example of a customer profile template for a private customer

216 Armin Eberlein

n information about service availability
n interoperability among basic services
n user-network interfaces and their attributes
n textual descriptions of the domain objects
n references to the appropriate standards

Figure 4.22 shows a small part of the comprehensive ISDN domain model. It illus-

trates how conceptual domain models can be used to teach newcomers to the domain

about certain topics. The extract shows that a telecommunications network o¤ers

basic network services, which in turn are characterized by service attributes that can

be assigned to attribute categories. If more information about service attributes is

required, the user can display the instances of the service attributes and their catego-

ries. The model also contains information on the relevant standards. In the example

shown in figure 4.22, ITU-T I.140 (1993a) is the appropriate standard. Each network

covered by the model can be accessed via a user-network interface. The basic net-

work services can be broken down into two categories: bearer services and tele-

services. In the case of ISDN, ten bearer service categories and eight teleservice

categories have been defined. If one of these services is selected, its attributes can be

displayed, and more information on each of the service categories could be retrieved.

� Supplementary services The supplementary services domain model contains infor-

mation about supplementary services, their characteristics, and their specifications.

The current version of the RATS methodology and its implementation in the RATS

tool are oriented toward the Intelligent Network concept. This model therefore

Figure 4.21
ISDN service attributes for basic ISDN services (see ITU-T 1993b)

Conceptual Modeling in Telecommunications Service Design 217

contains significant parts of the Intelligent Network architecture of the Q.12xx series

(ITU-T 1992–2000).

� Feature interaction The feature interaction domain model belongs to future work

on the RATS implementation. Di¤erent levels of sophistication could be introduced.

A simple approach would be to create and store a conceptual model of known fea-

ture interactions in the knowledge base. A more sophisticated approach could assign

characteristics to services and service features that are relevant for feature interaction

detection. If several features were combined during service creation, their character-

istics could point out unknown feature interactions.

� Network interoperation Since the current telecommunications network consists of

a wide variety of architectures, interoperation among di¤erent network types is es-

sential. This model will in future contain information about interoperability issues.

Such information can be found in, for example, ITU-T 1995 and 1993b, and ad-

dresses conversion functions like analog-to-digital and digital-to-analog conversion,

Figure 4.22
The ISDN domain model (partial). Attribute link (G

label
), subclass link (), instance link (G), Telos

object ()

218 Armin Eberlein

conversion of signaling systems, and protocols. Such conversions can become neces-

sary within a local exchange, at a transit exchange, or at international gateway

o‰ces.

� Switch Switches are becoming more and more sophisticated in today’s telecom-

munications systems. The demand for more services to be o¤ered to the customer is

resulting in a drastic increase of functionality contained in the switch. Many service

features are better provided by the switch rather than the IN, in order to reduce the

signaling overhead needed for IN services (Thörner 1994). The switch domain model

is also part of the future work on the project. It will basically contain a table listing

available switch types and the functionality they o¤er (e.g., bearer services, tele-

services, switch-based supplementary services, and operator services).

� Data dictionary The data dictionary also belongs to the future work on the RATS

tool. Its task will be to store definitions used during service specification and to estab-

lish a common vocabulary. Agreement on certain definitions of terms will help to

reduce ambiguity and will contribute to formality. Recommendations like I.11x

(ITU-T 1993–1997) and Q.1290 (ITU-T 1998) contain essential definitions that can

be stored in the data dictionary.

� Expanding the domain layer The domain layer has great potential for expansion.

Additional domain models or extensions to the current models could drastically in-

crease the help that the RATS tool can o¤er to the service developer.

Parts of the domain models can be extended relatively easily when the RATS tool

is being used. The development of new services will result in the specification of new

service features that, when fully specified and tested, can be included in the domain

model of the supplementary services and be reused in future developments.

4.7 Model Analysis

Complex models require tremendous e¤ort to ensure correctness. It is easy to gener-

ate a model that looks impressive, but it is a great challenge to ensure that it is cor-

rect. Two aspects of ensuring model correctness need to be addressed:

� Verification ensures that the model is consistent and correct in itself.

� Validation ensures that the model resembles the real world and correctly represents

the aspects of the world it intends to model.

A combination of several approaches have been used to check that the RATS

models are correct:

� Reviews The most common approach to model checking is careful analysis of

them and comparison with the real world. Such analysis and comparison requires

Conceptual Modeling in Telecommunications Service Design 219

time, detailed domain knowledge, and a clear mind. It is beneficial if several people

can check the models. Analysis and comparison of this type is a static approach to

model analysis and is good for verification as well as validation.

� Testing Testing is very important for checking constraints, rules, and queries. Sit-

uations should be created within the model that cause constraints and rules to be

triggered at the appropriate time. In the case of RATS, testing is used in two ways:

� After the definition of constraints, rules, and queries, the e¤ect of inserting and

deleting objects is checked.

n In the case of constraints, attempts are made to insert objects that are known to

violate a particular constraint (i.e., the constraint needs to prevent the insertion).

For instance, the following constraint can be checked by trying to insert an ISDN

bearer service variant with the attribute Available even though its bearer service

category is not available.

Individual ISDNBearerServiceVariantConstraint in Class with

constraint,attribute

Provision_Con : $ forall f1/ISDNBearerServiceVariant

(f1 hasBearerServiceVariantProvision Available)

==> (exists e1/ISDNBearerServiceCategory (f1 isA e1) and

(e1 hasBearerServiceCategoryProvision Available))$

end

This constraint will prevent the insertion of the ISDN bearer service variant.

n In the case of rules, di¤erent conditions are created that show that the rule is trig-

gered in the appropriate situations. With the help of queries, the correct functioning

is checked:

Individual RequirementRule in Class with

rule,attribute

RejectedRequirement_rule : $ forall f1/Requirement

(f1 StatusOfAgreement Rejected)

==> (f1 in RejectedRequirement)$

end

In this case, two requirements are inserted into ConceptBase: one with the agreement

status Rejected and another with the agreement status Accepted. A query class

is then defined that retrieves all those requirements that are instances of the class

RejectedRequirement. The first requirement should be returned by the query; the

second one should not. If this is what actually happens, there is a reasonable level of

confidence that the rule works correctly.

n In the case of queries, di¤erent objects are created that show the boundary of the

subclass defined by the query. For instance, if all requirements are to be found that

220 Armin Eberlein

have not yet been decided on (i.e., they do not have an agreement status of either

Accepted or Rejected) then the following query is defined:

Individual PendingRequirements in QueryClass isA Requirement with

attribute,constraint

rule : $ not (this StatusOfAgreement Agreed) and not (this

StatusOfAgreement Rejected) $

end

The correctness of the query can be checked by inserting some requirements into the

knowledge base that are Agreed, some that are Rejected, and some without any

agreement status defined. Only the last type will be returned by the query if it works

correctly.

� Constraints also can be used to ensure that the contents of the knowledge base are

consistent at higher levels of abstractions. This is where the intelligence of the RATS

tool comes in. For instance, the RATS server includes a constraint that prevents a

functional requirement from being refined into a goal (i.e., the model is consistent

with the development methodology).

It has to be stressed, however, that it can be a great challenge to verify the correct-

ness of complicated conceptual models and the constraints, rules, and queries con-

tained in them.

4.8 Example Models of the Application

The previous sections have given several examples of di¤erent aspects of the RATS

tool. This section illustrates parts of the interaction between the RATS client and the

RATS server. The examples presented in the section partially show how telecommu-

nications service development can take place using RATS.

Assume that a new telecommunications service (the UPT service) is to be specified.

When starting this new project (i.e., UPT), the RATS client creates a new initial cus-

tomer description, a brainstorming list, and a specification document. These three

UPT-specific documents are created as instances of their respective classes (see figure

4.23). (Note that while the RATS client generates unique names for all objects based

on the current system time of the server, in the example provided here, we use more

intuitive names for the documents to improve readability).

Individual UPT in Project with

attribute,icd

i : UPT_InitialCustomerDescription

attribute,bl

b : UPT_BrainstormingList

Conceptual Modeling in Telecommunications Service Design 221

spec,attribute

s : UPT_Specification

end

In order to allow changes to the document templates, a class Template has been

defined. This permits the definition of various templates customized for specific proj-

ects or customers. The service definition template contains headings and subheadings

that have to be contained in the specification. This means that UPT_Specification

is an exact copy of ServiceDefinitionTemplate. However, all refinement of

requirements takes place in the object UPT_Specification. The original Service-

DefinitionTemplate is not a¤ected by service development.

Once all the documents are initially set up, the first task to be undertaken is

the completion of the initial customer description. The customer writes only an

outline of the service to be developed, which will be stored as an attribute of UPT_

InitialCustomerDesription:

Individual UPT_InitialCustomerDescription in

InitialCustomerDescription with

CreationDateAndTime,attribute

cdat : "Fri Jul 28 14:52:57 MDT 2000"

AffiliationOfCustomer,attribute

aoc : "University of Calgary"

CreatedBy,attribute

cb : Armin Eberlein

Figure 4.23
Setup of a new service development project. Attribute link (G

label
), subclass link (), instance link (G),

Telos object ()

222 Armin Eberlein

PlaceOfCreation,attribute

cp : "Calgary"

StatusOfAgreement,attribute

soa : Agreed

Brainstorming,attribute

bl : UPT_BrainstormingList

LastModificationDateAndTime,attribute

lmdat : "Fri Jul 28 14:53:16 MDT 2000"

attribute,containsRequirements

cr1 : f961527509378

end

The customer’s description is included as a string in the requirement

f961527509378:

Individual f961527509378in Requirement,Goal with

Source,attribute

source : Customer

Priority,attribute

priority : Mandatory

StatusOfAgreement,attribute

status : Agreed

Description,attribute

Description : "I want to be able to make a phone call from any

phone and to receive phone calls at any phone with one unique

number."

end

After completion of the initial customer description, requirements are added to the

brainstorming list as they are generated during the brainstorming session. These

requirements are usually directly defined as attributes of the brainstorming list:

Individual UPT_BrainstormingList in BrainstormingList with

CreationDateAndTime,attribute

cdat : "Fri Jul 28 14:52:57 MDT 2000"

LastModificationDateAndTime,attribute

lmdat : "Fri Jul 28 14:53:16 MDT 2000"

Action,attribute

meet1 : f964817593362

StatusOfAgreement,attribute

soa : Agreed

Specification,attribute

Conceptual Modeling in Telecommunications Service Design 223

spec : UPT_Specification

attribute,containsRequirements

cr1 : f961312039802;

cr2 : f961392879171;

cr3 : f964189089801;

cr4 : f964817123890;

cr5 : f964812983012;

cr6 : f960982312397;

cr7 : f964782673899

end

Next the challenging task of specifying the telecommunications service using the

service definition template must be completed. This template contains some headings

that serve as reminders that certain aspects have to be addressed. The requirements

engineer has several possible requirements operations (see table 4.4) that can be used

to work on the specification. Each operation has various e¤ects on the attributes of

the a¤ected requirements. Some of the changes in the links can be seen in table 4.4.

Individual UPT_Specification in Specification with

CreationDateAndTime,attribute

cdat : "Fri Jul 28 11:52:57 MDT 2000"

LastModificationDateAndTime,attribute

lmdat : "Fri Jul 28 15:53:16 MDT 2000"

Action,attribute

meet1 : f964817526789

StatusOfAgreement,attribute

soa : Agreed

attribute,containsRequirements

cr1 : UPT_SummaryOfTheService;

cr2 : UPT_MarketRequirements;

cr3 : UPT_CustomerAndUserDefinition;

cr4 : UPT_ServiceDescription;

cr5 : UPT_NetworkRequirements;

cr6 : UPT_ProviderServiceManagement

attribute,description

description1 : "The specification addresses a list of topics

necessary to define a new service. It should be done in

connection with the customer. It is still informal and

contains only written text. The requirements can be stepwise

refined and the final version of the specification is supposed

to contain a reasonably complete picture of the new service."

end

224 Armin Eberlein

T
ab

le
4
.4

P
o
ss
ib
le

o
p
er
a
ti
o
n
s
o
n
re
q
u
ir
em

en
ts
in

R
A
T
S

O
ld

R
eq
u
ir
em

en
t

N
ew

R
eq
u
ir
em

en
t

C
h
a
n
g
e
o
f
L
in
k
s

O
p
er
a
ti
o
n

D
es
cr
ip
ti
o
n

in
K
B

in
d
o
c

in
K
B

in
d
o
c

H
is
to
ry

L
o
g
ic

S
tr
u
ct
u
re

cr
ea
te

C
re
a
te

a
n
ew

re
q
u
ir
em

en
t

n
/a

n
/a

y
es

o
p

n
/a

o
p

o
p

ed
it

M
in
o
r
te
x
tu
a
l
ed
it
in
g
w
it
h
o
u
t

re
co
rd
in
g
o
f
th
e
ch
a
n
g
e

n
o

n
o
,
n
/a
a

y
es

y
es
,
o
p
a

n
o

n
o

n
o
,
o
p
a

re
fi
n
e

A
p
a
re
n
t
re
q
u
ir
em

en
t
is
re
fi
n
ed

in
to

su
b
re
q
u
ir
em

en
ts

y
es

y
es
,
n
/a
a

y
es

o
p

y
es

y
es

o
p

co
ll
a
p
se

S
ev
er
a
l
si
m
il
a
r
re
q
u
ir
em

en
ts
a
re

si
m
p
li
fi
ed

in
to

o
n
e
re
q
u
ir
em

en
t

y
es

n
o
,
n
/a
a

y
es

y
es
,
o
p
a

y
es

y
es

y
es
,
o
p
a

re
p
la
ce
b

A
re
q
u
ir
em

en
t
is
re
p
la
ce
d
b
y
o
n
e
o
r

m
o
re

o
th
er

re
q
u
ir
em

en
ts

y
es

n
o
,
n
/a
a

y
es

y
es
,
o
p
a

y
es

y
es

y
es
,
o
p
a

d
el
et
e

A
re
q
u
ir
em

en
t
h
a
s
b
ee
n
re
je
ct
ed

y
es

n
o
,
n
/a
a

n
/a

n
/a

n
o

n
o

y
es
,
n
o
a

cu
t
&

p
a
st
e

T
h
e
lo
ca
ti
o
n
o
f
re
q
u
ir
em

en
ts
in

a
re
q
u
ir
em

en
ts
st
ru
ct
u
re

is
ch
a
n
g
ed

n
/a

n
/a

n
/a

n
/a

n
o

y
es

y
es

cr
ea
te

a
lt
er
n
a
ti
v
e

A
lt
er
n
a
ti
v
e
id
ea
s
ca
n
b
e
p
u
rs
u
ed

y
es

y
es
,
n
/a
a

y
es

o
p

y
es

y
es

o
p

cr
ea
te

p
a
ra
ll
el

b
eh
a
v
io
r

P
a
ra
ll
el
b
eh
a
v
io
r
is
b
ei
n
g
d
efi
n
ed

y
es

y
es
,
n
/a
a

y
es

o
p

y
es

y
es

o
p

cr
ea
te

ex
ce
p
ti
o
n
a
l
b
eh
a
v
io
r

E
x
ce
p
ti
o
n
a
l
b
eh
a
v
io
r
is
b
ei
n
g
d
efi
n
ed

y
es

y
es
,
n
/a
a

y
es

o
p

y
es

y
es

o
p

N
o
te
:
K
B
:
k
n
o
w
le
d
g
e
b
a
se
;
d
o
c:

d
o
cu
m
en
t;
n
/a
:
n
o
t
a
p
p
li
ca
b
le
;
o
p
:
o
p
ti
o
n
a
l.

a
.
D
ep
en
d
in
g
o
n
th
e
o
ri
g
in
a
l
re
q
u
ir
em

en
t.

b
.
S
im

il
a
r
to

ed
it
,
h
o
w
ev
er
,
th
e
ch
a
n
g
e
is
re
co
rd
ed
.

Conceptual Modeling in Telecommunications Service Design 225

The following example illustrates the interaction between the RATS client and

RATS server. In order to keep the example short, the simple edit operation is used,

and it is assumed that no errors occur during the execution of the procedure. This

edit operation is applied for minor editorial changes, in this example, a spelling mis-

take is to be corrected.

The existing requirement, with the requirements ID f974817577859, expressed in

the Telos frame syntax, is

Individual f974817577859 in Requirement with

Description,attribute

Description: "General secrty requirements are necessary in

order to prevent several ways of misuse: Fraudulent use,

eavesdropping of information exchanged, eavesdropping of UPT’s

user profile, disclosure of user’s physical location."

HistoryLink,LogicLink,attribute

refinedInto1: f973948202984

LastModificationDateAndTime,attribute

Lmdat: "Thu Jul 27 11:40:07 MDT 2000"

end

The RATS tool user wants to correct the spelling mistake (i.e., wants to change the

word ‘‘secrty’’ to ‘‘security’’). In order to do that, he or she loads the requirement

with the requirements ID f974817577859, and the GUI displays this requirement,

together with its attributes. The textual description of the requirement is shown in

an editable window, in which the user corrects the spelling mistake and presses the

edit button that is part of the GUI in order to update the knowledge base (KB).

The following sequence of actions will then take place:

1. The GUI passes the operation to be performed (i.e., edit), the requirements ID

(i.e., f974817577859), and the attribute to be edited (i.e., Description) to the cli-

ent logic.

2. The client logic passes the requirements ID (i.e., f974817577859) and the attri-

bute to be edited (i.e., Description) to the frame generator.

3. The CL triggers the FG to ask for the present version of the requirement.

4. The CL asks the FG to generate a frame containing only those attributes that

have to be deleted by removing all the attributes and classifications that do not

change:

f974817577859 with

Description,attribute

Description: "General secrty requirements are necessary in

order to prevent several ways of misuse: Fraudulent use,

226 Armin Eberlein

eavesdropping of information exchanged, eavesdropping of UPT’s

user profile, disclosure of user’s physical location."

LastModificationDateAndTime,attribute

Lmdat: "Thu Jul 27 11:40:07 MDT 2000"

end

5. The CL asks the FG to untell the generated Telos frame from the KB.

6. The CL retrieves the present date and time from the UNIX system.

7. The CL passes the present date and time as parameters to the FG.

8. The CL asks the FG to generate a Telos frame by replacing the old Description

attribute and LastModificationDateAndTime attribute with the new attributes:

f974817577859 with

Description,attribute

Description: "General security requirements are necessary in

order to prevent several ways of misuse: Fraudulent use,

eavesdropping of information exchanged, eavesdropping of UPT’s

user profile, disclosure of user’s physical location."

LastModificationDateAndTime,attribute

Lmdat: "Fri Jul 28 08:31:47 MDT 2000"

end

9. The CL triggers the FG to tell the corrected Telos frame to the KB.

10. The CL triggers the GUI to notify the user of the outcome of the operation.

11. The CL triggers the FG to ask the KB for the complete new requirement with

the ID f974817577859, as well as its attributes:

Individual f974817577859 in Requirement with

Description,attribute

Description: "General security requirements are necessary in

order to prevent several ways of misuse: Fraudulent use,

eavesdropping of information exchanged, eavesdropping of UPT’s

user profile, disclosure of user’s physical location."

HistoryLink,LogicLink,attribute

refinedInto1: f973948202984

LastModificationDateAndTime,attribute

Lmdat: "Fri Jul 28 08:31:47 MDT 2000"

end

12. The CL triggers the GUI to display the corrected requirement to the RATS user.

This example illustrates how a simple user operation results in a complex sequence

of transactions. More-complex operations and the implementation of error recovery

procedures within the RATS client make its design a demanding challenge.

Conceptual Modeling in Telecommunications Service Design 227

4.9 Critical Review of the Solution

The current implementation of RATS has two major disadvantages:

1. Lack of flexibility

2. Poor performance

The lack of flexibility is a problem inherent in all hierarchical conceptual models. Al-

though hierarchies are excellent for structuring a model, having to change any higher

levels of a hierarchical conceptual model is a major challenge. If one of the high-level

concepts of the RATS methodology (such as RequirementsObject) were to change

significantly, most of the subclasses and instances of this class would need to be

adjusted. This would also require changes in the implementation of the RATS client.

Poor performance is the biggest problem with the RATS prototype, which cur-

rently runs on a SUN Enterprise Server 450. This configuration is far greater than

the minimum requirements of the ConceptBase tool; however, the size of the RATS

tool implementation demands such a configuration in order to run stably. Despite

significant improvements in performance over previous ConceptBase versions, many

concepts cannot be modeled because of the implementation’s slow performance. This

issue calls for a di‰cult compromise between neat, proper, and modular models

using the full range of Telos features and acceptable performance of the prototype.

This research has suggested the following guidelines that should be remembered

during modeling using RATS:

� Keep the models as small as possible.

� An application can consist of many classes (hundreds to thousands), but each class

should only contain a few instances (Jarke, Jeusfeld, and Staudt 1999a).

� Use mainly ‘‘primary’’ rules; avoid chains of rules (i.e., rules that use information

that has to be retrieved by other rules).

� Avoid recursion.

� Create subclass hierarchies to restrict the search spaces of queries.

� Keep queries as simple as possible; avoid calculated attributes.

� If possible, use temporary constraints rather than permanent constraints, as this

avoids unnecessary database consistency checks.

These guidelines demand a trade-o¤ between generic modeling (allowing a high de-

gree of reusability) and performance. The more general class models are, the more

instances they will contain, resulting in slower performance. Unfortunately, some of

these guidelines are contrary to the nature of requirements engineering for large-scale

projects. Such projects may result in thousands of requirements, all of which are

228 Armin Eberlein

instances of the class Requirement. There might arise a need for the definition of

even more subclasses of Requirement than there currently are in RATS, in order

to reduce the search space in larger projects.

Good modeling practice tends to lead to slow response time. However, acceptable

response time for an expert system is relatively small. Experience gained during this

research shows that most queries need to be answered within 5 seconds to keep tool

users satisfied, and maximum tolerable response time is 20–30 seconds. Unfortu-

nately, it is easy to construct queries in RATS that take much longer to compute.

4.10 Conclusions

Developing complex software systems is di‰cult; artificial intelligence techniques can

help meet this challenge. However, providing this type of support is nontrivial. The

research presented in this chapter suggests that conceptual models are an e¤ective

way of providing support. The knowledge representation language Telos and its im-

plementation in ConceptBase have proven to be very suitable for this task. The flex-

ibility of the Telos language allows the modeling of complex domains in order to

provide the necessary support.

The research presented in this chapter needs to be extended along two directions:

First, the conceptual models used need to be refined to broaden the assistance pro-

vided to the telecommunications service developer. Second, the performance of

ConceptBase needs to be improved to make it suitable for large-scale models and

applications.

Notes

1. Here the term ‘‘methodology’’ is used rather than ‘‘method,’’ since this is the more commonly used term
in the telecommunications domain. Nevertheless, some software engineering authors define ‘‘methodol-
ogy’’ as ‘‘the science of methods’’ (e.g., Graham 1994; Schach 1999), but others do not distinguish between
the two terms and use them interchangeably (e.g., Pohl 1994). More details can be found in Gillies 1991.

2. The term ‘‘satisficed’’ is used in this context to indicate that NFRs are satisfied only within limits
(Chung, Nixon, and Yu 1995).

3. Ask, tell, and untell are input-output commands of the ConceptBase server.

References

Balzer, R., N. Goldman, and D. Wile. 1978. ‘‘Informality in Program Specifications.’’ IEEE Transactions
on Software Engineering 4, no. 2: 94–103.

Bellamy, J. 1991. Digital Telephony. New York: Wiley.

Boehm, B. W. 1984. ‘‘Verifying and Validating Software Requirements and Design Specifications.’’ IEEE
Software 1, no. 1: 75–88.

Bouma, L. G., and H. Velthuijsen. 1994. Feature Interactions in Telecommunications Systems. Amsterdam:
IOS Press.

Conceptual Modeling in Telecommunications Service Design 229

Chung, L., B. A. Nixon, and E. Yu. 1995. ‘‘Using Non-functional Requirements to Systematically Support
Change.’’ In Proceedings of the Second IEEE International Symposium on Requirements Engineering
(RE’95), 132–139. Los Alamitos, CA: IEEE Computer Society.

ETSI (European Telecommunication Standards Index). 1990–1997. ETSI ETS 300 xxx Series of Stan-
dards: Integrated Services Digital Network. European Telecommunication Standards Institute, Cedex,
France.

Gillies, A. C. 1991. The Integration of Expert Systems into Mainstream Software. London: Chapman and
Hall.

Graham, I. 1994. Object Oriented Methods. Reading, MA: Addison-Wesley.

ITU-T (International Telecommunication Union). 1988–2000. ITU-T I.xxx Series of Recommendations:
Integrated Services Digital Network. International Telecommunication Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1992–2000. ITU-T Q.12xx Series of Recommendations:
Intelligent Networks. International Telecommunication Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1993–1997. ITU-T I.11x Series of Recommendations:
Terminology. International Telecommunication Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1993a. ITU-T I.140 Recommendation: Attribute Tech-
nique for the Characterisation of Telecommunication Services Supported by an ISDN and Network Capa-
bilities of an ISDN. International Telecommunication Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1993b. ITU-T I.210 Recommendation: Principles of
Telecommunication Services Supported by an ISDN and the Means to Describe Them. International Tele-
communication Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1993c. ITU-T I.411 Recommendation: ISDN User-
Network Interfaces—Reference Configurations. International Telecommunication Union, Geneva,
Switzerland.

ITU-T (International Telecommunication Union). 1993d. ITU-T I.412 Recommendation: ISDN User-
Network Interfaces—Interface Structures and Access Capabilities. International Telecommunication
Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1993e. ITU-T I.530 Recommendation: Network Inter-
working between an ISDN and a Public Switched Telephone Network (PSTN). International Telecommu-
nication Union, Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1995. ITU-T Q.130x Series of Recommendations: Tele-
communication Applications For Switches and Computers. International Telecommunication Union,
Geneva, Switzerland.

ITU-T (International Telecommunication Union). 1998. ITU-T Q.1290 Recommendation: Glossary of
Terms Used in the Definition of Intelligent Networks. International Telecommunication Union, Geneva,
Switzerland.

ITU-T (International Telecommunication Union). 1999. ITU-T Z.100 Recommendation: Specification
and Description Language (SDL). International Telecommunication Union, Geneva, Switzerland.

Jarke, M., M. Jeusfeld, and M. Staudt. 1999a. ConceptBase V5.1 User Manual. Aachen, Germany: Uni-
versity of Aachen.

Jarke, M., M. Jeusfeld, and M. Staudt. 1999b. ConceptBase V5.1 Programmer’s Manual. Aachen, Ger-
many: University of Aachen.

Kegel, D. 1996. Dan Kegel’s ISDN page. Available at hhttp://www.alumni.caltech.edu/~dank/isdn/i.

Kessler, G. C. 1998. ISDN: Concepts, Facilities, and Services. New York: McGraw-Hill.

Mylopoulos, J., A. Borgida, M. Jarke, and M. Koubarakis. 1990. ‘‘Telos: A Language for Representing
Knowledge about Information Systems.’’ ACM Transactions on Information Systems 8, no. 4: 325–362.

Neumann, P. G. 1995. Computer-Related Risks. Reading, MA: Addison-Wesley.

Pohl, K. 1994. ‘‘The Three Dimensions of Requirements Engineering—A Framework and Its Applica-
tions.’’ Information Systems 19, no. 3: 243–258.

PTT Telecom. 1993. User-Network Aspects of Euro-ISDN. The Hague, Netherlands: PTT Telecom.

230 Armin Eberlein

hhttp://www.alumni.caltech.edu/~dank/isdn/i

Reed, R., W. Bouma, M. M. Marques, and J. Evans. 1992. ‘‘Methods for Service Software Design.’’ In
Proceedings of the Eighth International Conference on Software Engineering for Telecommunication Systems
and Services, 127–134. London: IEE Press.

Reed, R., J. De Man, and B. Møller-Pedersen. 1989. ‘‘A Formal Techniques Environment for Telecommu-
nications Software.’’ In Proceedings of the Seventh International Conference on Software Engineering for
Telecommunications Switching Systems, 6–11. London: IEE Press.

Ryan, R. 1994. ‘‘The Role of AI in Requirements Engineering.’’ Position paper for the Dagstuhl Work-
shop on System Requirements: Analysis, Management and Exploitation. Dagstuhl, Germany, October 4–
7, 1994.

Schach, S. R. 1999. Software Engineering. Homewood, IL: Asken Associates.

SCORE (Service Creation in an Object-Oriented Reuse Environment)—Methods and Tools, Report on
Methods and Tools for Service Creation, vol. 1, Service Interaction. 1995. Deliverable D206-Vol.1, R2017/
SCO/WP2/DS/P/031/b1 Race project 2017.

Sommerville, I. 2000. Software Engineering. Reading, MA: Addison-Wesley.

Standish Group. 1994. CHAOS. Software development report. Available at hhttp://www.standishgroup
.com/sample_research/chaos_1994_1.phpi.

Thörner, J. 1994. Intelligent Networks. Norwood, MA: Artech House.

Wieringa, R., E. Dubois, and S. Huyts. 1997. ‘‘Integrating Semi-formal and Formal Requirements.’’
In Proceedings of the Ninth International Conference on Advance Information Systems Engineering
(CAiSE’97) ed. A. Olive and J. Pastor, 19–32. New York: Springer.

Conceptual Modeling in Telecommunications Service Design 231

hhttp://www.standishgroup

5 Metadata for Hypermedia Textbooks
From RDF to O-Telos and Back

Martin Wolpers and Wolfgang Nejdl

5.1 Introduction

The World Wide Web can be viewed as a huge directed graph, with Web pages rep-

resenting the nodes in the graph and hyperlinks representing directed edges between

these nodes. Both nodes and edges are untyped, and additional metadata are needed

to lend meaning to the nodes and edges. The metadata must be accessible to

machines in order to enable automatic processing. Formalizing and building this

metadata is the goal of the Semantic Web initiative, building on standardized meta-

data for the World Wide Web.

This chapter discusses some modeling aspects of the recommended metadata lan-

guage standard for the Semantic Web, called the Resource Description Framework

(RDF) (Manola and Miller 2004). We will use the O-Telos language (Jeusfeld

1992), which, as noted in chapter 3, is based on Telos (Mylopoulos et al. 1990),

to analyze and discuss RDF. First, we explicitly model RDF in O-Telos to point

out some RDF characteristics and peculiarities, and second, we translate RDF and

its schema, RDF Schema specification (RDFS) (Brickley and Guha 2004), into

O-Telos, showing how O-Telos can be used as a superset of RDF(S), providing all

the characteristics of RDF plus some additional ones. We also discuss RDF(S) and

O-Telos as the basic modeling language used in the KBS Hyperbook system and

show how RDF(S) data can be imported into and exported from ConceptBase. Fur-

thermore, the chapter introduces the KBS Hyperbook system, which uses the RDF

Schema specification to process and display lecture material on the Web.

5.2 RDF in a Nutshell

RDF is a recommended standard for annotating resources with semantic informa-

tion that uses underlying conceptual models (schemas) to define the classes and prop-

erties employed for these semantic annotations. Beckett (2004) defines the syntax of

RDF annotations and Brickley and Guha (2004) define the semantics of RDF in

schemas. Note that in the specification of RDF, some rather unconventional design

decisions are made: for example, to give dual roles to the inheritance, instantiation,

range, and domain constructs, which are used both as primitive constructs and as

specific instances of RDF properties themselves.

RDF schemas define the structure of the metadata describing a particular data

model, which consists basically of resources. A resource may be a part of a Web

page, an entire Web page, a whole collection of Web pages, an entire Web site, or

an object that is not directly accessible via the Web, for example, a printed book.

RDF resources are described by a uniform resource identificator (URI), so that

each item referenced by a URI is of type rdfs:Resource. Note that rdfs: specifies

the namespace as defined by the XML namespace facility (Bray et al. 2006). The

specification for these schemas, the RDF Schema specification, constitutes some

basic classes and properties and is claimed to be extendable to fit potentially any

given domain.

Lassila and Swick (1999) define RDF and its goals as follows:

The broad goal of RDF is to define a mechanism for describing resources that makes no

assumptions about a particular application domain, nor defines (a priori) the semantics of

any application domain. The definition of the mechanism should be domain-neutral, yet the

mechanism should be suitable for describing information about any domain.

All resources are grouped in RDF into a well-defined set of classes that are arranged

hierarchically. The relationships connecting the classes are expressed by properties.

The properties themselves are instances of the class rdf:Property.

5.3 Explicitly Modeling RDF in O-Telos

This chapter describes how RDF can be explicitly modeled using O-Telos. RDF is

introduced in detail, and some of its peculiarities and special characteristics are

pointed out.

The basic RDFS constructs are classes and properties. Classes are arranged hierar-

chically; the root of this class hierarchy is rdfs:Resource, which has rdfs:Class

as a subclass. The rdfs: prefix on the names of these classes indicates that they are

part of the RDF Schema specification, whereas the prefix while rdf: indicates mem-

bership in the RDF data model. The RDF data model defines basic RDF constructs

like rdf:Property and rdf:Statement, whereas semantically motivated RDF

constructs are defined in the RDF Schema specification.

Properties connect classes and thus represent relations between these classes. They

can be constrained to members of certain classes. Properties are defined by the

rdf:Property construct and resemble attributes in more conventional metamodels.

As such, they are used to describe resources by letting the resources hold values.

They are also resources themselves and can be referenced by a unique URI.

234 Martin Wolpers and Wolfgang Nejdl

Figure 5.1 shows part of the class hierarchy into which the RDF and RDF

Schema constructs are structured. (The figure represents only the constructs neces-

sary for this discussion and their relationships.) rdfs:Resource states that the con-

struct instantiating rdfs:Resource is found on the Internet. rdfs:Class as well as

rdf:Property are subclasses of rdfs:Resource. Furthermore, rdfs:Resource

as well as rdf:Property and its subclass rdfs:ConstraintProperty are instances

of rdfs:Class. Also some of the properties predefined in RDF are included as

instances of rdf:Property. Thus, the dual role of the properties rdfs:subClassOf

and rdf:type becomes evident. They are instances of rdf:Property and at the

same time are used as primitive constructs in the hierarchy shown in the figure.

Figure 5.2 shows some of the constraints that are defined in RDF Schema. (A

more detailed overview is provided in Brickley and Guha 2004.) The figure shows

how the rdfs:range and rdfs:domain properties restrict members and values of

the properties rdf:type and rdfs:subClassOf. As with the properties rdf:type

and rdfs:subClassOf, the dual role of rdfs:range and rdfs:domain can be

observed in this figure, where they are used both as primitive constraints and at the

same time as constraints on themselves.

It is interesting and instructive to compare RDF as a modeling language with the

modeling languages O-Telos (Jeusfeld 1992) and Telos (Staudt, Jarke, and Jeusfeld

Figure 5.1
Part of the class hierarchy for RDF and RDF Schema

Metadata for Hypermedia Textbooks 235

1996; Mylopoulos et al. 1990), which have been shown to be very suitable for various

modeling and metamodeling tasks. O-Telos specifies as main constructs Proposi-

tion which are subsumed by Individual and Attribute (see chapter 3 for a thor-

ough discussion of O-Telos). Because the Attribute construct usually relates two or

more individuals, the name ‘‘relation’’ seems more suitable for this discussion.

Comparing O-Telos to RDF, one finds that both modeling languages use a rather

property-centric (or relation- or attribute-centric) approach for modeling domains.

Metadata about domains are stated by declaring properties of resources or individu-

als. In fact, this is one of the architectural principles of the Web (Berners-Lee 1998).

O-Telos uses two predefined relations, isA and in. The isA relation denotes a

class-subclass relationship, with the accompanying inheritance constraints. The in

relation denotes that a construct is an instance of a class, also accompanied by the

appropriate constraints. The in relation is used to define a class by stating that an

individual is instance of another individual, which then must be defined as a class.

Figure 5.2
Some of the constraints of RDF Schema

236 Martin Wolpers and Wolfgang Nejdl

With the aim of expressing the metamodel of the RDF Schema specification in

O-Telos, we represent all functional elements of RDF and RDFS in the O-Telos

model. In other words, each of the various constructs of RDF has a counterpart in

the metamodel formulated in O-Telos.

We simplify the discussion by focusing on the main RDF constructs, as shown

in figure 5.1. Furthermore, the dual role of some of the RDF constructs as prim-

itive constructs and as properties is resolved in our O-Telos model. Specifically, we

distinguish the di¤erent uses of the RDF constructs rdfs:range, rdfs:domain,

rdfs:subClassOf, and rdf:type. Consequently, our model allows us to distin-

guish between how RDF annotations are structured and used and the fact that

RDF schemas are themselves data described by specific Web resources.

The RDF Schema specification contains predefined properties that are used

for simply describing a specific resource, for example, rdfs:comment and

rdfs:seeAlso. These properties are convenient but are not needed for the definition

of other properties. RDF Schema also includes the properties rdfs:subClassOf,

rdf:type, rdfs:range, and rdfs:domain, which have, unlike rdfs:comment

and rdfs:seeAlso properties, certain constraints while being instances of the class

rdf:Property themselves:

� rdfs:subClassOf is a primitive construct describing the functionality of

inheritance.

� rdf:type is a primitive construct describing the functionality of instantiation.

� rdfs:range is a primitive construct describing the range of values a property can

hold.

� rdfs:domain is a primitive construct defining the classes whose instances can use

the property in question.

The dual role of these four properties, being both primitive constructs and instances

of primitive constructs, makes it di‰cult to read and understand the specification.

O-Telos and RDF use the in relation (O-Telos), also known as the type relation

(RDF), both as a primitive construct and as a regular property (attribute/relation).

Both modeling languages use this relation to define that an individual is a class if an-

other individual is an instance of the first individual.

For example, the expression X in C end defines x as an instance of c, which implies

that c is a class. In order to denote the instantiation, one would use the expression

X->C. X->C itself is an instance of Proposition!InstanceOf. Note that the frame

in in property end is not possible, because the label of the instance relation in

is not an object itself. In the same way, O-Telos imposes constraints on the other

RDF constructs that hold dual roles, like rdfs:subClassOf, rdf:range, and

rdf:domain, so their dual roles cannot be modeled straightforwardly in O-Telos.

Metadata for Hypermedia Textbooks 237

The dual role of the aforementioned properties is resolved through the explicit

modeling of their meaning separately from their function. Therefore we represent

the rdfs:subClassOf property by the RDF_Subclass class, which is not an in-

stance of the RDF_Property class. We describe this separation in more detail later

in this section. Furthermore, we introduce RDF_Definition and RDF_WWW_

Resource and their relation RDF_Defined_By, as shown in figure 5.3. These

constructs represent the RDF philosophy that every definition (represented by RDF_

Definition/rdfs:Resource) is itself described by a resource. Figure 5.4 represents

the part of the schema specification that defines the main RDF constructs used for

the construction of RDF schemas and how these constructs are used for annotating

Web resources, thus resolving the dual role of the aforementioned properties.

The familiar constructs RDF_Class and RDF_Property as shown in figure 5.4 cor-

respond to the rdfs:Class and rdf:Property constructs, respectively. They are

related through the relations RDF_Domain and RDF_Range, which correspond to

rdfs:domain and rdfs:range, respectively. However, both relations RDF_Domain

and RDF_Range are specifically defined by this specification and are therefore not

Figure 5.3
Basic RDF constructs as instances of RDF_Definition

238 Martin Wolpers and Wolfgang Nejdl

instances of RDF_Property (in contrast to what is the case in the RDF Schema

specification).

Similarly the relations RDF_Subclass and RDF_Subproperty substitute for the

RDF constructs rdfs:subClassOf and rdfs:subPropertyOf, respectively. They

have the same semantics as the metalanguage construct isA in O-Telos, so they en-

able class-subclass and property-subproperty relationships, respectively, to be defined.

Because of their explicit definition they are not instances of RDF-Property.

Because it carries two meanings, the rdf:type construct needs some special atten-

tion when it is expressed in O-Telos. For cases in which it expresses the relationship

between RDF metadata and a conventional Web resource, the O-Telos relationships

RDF_Annotates and RDF_Defined_By substitute for rdf:type. For cases in which

rdf:type represents a conventional instantiation, the O-Telos in construct, denot-

ing instantiation, substitutes for it.

RDF_Class has two subclasses, RDF_Annotation_Class and RDF_Primitive_

Type. RDF_Annotation_Class (with its further subclasses like RDF_SeeAlso, the

O-Telos counterpart to the rdf:seeAlso property) has objects as instances that,

because they correspond to RDF statements, are used to annotate Web resources

(instances of RDF_WWW_Resource). Of course, an instance of RDF_WWW_Resource

Figure 5.4
Main constructs of the RDF Schema specification formulated in O-Telos

Metadata for Hypermedia Textbooks 239

can be annotated by more than one instance of RDF_Annotation_Class (i.e.,

when di¤erent RDF schemas are used to define the metadata for a specific Web

resource).

Inheritance and instantiation functionality is expressed by using isA and in O-

Telos statements, thus resolving the dual role of rdf:type and rdfs:subClassOf.

Also, the primitive type rdfs:Literal, which takes on String values, is replaced by

the primitive O-Telos class String. RDF_Primitive_Type, with its subclasses like

String, has as instances specific values for RDF_Property, of type String, Inte-

ger, etc. (often predefined types and properties). It is clear that a property relating

several objects like the rdfs:seeAlso construct is represented as a subclass of the

RDF_Relational_Property. The same is true for properties that hold values, like

rdfs:label. These are primitive properties because they assign, for example, a

String (a primitive type) to an object, thus describing the definition of an attribute,

which has a name (here, rdfs:seeAlso) and a value (here a String).

5.4 Directly Mapping RDF(S) to O-Telos

In contrast to the modeling approach described in the foregoing, in which all RDF

constructs are modeled explicitly, this chapter directly maps RDF(S) to O-Telos; we

call the result O-Telos-RDF. The mapping relies heavily on the definition of O-Telos,

explicitly modifying the O-Telos axioms to suit the intentions of RDF(S). The map-

ping also facilitates the translation of RDF into O-Telos, thus enabling RDF meta-

data to be imported into a ConceptBase database.

The example used throughout this section is a small database containing the

RDF description of some books, and displays the metadata for four books that

we use in our lectures. To simplify our presentation, we use only the properties

rdf:type, dc:title, and dc:author (rdf: denoting the RDF namespace and

dc: denoting the Dublin Core namespace [Weibel et al. 1998]). But of course our

translation encompasses all RDF(S) properties, including rdf:subClassOf and

rdf:subPropertyOf.

As noted previously, the translation of RDF metadata into O-Telos also means

that we can import RDF metadata into ConceptBase. Our translation is based on

the discussion of O-Telos-RDF in Nejdl, Dhraief, and Wolpers 2001, which analyzes

similarities and di¤erences between RDF(S) and O-Telos.

Our translation ensures that RDF(S) data are translated without any loss of infor-

mation into O-Telos data. We use the representation of RDF expressions as triple

statements as our starting point. Each triple is extended to a quadruple with a

unique ID (as O-Telos extends the RDF triples by a fourth argument, the triple

ID). Additional quadruples not originally present in RDF(S) are included as well,

as O-Telos-RDF employs explicit instantiation of properties, not only of resources/

240 Martin Wolpers and Wolfgang Nejdl

objects (Nejdl, Dhraief, and Wolpers 2001). This set of quadruples then forms the

O-Telos database, with each quadruple representing an O-Telos statement.

To give an example of the translation process, we focus on just one RDF resource

description. The translation of the other resource descriptions of our example book

database (represented graphically in figure 5.5) follows basically the same procedure.

(See chapter 3 for a thorough discussion of O-Telos and its various representations.)

The RDF statements for the example resource http://www.xyz.com/jv.html de-

scribe a book with its properties Just Java of type dc:title and Peter van der

Linden of type dc:author. The resource itself is of the rdf:type http://www

.lit.edu/types#Book. The RDF statements are as follows:

(http://www.xyz.com/jv.html,

http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

http://www.lit.edu/types#Book)

Figure 5.5
RDF graph of the example book database

Metadata for Hypermedia Textbooks 241

http://www.xyz.com/jv.html
http://www
http://www.xyz.com/jv.html
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.lit.edu/types#Book

(http://www.xyz.com/jv.html,

http://purl.org/dc/elements/1.1/title,

"Just Java")

(http://www.xyz.com/jv.html,

http://purl.org/dc/elements/1.1/author,

"Peter van der Linden")

In the translation of these RDF triples into O-Telos quadruples that follows, we

omit the correct representation of strings for simplicity reasons. In O-Telos strings

are objects themselves and are represented as such. Also, we have additional tuples

for all resources/objects and instantiation statements for them, as well as additional

instantiation statements for properties. Furthermore, in our example the IDs are rep-

resented by a short form, sidx, to enhance readability. These abbreviations expand

to something of the form namespace:resourcename. Usually the IDs are the URIs

of the namespace plus the respective RDF construct; for example, sid1 is the abbre-

viated form for the resource http://www.xyz.com/jv.html of the RDF triples in

the foregoing. The RDF triples written as O-Telos quadruples are as follows:

P(sid1, sid1, jv_html, sid1)

P(sid2, sid1, In, #Book)

P(sid3, sid1, In, #DCElements11)

P(sid4, sid1, In, #Individual)

P(sid5, sid1, title1, "Just Java")

P(sid6, sid5, In, #DCElements11.title)

P(sid7, sid5, In, #Attribute)

P(sid8, sid1, author1, "Peter van der Linden")

P(sid9, sid8, In, #DCElements11.author)

P(sid10, sid8, In, #Attribute)

P(sid11, sid1, namespace, http://www.xyz.com/)

We now return to the description of the translation. The focus is on the axioms

describing statement IDs, instantiations, and properties, which we explain further in

the following (our explanation is taken from Nejdl, Dhraief, and Wolpers 2001 and

is based on Jeusfeld 1992). Most other aspects of RDF(S) are defined basically in the

same way as in O-Telos, so we do not repeat the descriptions here.

5.4.1 Statement IDs and Individuals

Each tuple in O-Telos includes a unique identifier as its statement ID, in contrast to

RDF triples, which can be referenced only using the (somewhat clumsy) reification

mechanism. This identifier is invisible in O-Telos to the user, though the user can

uniquely reference each statement by means of the appropriate combination of sub-

242 Martin Wolpers and Wolfgang Nejdl

http://www.xyz.com/jv.html
http://purl.org/dc/elements/1.1/title
http://www.xyz.com/jv.html
http://purl.org/dc/elements/1.1/author
http://www.xyz.com/jv.html
http://www.xyz.com/

ject, predicate, and object of the tuple (depending on what kind of statement he

wants to reference).

In order to keep the discussion simple, we only state here those axioms that are ei-

ther modifications of O-Telos axioms or of particular importance in the discussion.

(A complete list of O-Telos axioms can be found in section 3.8.)

Axiom5.1 (Corresponds to axiom3.1) Statement identifiers uniquely identify statements.

forall sid,x1,x2,l1,l2,y1,y2

P(sid,x1,l1,y1) and P(sid,x2,l2,y2) ==> (x1=x2) and (y1=y2) and

(l1=l2)

Axiom 5.2 (Corresponds to axiom 3.2) If the label of an individual is an atom, it is

unique within its namespace. Together with its namespace, or if the label is already

a URI, it is globally unique. Therefore the statement ID of an individual is globally

unique in all cases.

The generation of the identifiers of our O-Telos tuples must be based on O-Telos-

RDF axioms 5.1 and 5.2, which state that each RDF statement must obtain a unique

ID to form the O-Telos statement. We use these IDs as statement identifiers, which

are globally unique.

5.4.2 Properties

Attributes in O-Telos and O-Telos-RDF have the same structure as RDF properties

but are instantiated explicitly from their definition using an explicit type statement

and a new name for the instantiated property (in contrast to RDF, in which the

property name is used directly as a predicate in the instantiated property).

Axiom 5.3 (Definition of properties; corresponds to axiom 3.4)

forall sid,x,p,y

P(sid,x,p,y) and (sid \= x) and (sid \= y) and (p \= subClassOf) and

(p \= subPropertyOf) and (p \= type)

<==> type(sid,otelos:property)

Axiom 5.4 (Corresponds to axiom 3.3) Names of ‘‘object-scoped’’ properties are

unique in conjunction with the source object.

forall sid1,sid2,x,p,y1,y2

P(sid1,x,p,y1) and P(sid2,x,p,y2)

==> (sid1=sid2) or (p=type) or (p=subClassOf) or (p=subPropertyOf)

Axiom 5.5 (Corresponds to axiom 3.3) For ‘‘globally scoped’’ properties, axiom 5.4 is

extended, so that the names of attributes are unique even without conjunction with

the source.

Metadata for Hypermedia Textbooks 243

forall sid1,x1,x2,p,y1,y2

P(ns:p,x1,p,y1) and P(sid1,x2,p,y2)

==> ((sid1=ns:p) and (x1=x2) and (y1=y2)) or (p=type) or

(p=subClassOf) or (p=subPropertyOf)

RDF properties are translated into O-Telos attributes according to axioms 5.3,

5.4, and 5.5. (We use the terms ‘‘property’’ and ‘‘attribute’’ synonymously in this

context.) According to axiom 5.3, all O-Telos attributes are instances of the O-Telos

object Attribute. (Note that Attribute and otelos:property denote the same

construct.) In the translation process, all these statements have to be generated, as

they are not part of the original RDF representation. For example, in the examples

earlier in the section, the statements sid5 to sid7 define the second RDF triple.

Axioms 5.4 and 5.5 state that each attribute is declared in the context of a specific

subject. If no subject exists for a particular attribute, the attribute is defined as an in-

stance of the class Attribute. As an example, statements sid6 and sid7, declare

the title attribute as an instance of #DCElements11.title and #Attribute,

respectively. The rdfs:domain and rdfs:range constructs used to declare RDF

properties are implicitly included in O-Telos attribute declarations.

Axiom 5.6 (Corresponds to axiom 3.17) In case x is an instance of two classes, c and d,

both of which define a property m, x also has to be an instance of a class g, which is a

subclass of both c and d and which also defines property m:

forall x,m,y,c,d,sid1,sid2,e,f

(type(x,c) and type(x,d) and P(sid1,c,m,e) and P(sid2,d,m,f)

==> exists g,sid3,h type(x,g) and P(sid3,g,m,h) and subClassOf(g,c)

and subClassOf(g,d))

Further axioms determine the translation for rdf:type. Each rdf:type state-

ment is expressed in O-Telos as an instantiation statement. A special case is the

instantiation from more than one class that declares a property with the same name.

Here the translation process has to build an explicit property declaration of each

property according to axiom 5.6.

Axioms 5.1 to 5.6 illustrate briefly some of the fundamentals of the translation

process. In addition to these representational issues, we have to deal with more prac-

tical problems, such as di¤erent namespaces or strictly enforced ConceptBase charac-

ter and naming limitations.

An example of the O-Telos frame representation is the frame of the book Just

Java:

Individual jv_html in Book, DCElements with

title

title1 : "Just Java"

244 Martin Wolpers and Wolfgang Nejdl

author

author1 : "Peter van der Linden"

attribute

namespace : "http://www.xyz.com/"

end

If an RDF statement includes elements from other than the current schema, these

elements are grouped in specially created O-Telos classes. For example the properties

dc:title and dc:author of the Just Java book’s RDF description, originating in

the Dublin Core schema, are grouped in an O-Telos class called DCElements11 (see

statements sid5 and sid6 from the example earlier in this section, which define the

attribute title as an instance of the attribute title of class DCElements11).

The O-Telos attribute namespace is introduced to hold the namespace of each

RDF resource and property. Usually the namespace is part of the unique ID of

each statement, as can be seen in the O-Telos quadruple example earlier in the sec-

tion. Unfortunately, the O-Telos frame syntax and parser prohibit any special char-

acters of uniform resource locators (URLs) in the element name. Therefore, we

introduce the namespace attribute, which is assigned to each element and attribute.

This attribute stores the namespace or resource URL as a workaround. As an exam-

ple, compare the frame representation and the quadruples of the book Just Java.

Figure 5.6 shows the O-Telos graph of the same part of the book database that is

shown as an RDF graph in figure 5.5. Comparison of the two graphs shows their

strong similarities. The chief di¤erence is in the notations and serializations (triple

vs. quadruple and XML vs. frame syntax) that they employ. Using the approach

described in this section we can easily express RDF(S) data in the O-Telos language

and import them into ConceptBase.

5.5 An Application of O-Telos

The KBS Hyperbook System (Fröhlich, Henze, and Nejdl 1997; Fröhlich, Nejdl,

and Wolpers 1998; Henze et al. 1999; Henze and Nejdl 1999; Nejdl and Wolpers

1998, 1999) is an open, interactive hypermedia system designed to fulfill the needs

of lecturers and students. Conceptual modeling being only one of its focuses, the sys-

tem also implements ideas regarding user adaptation, teaching strategies, and so on.

We do not discuss these issues here (see the cited references instead) but focus on the

use of conceptual modeling.

The KBS Hyperbook System is used to build hyperbooks. A hyperbook is defined

as

‘‘an information repository, which integrates a set of (possibly distributed) informa-

tion sources using explicit semantic models and metadata’’ (Henze et al. 1999, 26).

Metadata for Hypermedia Textbooks 245

http://www.xyz.com/

Fi
g
u
re

5
.6

O
-T
el
o
s
g
ra
p
h
o
f
th
e
ex
a
m
p
le

b
o
o
k
d
a
ta
b
a
se

246 Martin Wolpers and Wolfgang Nejdl

The information sources in this definition contain resources. A resource, as men-

tioned in section 5.2, may be a Web page, part of a Web page, a collection of Web

pages, a Web site, or something that is not Web-accessible, for example, a Word

document on an intranet. KBS Hyperbook uses semantic models and metadata to

structure and display resources from such information sources. It employs a general

representation model that defines concepts relevant to hyperbooks in general. This

representation model serves as a basic language from which all further conceptual

models for a wide variety of purposes are built.

These conceptual models (actually metadata models) are then used to annotate,

structure, and integrate external data. Therefore, in the case of external data on the

World Wide Web—Web pages—the conceptual models take on the role of informa-

tion indices that determine the navigational structures of these pages. Thus, the con-

ceptual models enable various views of the described Web pages. The conceptual

models also serve as a schema for maintenance of information, thus providing rules

for the integration and deletion of information (comparable to the role of a database

schema). Furthermore, they allow the specification of arbitrary metadata and struc-

tural information.

Additional presentation classes govern resource layout. Semantic relationships

among resources can be modeled according to the system’s general representation

model and displayed as indices, links, or sequences, together with the corresponding

resource. Thus, the KBS Hyberbook System can be used also as a tool for viewing

and browsing semantic models.

The distinction in KBS Hyperbook between the general representation model and

the conceptual models is important. The fact that general hyperbook concepts are

modeled in the general representation model means that the conceptual models need

to deal only with concepts relevant to their application domains and do not need

to deal with hyperbook concepts and functionalities. The models avoid any self-

reference by clearly stating primitive constructs only in the metadata model and by

basing all conceptual models on these primitive constructs. This simplifies the for-

malization of the domain and makes the modeling approach similar to conventional

metamodeling approaches such as IRDS (ISO/IEC 1990).

The RDF Schema specification formulated in O-Telos and described in the previ-

ous section defines a representation model that meets the requirements of the KBS

Hyperbook System. It is therefore possible to use this definition as a representation

model and display the semantic relationships as well as the related resources.

Figure 5.7 shows how the KBS Hyperbook System visualizes a conceptual

model that describes resources (in this case, Web pages) that are used for an intro-

ductory computer science course at the Universities of Hannover in Germany and

Bozen in Italy. A specific resource, here the Web page named Bingo! Erste Ana-

lyse, is shown in the right frame of a browser window. This resource has several

Metadata for Hypermedia Textbooks 247

relations to other resources, according to the conceptual model. These bidirectional

relations are shown in the left frame as grouped unidirectional links; that is, this re-

source has relations to other Info 1 Resources as well as to Java Resources, and

so on.

As we see in figure 5.7, the KBS Hyperbook System is able to use a conceptual

model to build a navigational structure for each resource that might be explored by

such tools as regular Web browsers. Figure 5.8 shows another feature of the KBS

Hyperbook System. In that figure, all relations of a conceptual model are displayed

as grouped links in the left frame. The right frame displays the Web pages that these

links point to. In this scenario, KBS Hyperbook works as an information index to a

set of resources; the resources are Web pages and the index entries (relations) are dis-

played as links.

Both figures show a third frame at the bottom of the browser window. This frame

contains some controls that enable the conceptual model to be manipulated. The

controls enable concepts and relations to be added and removed at the conceptual

and data levels. They basically trigger the insertion and removal of O-Telos frames

Figure 5.7
KBS Hyperbook, using the RDF Schema specification

248 Martin Wolpers and Wolfgang Nejdl

into the system. Since the controls aren’t the subject of this chapter, we omit their

discussion here.

5.5.1 Modeling the Lecture ‘‘Artificial Intelligence’’

In this section we model the lecture ‘‘Artificial Intelligence’’ by one of the authors at

the University of Hannover. Based on the metamodel and the O-Telos-RDF transla-

tion, we show how the model expressed in RDF(S) is translated into O-Telos, thus

enabling the KBS Hyperbook System to generate and display navigational structures

of the model and Web resources. A part of the RDF model for this lecture is given

here:

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:s="http://www.kbs.uni-hannover.de/otelos/2001/06/example-

schema#">

Figure 5.8
The KBS Hyperbook user interface

Metadata for Hypermedia Textbooks 249

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.kbs.uni-hannover.de/otelos/2001/06/example-schema#
http://www.kbs.uni-hannover.de/otelos/2001/06/example-schema#

<rdf:Description ID="Lecture">

<rdf:type resource="rdfs:Class"/>

</rdf:Description>

<rdf:Description ID="lectureUnits">

<rdf:type resource="rdf:Property"/>

<rdfs:range resource="s:LectureUnit"/>

<rdfs:domain resource="s:Lecture"/>

</rdf:Description>

<rdf:Description ID="LectureUnit">

<rdf:type resource="rdfs:Class"/>

</rdf:Description>

<rdf:Description ID="title">

<rdf:type resource="rdf:Property"/>

<rdfs:range resource="rdfs:Literal"/>

<rdfs:domain resource="s:LectureUnit"/>

</rdf:Description>

<rdf:Description ID="description">

<rdf:type resource="rdf:Property"/>

<rdfs:range resource="rdfs:Literal"/>

<rdfs:domain resource="s:LectureUnit"/>

</rdf:Description>

<rdf:Description ID="parentCourse">

<rdf:type resource="rdf:Property"/>

<rdfs:range resource="s:Lecture"/>

<rdfs:domain resource="s:LectureUnit"/>

</rdf:Description>

<rdf:Description ID="theoryPage">

<rdf:type resource="rdf:Property"/>

<rdfs:range resource="s:TheoryUnit"/>

<rdfs:domain resource="s:LectureUnit"/>

</rdf:Description>

<rdf:Description ID="parentUnit">

<rdf:type resource="rdf:Property"/>

<rdfs:range resource="s:LectureUnit"/>

<rdfs:domain resource="s:TheoryUnit"/>

</rdf:Description>

250 Martin Wolpers and Wolfgang Nejdl

<rdf:Description ID="TheoryUnit">

<rdf:type resource="rdfs:Class"/>

</rdf:Description>

<rdf:Description ID="AILecture">

<rdf:type resource="s:Lecture"/>

<lectureUnits resource="s:LectureUnit1"/>

</rdf:Description>

<rdf:Description ID="LectureUnit1">

<rdf:type resource="s:LectureUnit"/>

<title> Lecture Unit 1</title>

<description>

Introduction to intelligent agents

</description>

<parentCourse resource="s:AILecture"/>

<theoryPage resource="http://.../Definitions.htm"/>

<theoryPage resource="http://.../Characterisation.htm"/>

<theoryPage resource="http://.../Structure.htm"/>

<theoryPage resource="http://.../Types.htm"/>

</rdf:Description>

<rdf:Description about="http://.../Definitions.htm">

<rdf:type resource="s:TheoryUnit"/>

<parentUnit resource="s:LectureUnit1"/>

</rdf:Description>

<rdf:Description about="http://.../Characterisation.htm">

<rdf:type resource="s:TheoryUnit"/>

<parentUnit resource="s:LectureUnit1"/>

</rdf:Description>

<rdf:Description about="http://.../Structure.htm">

<rdf:type resource="s:TheoryUnit"/>

<parentUnit resource="s:LectureUnit1"/>

</rdf:Description>

<rdf:Description about="http://.../Types.htm">

<rdf:type resource="s:TheoryUnit"/>

<parentUnit resource="s:LectureUnit1"/>

</rdf:Description>

</rdf:RDF>

Metadata for Hypermedia Textbooks 251

To start with, we present the RDF model of the lecture ‘‘Artificial Intelligence.’’

The model is quite large, so we limit the example to just the small part shown in the

foregoing. The example shows the lecture ‘‘Artificial Intelligence,’’ modeled as in-

stance AILecture of the class Lecture. The lecture consists of various lecture units,

stated in the property lectureUnits. The example shows only the lecture unit

LectureUnit1 with the title "LectureUnit1". This lecture unit deals with an in-

troduction to intelligent agents (the description property). Several theory pages

explain the knowledge stated there (the theoryPage property).

The modeling of the lecture uses a rather simple metamodel that defines a class

Lecture that relates to a class LectureUnit. Lecture units have various properties,

among them a title and a description. They relate to theory pages via the property

theoryPage. Theory pages (class TheoryUnit) describe the thematic theories used

in the lecture unit.

Note that the example also declares the complementary relation for the parent-

Course and the theoryPage properties. The class TheoryUnit defines the property

parentUnit relating to the respective lecture unit, whereas the property parent-

Course of LectureUnit relates to the respective lectures, here to "AILecture". At

the time the initial design of this metamodel was completed, these complementary

relations were necessary, because no inference engine for RDF(S) existed. Since

then, however, several such inference engines based on well-defined subsets of RDF

for ontological knowledge representation (e.g., TRIPLE [Sintek and Decker 2001])

have emerged, superseding these relations.

In order to include the lecture model within KBS Hyperbook and the underlying

ConceptBase database, it must be translated to O-Telos. Using the O-Telos-RDF

translation, we derive the O-Telos frames given here, for the same part of the lecture

as was shown in the RDF model previously (note that we don’t state the namespace

attributes that belong to the theory pages, for reasons of simplicity):

Lecture in Class with

attribute

lectureUnits: LectureUnit

end

LectureUnit in Class with

attribute

title: String;

description: String;

theoryPage: TheoryUnit

feature

parentCourse: Lecture

252 Martin Wolpers and Wolfgang Nejdl

rule

inferParentCourse :

$ forall lu/LectureUnit, le/Lecture

(le lectureUnits lu) => (lu parentCourse le) $

end

TheoryUnit in Class with

feature

parentUnit: LectureUnit

rule

inferParentUnit : $ forall tu/TheoryUnit, lu/LectureUnit

(lu theoryPage tu) => (tu parentUnit lu) $

end

AILecture in Lecture end

LectureUnit1 in LectureUnit with

title t: "LectureUnit 1"

description d: "Introduction to intelligent agents"

theoryPage

tp1: Definitions_htm;

tp2: Characterisation_htm;

tp3: Structure_htm;

tp4: Types_htm

end

Definitions_htm in TheoryUnit end

Characterisation_htm in TheoryUnit end

Structure_htm in TheoryUnit end

Types_htm in TheoryUnit end

We omit the attributes parentUnit and parentCourse for the lecture and theory

units because they are inferred automatically by the two rules inferParentUnit

and inferParentCourse. The simple logic language Datalog is used to state both

rules. The rule inferParentCourse, defined in the class LectureUnit, states the

transitive closure of the attribute lectureUnits of class Lecture. This means that

the attribute parentCourse of a given lecture unit relates to the same lectures whose

attribute lectureUnits relates to the lecture unit. The same holds for the infer-

ParentUnit rule, thus providing objects for the respective attribute parentUnit.

In this brief section we have given an example of how conceptual models can be

used to enable access to information resources. Based on these conceptual models,

Metadata for Hypermedia Textbooks 253

KBS Hyperbook can be used to browse and explore the navigational structures of

the resources and to view the modeled content. In modeling the ‘‘Artificial Intelli-

gence’’ lecture, we have provided an example of how RDF can be translated for use

in a ConceptBase database.

5.6 Summary

The two modeling approaches discussed in the previous sections show how meta-

models and conceptual models designed in the context of the World Wide Web can

be expressed and formalized using the O-Telos language and implemented employing

the ConceptBase database.

The chapter’s discussion of the RDF Schema specification points out several un-

usual characteristics of RDF Schema in comparison to more conventional metadata

models. The modeling decision to let the properties rdfs:subClassOf, rdf:type,

rdfs:domain, and rdfs:range take on dual roles as primitive constructs and as

specific instances of RDF properties in the definition makes the specification di‰cult

to understand, and we introduce an alternative model that allows an explicit dis-

tinction to be made between modeling and metamodeling features and enables the

di¤erent meanings of constructs like rdf:type to be made explicit. The model is

expressed using the O-Telos modeling language.

Through examination of RDF(S) purely as a formal modeling language, another

set of interesting insights into RDF(S) is revealed. We present another approach

modeling RDF(S) in O-Telos by directly mapping RDF(S) to O-Telos. The resulting

O-Telos-RDF dialect has the advantage of allowing easy reification of statements so

that they can be used in metamodeling applications, where more than three abstrac-

tion hierarchies are needed. Furthermore, the O-Telos approach allows the definition

of properties with the same name for di¤erent domains that have di¤erent ranges

(which is not possible in RDF(S)).

As this approach represents a strict extension of RDF(S), all RDF(S) definitions

can be translated into O-Telos statements. Translation from O-Telos into RDF(S) is

only possible of course, if no O-Telos-specific extensions are used (for example, more

than three abstraction levels).

Using explicit metadata about Web pages and other resources, reusing resources

becomes much easier. By formalizing and representing the models of the KBS

Hyperbook System in RDF, we show that models can be easily exchanged with other

RDF-capable systems. Furthermore, semantic relationships between resources are

made explicit in the models and can therefore facilitate advanced information needs.

For example, models are used as underlying navigational structures within the KBS

Hyperbook System.

254 Martin Wolpers and Wolfgang Nejdl

Acknowledgments

We would like to thank Hadhami Dhraief and Ingo Brunkhorst for many very fruit-

ful hours of discussion. Without their help, this chapter would have not been what it

is now.

References

Beckett, D., ed. 2004. ‘‘RDF/XML Syntax Specification.’’ Recommendation, W3C. Available at hhttp://
www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/i.

Berners-Lee, T. 1998. ‘‘What the Semantic Web Can Represent.’’ Available at hhttp://www.w3.org/
DesignIssues/RDFnot.htmli.

Bray, T., D. Hollander, A. Layman and R. Tobin, eds. 2006. ‘‘Namespaces in XML 1.0 (Second Edition)’’
Recommendation, W3C. Available at hhttp://www.w3.org/TR/REC-xml-names/i.

Brickley, D., and R. V. Guha, eds. 2004. ‘‘RDF Vocabulary Description Language 1.0: RDF Schema.’’
Recommendation, W3C. Available at hhttp://www.w3c.org/TR/rdf-schema/i.

Fröhlich, P., N. Henze, and W. Nejdl. 1997. ‘‘Meta Modeling for Hypermedia Design.’’ In Proceedings
of the Second IEEE Metadata Conference, ed. R. Musick and C. Miller. Available at hhttp://www.kbs
.uni-hannover.de/Arbeiten/Publikationen/1997/metadata/pfroehlich.htmli.

Fröhlich, P., W. Nejdl, and M. Wolpers. 1998. ‘‘KBS Hyperbook—an Open Hyperbook System for
Education.’’ In Proceedings of the Tenth World Conference on Educational Multimedia and Hypermedia
(ED-MEDIA’98), ed. T. Ottman and I. Tomek. Charlottesville, VA: Association for the Advancement of
Computing in Education. (Electronic proceedings)

Henze, N., K. Naceur, W. Nejdl, and M. Wolpers. 1999. ‘‘Adaptive Hyperbooks for Constructivist Teach-
ing.’’ Künstliche Intelligenz 4: 26–31.

Henze, N., and W. Nejdl. 1999. ‘‘Student Modeling for the KBS Hyperbook System Using Bayesian Net-
works.’’ Technical report, University of Hannover. Available at hhttp://www.kbs.uni-hannover.de/paper/
99/adaptivity.htmli.

ISO (International Organization for Standardization)/IEC (International Electrotechnical Commission).
1990. ‘‘Information Technology—Information Resource Dictionary System (IRDS)—Framework.’’ ISO/
IEC International Standard 10027. Geneva: ISO.

Jeusfeld, M. 1992. Änderungskontrolle in deduktiven Objektbanken. St. Augustin, Germany: Infix-Verlag.

Lassila, O., and R. Swick, eds. 1999. ‘‘Resource Description Framework (RDF) Model and Syntax Spec-
ification.’’ W3C. Available at hhttp://www.w3.org/TR/1999/REC-rdf-syntax-19990222/i.

Manola, F., and E. Miller, eds. 2004. ‘‘W3C Resource Description Framework (RDF) Model and Syn-
tax Specification.’’ W3C Working Group, Amsterdam. Available at hhttp://www.w3.org/TR/REC-rdf-
syntax/i.

Mylopoulos, J., A. Borgida, M. Jarke, and M. Koubarakis. 1990. ‘‘Telos: A Language for Representing
Knowledge about Information Systems.’’ ACM Transactions on Information Systems 8, no. 4: 325–362.

Nejdl, W., H. Dhraief, and M. Wolpers. 2001. ‘‘O-Telos-RDF: A Resource Description Format with
Enhanced Meta-modeling Functionalities Based on O-Telos.’’ Presented at the Workshop on Knowledge
Management and Semantic Annotation at the First International Conference on Knowledge Capture
(K-CAP 2001), October 21–23, 2001, Victoria, British Columbia.

Nejdl, W., and M. Wolpers. 1998. ‘‘KBS Hyperbook—A Data-Driven Information System on the Web.’’
Technical report, KBS Institute, University of Hannover.

Nejdl, W., and M. Wolpers. 1999. ‘‘KBS Hyperbook—A Data-Driven Information System on the Web.’’
Poster Proceedings of the Eighth International World Wide Web Conference, 26–31. Reston, VA: Foretec
Seminars.

Metadata for Hypermedia Textbooks 255

hhttp://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/i
hhttp://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/i
hhttp://www.w3.org/
hhttp://www.w3.org/TR/REC-xml-names/i
hhttp://www.w3c.org/TR/rdf-schema/i
hhttp://www.kbs
hhttp://www.kbs.uni-hannover.de/paper/
hhttp://www.w3.org/TR/1999/REC-rdf-syntax-19990222/i
hhttp://www.w3.org/TR/REC-rdf-syntax/i
hhttp://www.w3.org/TR/REC-rdf-syntax/i
hhttp://www.w3.org/TR/REC-rdf-syntax/i

Sintek, M., and S. Decker. 2001. ‘‘TRIPLE—An RDF Query, Inference, and Transformation Language.’’
Workshop on Deductive Databases and Knowledge Management (DDLP’2001) at the International Con-
ference on Applications of Prolog (INAP’2001), Japan, October.

Staudt, M., M. Jarke, and M. Jeusfeld. 1996. ‘‘ConceptBase 4.1 User Manual.’’ Technical report, RWTH,
Aachen, Germany. Available at hhttp://www-i5.informatik.rwth-aachen.de/CBdoc/userManual/i.

Weibel, S., J. Kunze, C. Lagoze, and M. Wolf. 1998. ‘‘Dublin Core Metadata for Resource Discovery.’’
Request for Comments no. 2413, Network Working Group, Internet Engineering Task Force. Available at
hhttp://www.ietf.org/rfc/rfc2413.txti.

256 Martin Wolpers and Wolfgang Nejdl

hhttp://www-i5.informatik.rwth-aachen.de/CBdoc/userManual/i
hhttp://www.ietf.org/rfc/rfc2413.txti

6 Monitoring Requirements Development with Goals

William N. Robinson

Managing the development of software requirements can be a complex and di‰cult

task. The environment is often chaotic. As analysts and customers leave the project,

they are replaced by others who drive development in new directions. As a result,

inconsistencies arise. Newer requirements introduce inconsistencies with older re-

quirements. The introduction of such requirements inconsistencies may violate stated

goals of development. In this chapter, techniques are presented that manage require-

ments document inconsistency by managing inconsistencies that arise between

requirements development goals and requirements development enactment.

A specialized development model, called a requirements dialog meta-model, is pre-

sented. The metamodel defines a conceptual framework for dialog goal definition,

monitoring, and in the case of goal failure, dialog goal reestablishment. The require-

ments dialog metamodel is supported by an automated multi-user World Wide Web

environment, called DealScribe.

This research supports the conclusions that: (1) an automated tool that supports

the dialog metamodel can automate the monitoring and reestablishment of formal

development goals, (2) development goal monitoring can be used to determine state-

ments of a development dialog that fail to satisfy development goals, and (3) devel-

opment goal monitoring can be used to manage inconsistencies in a developing

requirements document. The application of DealScribe demonstrates that a dialog

metamodel can enable a powerful environment for managing development and doc-

ument inconsistencies.

This chapter expands on prior presentations of this work by focusing on imple-

mentation (Robinson and Pawlowski, 1999). Of course, the overarching theory of

goal monitoring is presented. In addition, ConceptBase classes and queries that are

used in DealScribe are presented.

6.1 Introduction

Requirements engineering can be characterized as an iterative process of discovery

and analysis designed to produce an agreed-upon set of clear, complete, and consistent

system requirements. The process is complex and di‰cult to manage, involving the

surfacing of stakeholder views, developing shared understanding, and building con-

sensus. A key challenge facing the analyst is the management and analysis of a dy-

namic set of requirements as it evolves throughout this process. Techniques have

been developed to support aspects of the process; however, support for requirements

development monitoring has been lacking.

Requirements development monitoring entails (1) the specification of requirements

development goals and (2) the creation of development-goal-monitoring agents. As a

requirements development unfolds, monitoring agents provide warnings, and even

remedies, when development goals are not satisfied. Such monitoring is similar to

the performance monitoring repeatedly applied to software as part of run time opti-

mization. However, requirements development monitoring di¤ers in that (1) it

applies over the (longer) lifetime of a requirements development and (2) the goals

monitored often refer to complex interrelationships among the development products

over time.

Analysts can benefit from requirements development monitoring. Since require-

ments development often involves changes in analysts, stakeholders, and require-

ments, managing a requirements development can be a challenge. Monitoring

addresses this challenge by providing analysts with (1) notifications when the devel-

opment does not satisfy development goals and (2) guarantees when the development

does satisfy development goals.

The research discussed in this chapter defines an approach to requirements devel-

opment monitoring. It o¤ers an incremental improvement to the state of the art in

process monitoring. The research shows how formal development goals can be trans-

lated into software-monitored goals. It is based on a formal dialog metamodel. Once

dialog statement types and development goals are formally specified in terms of the

metamodel, a dialog support system, including goal-monitoring agents, can be cre-

ated automatically. A software tool is constructed to demonstrate the e¤ectiveness

of the approach. Additionally, a case study is conducted to demonstrate the practi-

cality of this metamodeling approach to requirements development monitoring.

6.1.1 Managing Requirements Dialog

Stakeholder dialog is a pillar of the requirements development process. Techniques

have been developed to facilitate dialog (e.g., Joint Application Design [JAD], proto-

typing, serial interviews) and to document and track requirements as they evolve

(e.g., CASE). A requirements dialog can be viewed as a series of conversations

among analysts, customers, and other stakeholders to develop a shared understand-

ing and agreement on the requirements of the system under development. Typically,

the analyst converses with the customers about their needs. In turn, the analyst may

raise questions about the requirements, which lead to further conversations. Within

258 William N. Robinson

the development team, analysts will also converse among themselves about questions

that have arisen during their analysis of the requirements—sometimes the result of

sophisticated analysis; at other times, the result of simply reading two di¤erent para-

graphs in the same requirements document.

Like many dialogs, requirements development can be di‰cult to manage. Empiri-

cal studies have documented the di‰culties and communication breakdowns that are

frequently experienced by project teams during requirements determination as group

members acquire, share, and integrate project-relevant knowledge (Krasner, Curtis,

and Iscoe 1987; Walz, Elam, and Curtis 1993). Requirements or their analyses may

be forgotten. Di¤erent requirements concerning the same objects can arise at di¤er-

ent times. Inconsistency, ambiguity, and incompleteness are often the result.

The objective of the research discussed here is to address the monitoring of re-

quirements dialog goals, especially requirements consistency development goals. Re-

quirements inconsistency is a critical driver of the requirements dialog. If one can

manage requirements inconsistency, one can manage a key driver of complexity and

confusion in the requirements dialog. Goal monitoring simplifies inconsistency man-

agement by alerting analysts to events important in their work. Analysts can filter the

chaotic activities of a requirements dialog through goal monitors and focus their at-

tention on important changes.

In this chapter, I present a metamodeling approach to requirements development

monitoring (section 6.2). A description of a supporting software tool (section 6.3),

DealScribe, illustrates how the metamodel can provide automated support for such

monitoring. The requirements development protocol of section 6.4 illustrates how de-

velopment goals can be expressed as instances of the dialog metamodel. That proto-

col, Root Requirements Management, can be monitored by DealScribe. Finally, I

conclude (in section 6.5) that the dialog metamodel can provide analysts with auto-

mation, assurance, and understanding that facilitates the management of inconsisten-

cies that arise during multistakeholder requirements dialog. The remainder of this

introduction motivates the research discussed in the chapter and places it in context.

6.1.2 A Need to Support Analysts in Inconsistency Management

Requirements analysts need tools to assist them in reasoning about requirements. To

some degree, computer-aided software engineering tools have been successful in pro-

viding support for modeling and code generation (Chikofsky and Rubenstein 1988;

Lempp and Rudolf 1993; Norman and Nunamaker 1989); however, they have been

less successful in supporting requirements analysis (Lempp and Rudolf 1993). In fact,

the downstream life cycle successes of these tools may be one of the reasons that sys-

tems analysts spend a greater percentage of their time on requirements analysis than

ever before (Graf and Misic 1994). Thus, analysts will benefit from the development

of techniques and tools that directly address requirements analysis.

Monitoring Requirements Development with Goals 259

A significant part of requirements analysis concerns the identification and resolu-

tion of requirements faults. Such faults include incorrect facts, omissions, inconsis-

tencies, and ambiguities (Meyer 1986). Many current research projects are aimed at

identifying such faults in requirements. These include projects involving model

checkers, terminological consistency checkers, and knowledge-based scenario check-

ers; additionally, more generic tools, such as simulation and visualization, are avail-

able to requirements analysts as well. For the most part, these tools are cousins of

similar tools applied to programming languages that check for syntactic errors or

perform checks of program inputs and path execution. However, requirements faults

are rarely traced back to the original stakeholders, and there has not been much sup-

port for resolving such faults. Yet there is still a belief that conflict identification and

resolution are key in systems development (Lyytinen and Hirschheim 1987; Robey,

Farrow, and Franz 1989).

Empirical studies of software development projects have identified a need for

issue-tracking tools (Curtis, Krasner, and Iscoe 1988; Walz et al. 1987). Typical

problems of software development projects include (1) unresolved issues that do not

become obvious until integration testing and (2) a tendency for conflicts to remain

unresolved for a period of time. Inadequate tools for tracking issue status (e.g.,

conflicting, resolved) has been identified as a great concern to practicing system

engineers.

Collaborative CASE tools may provide an answer. Collaborative CASE aims to

support task-, team-, and group-level analysis by addressing information control,

sharing, and monitoring (Vessey and Sravanapudi 1995). However, many collabora-

tive CASE tools still fall short in their management of the requirements elicitation

and development process (Liou and Chen 1993–1994). Davy (1990) notes that ‘‘cur-

rent implementations of CASE tool technology encourage an individual approach

to work, even if they provide multi-user capability. However, analysts improve the

quality of their work by discussing and reviewing it with colleagues. CASE tools are

useful, but they are no substitute for interactive group discussion. Until more respon-

sive interfaces are available we will only be able to make limited use of them’’ (15).

6.1.3 Research Addressing Requirements Management

There is a growing literature on requirements inconsistency management. Fickas and

Feather (1995) have proposed requirements monitoring to track the achievement of

requirements during system execution as part of an architecture to allow the dynamic

reconfiguration of component software. Feather (Cs3 2007) has produced a working

system, called FLEA (Formal Language for Expressing Assumptions), that allows

one to monitor events defined in a requirements monitoring language. Emmerich

et al. (1999) have illustrated how the techniques used by FLEA may be used to mon-

itor process compliance; for example, compliance with ISO 9000 or Institute of Elec-

260 William N. Robinson

trical and Electronics Engineers (IEEE) process descriptions (Mazza et al. 1994). The

work on dialog monitoring discussed in this chapter is derived from these works, but

also includes an element of dialog structuring.

Two research projects have explicitly addressed requirements dialog structures.

First, Chen and Nunamaker (1991) have proposed a collaborative CASE environ-

ment, tailoring GroupSystems decision room software, to facilitate requirements

development. Using collaborative CASE, one can track and develop requirements

consensus. Second, Potts, Takahashi, and Antón (1994), have defined the inquiry

cycle model of development to instill some order into requirements dialogs. Require-

ments are developed in response to discussions consisting of questions, answers, and

assumptions. By tracking these dialog elements, dialog is maintained, and inconsis-

tency, ambiguity, and incompleteness are kept in check through specific development

operations (e.g., scenario analysis).

Workflow and process modeling provide some solutions for the management of

requirements development (Sheth et al. 1996). It is possible, for example, to generate

a work environment from a hierarchical multiagent process specification (Miller et

al. 1998). There has been some attempt to incorporate workflow and process models

into CASE tools (Mi and Scacchi 1992). However, these tools generally aid process

enactment, through constraint enforcement. However, as Leon Osterweil and Stanley

Sutton (1996) note, ‘‘Experience in studying actual processes, and in attempting to

define them, has convinced us that much of the sequencing of tasks in processes con-

sists of reactions to contingencies, both foreseen and unexpected.’’

In support of a reactionary approach, the dialog metamodel eschews process en-

forcement and supports the expression and monitoring of process goals. It is neutral

in regard to the foregoing approaches. A methodology, conflict ontology, or auto-

mated techniques can be defined as instances of it. The DealScribe implementation

provides automated support for the enactment of a structured dialog, which is de-

fined as an instance of the dialog metamodel.

6.1.4 Support of Development Goal Monitoring

Goal monitoring addresses technical and social forces that give rise to requirements

inconsistencies and conflicts by managing the changes that directly a¤ect require-

ments. Changes in stakeholders, analysts, requirements, or analyses are tracked as

part of the dialog metamodel. For example, a software development organization

may seek an equal contribution from each of the stakeholders in a particular devel-

opment e¤ort. The dialog goal NearlyEqualContribution captures this:

NearlyEqualContribution:

"Each stakeholder must contribute a nearly equal number of

statements to the requirement dialog"

Monitoring Requirements Development with Goals 261

The NearlyEqualContribution goal reflects a social development goal that is

monitored through the relative number of statements contributed by stakeholders.

Requirement traceability enables the monitoring of the NearlyEqualContribu-

tion goal. Gotel and Finkelstein (1994) define requirements traceability as ‘‘the

ability to describe and follow the life of a requirement, in both a forwards and back-

wards direction’’ (94). To monitor the NearlyEqualContribution goal, there must

be backward traceability from the requirement to the contributing stakeholder. A

framework that tracks development objects, and the agents and operations that act

on them, supports traceability (Ramesh and Dhar 1994). Goal monitoring supports

such traceability.

Goal monitoring brings traceability to life through its notifications. As develop-

ment occurs, stakeholders receive feedback on interesting events; for example, warn-

ings on the violation of the NearlyEqualContribution goal. Goal monitors can

provide feedback on changing or inconsistent requirements which may lead analysts

to become aware of additional social problems, such as conflicting stakeholder

requirements.

6.1.5 Problems of Development Goal Monitoring

In defining a system that supports development goal monitoring, three main ques-

tions must be answered:

1. How can development goals be specified? Development goals describe relation-

ships among the stakeholders, products, and processes of the development dialog. A

goal specification language should facilitate such descriptions.

2. How can development goals be monitored? As the development dialog is enacted,

events occurring in the dialog may result in goal failure. Goal monitoring should de-

tect such goal violations as they occur.

3. How can violated development goals be restored? When a development goal is

violated, a goal-monitoring system should facilitate the automated reestablishment

of the goal.

The following section presents an approach that answers each of these questions.

6.2 A Dialog Support System and Metamodel

The requirements dialog support system has been designed to provide solutions to

the problems of development goal monitoring, as well as to address the following

basic needs of requirements dialog support:

� The need to represent multiple stakeholder requirements, even if conflicting

� The need to identify and understand requirements interactions

262 William N. Robinson

� The need to track and report on development issues

� The need to develop shared understanding and consensus through requirements

analysis and negotiation

� The need to support dynamic, dialog-driven requirements development

Stakeholder dialog is central to addressing these needs. Additionally, analysts must

be able to analyze developing requirements. The needs can be supported through a

dialog support system and its metamodel.

This chapter describes such a dialog support system and its dialog metamodel. As

illustrated in figure 6.1, the dialog system regards a dialog as a stream of statements.

Each statement is either passive information or an active operation. Statements are

instances of the dialog statement model. A dialog is a continual stream of statements

from multiple stakeholders; some statements initiate new ideas, and others are in re-

sponse to previous statements. As the dialog expands, dialog goals can be compared

against the dialog to determine their status.

The metamodel can be instantiated to define a typical process model, with a dis-

tinction between process and product. Consider information statements as products,

Figure 6.1
An illustration of an application of the dialog metamodel

Monitoring Requirements Development with Goals 263

operation statements as actions, and dialog goals as defining a process model. The

dialog metamodel is then a process model with an explicit representation of the pro-

cess goals and enactment history. Such a metamodel is suitable for modeling the

process of requirements development.

The phrase ‘‘dialog metamodel’’ has been chosen here, rather than the more com-

mon phrase ‘‘process model,’’ because of the specialized modeling of dialog processes

and the use of metamodeling. The dialog metamodel can be instantiated to aid the

contextual needs of a development group. The dialog support system provides a

user interface tailored to the instantiated dialog model. As stakeholders engage in

the dialog, the dialog support system provides automated processing; for example,

notifying stakeholders of interesting dialog events, such as a violation of a dialog

goal.

6.2.1 Dialog Support System Components

The dialog support system has four main components:

� Dialog statement model Statements are added to the dialog by the people, or

agents, involved in the dialog. In the dialog statement model, there are two impor-

tant subtrees in the statement typology:

� Information A passive statement that adds new information to the dialog directly

or by reference to some external information source
� Operation An active statement that adds new information derived through some

computation based on the state of the dialog as captured in the dialog forum

� Dialog forum The dialog forum is a statement history that includes the statements

asserted or retracted as part of the dialog. Forum statements are instances of state-

ment types that are specified in the statement typology. The statement instances in-

clude values for attributes, as well as a belief interval indicating the time at which the

statement was asserted, and if it was retracted, the time of retraction. Essentially, the

forum is a log of statements that have occurred during the dialog. Dialog events (i.e.,

assertion or retraction) may be initiated asynchronously by di¤erent stakeholders.

To keep stakeholders aware of forum activities, the dialog system can notify stake-

holders of new dialog events.

� Dialog protocol A dialog protocol is a declarative prescription of ‘‘dialog rules,’’

indicating such things as the relative order of statements and their content. In the di-

alog metamodel, a dialog protocol is represented by a hierarchy of dialog goals that

specify desired forum properties. Examples of dialog protocols include Roberts’

Rules of Order and the software development life cycle. Enforcement of the dialog

protocol may be carried out through statement constraints that restrict the addition

of statements to the dialog. Conversely, statements may be unrestricted, but opera-

264 William N. Robinson

tions can analyze the forum to determine the degree of compliance with a dialog

protocol.

� Dialog monitor A dialog monitor is a predefined operation. After each dialog

event, each believed monitor is automatically activated by the dialog system. A mon-

itor itself specifies conditions under which another operation is to be automatically

executed. For example, one predefined operation is GoalCheck. It determines those

statements, if any, that fail to satisfy a particular dialog goal. Thus, a monitor can

specify that a specific instance of GoalCheck is to be activated after every dialog

event to maintain a report on a specific goal’s status. (Predefined operations, such

as GoalCheck and Monitor, are defined in the same manner as user-defined

operations.)

6.2.2 Dialog Metamodel Overview

The main components of the dialog support system are defined in the dialog meta-

model, as illustrated in figure 6.2. This metamodel defines the generic system classes.

Before the system can be applied, classes of the metamodel must be specialized for a

specific dialog context. For example, in the context of requirements development, a

statement type, Requirement, may be made an isA subclass of the Information

statement class. Such specialized classes define a context-specific dialog model. Dur-

ing the application of the dialog system, instances of Requirement may be asserted

as part of a requirements dialog. These dialog model instances capture the content of

the stakeholder dialog.

The dialog metamodel is illustrated in figure 6.2 as an entity-relationship diagram.

It shows how a dialog Forum consists of a set of dialog Statements. Each State-

ment instance must be an instance of the Operation or Information class or an

instance of their (user-defined) subclasses.

The GoalCheck operation is a predefined subclass of Operation. An instance

of GoalCheck specifies an instance of a Goal that is to be checked when the Goal

is activated. (A Goal itself may be defined as an AND/OR tree of goals.) A Goal is

checked by determining whether its properties hold true within a given Forum. Each

Goal Property is a logical expression that refers to dialog model instances of a spe-

cific Forum. When specific statements can be identified as failing to hold for a partic-

ular goal, their failures are associated with that goal.

As illustrated in figure 6.2, Monitor is also a predefined subclass of Operation. It

is automatically activated when the properties of its trigger hold for a specific Forum.

Once activated, it may activate other operations.

A Practice names a set of properties and may be justified by Rationale. For

example, defining user priorities for system requirements may be a practice of an in-

cremental development protocol (i.e., a standard [Mazza et al. 1994]) justified by the

Monitoring Requirements Development with Goals 265

use of those priorities in scheduling the incremental delivery of a system. The practice

of defining user priorities for system requirements may be specified using logical

properties of the Forum:

HaveUserPriority:

E R A Requirement, b F A Forum, b P A UserPriority

� (In R F)5(HasPriority R P)

According to the definition of HaveUserPriority, all Requirement statements

must have an associated user priority. A set of such Practices defines a Dialog

Protocol.

Figure 6.2
An entity-relationship diagram of the main dialog metamodel entities

266 William N. Robinson

Although all entity instances of the dialog metamodel may be defined as logical

expressions, only the properties of goals and monitors require this type of definition.

In general, the entities Dialog Protocol, Practice, and Rationale may be infor-

mal text. A dialog protocol is simply a name given to a set of practices. It is made

operational by formally defining and composing dialog goals that represent the prac-

tices of the protocol.

6.2.3 Dialog Statements

Dialog statements are defined as standard object classes with constraints according

to the following template:

Class <statement-name> isA <Type> [, <Type>]* with

attribute [<attribute-name> : <Type> ;]*

constraint [<constraint-name> : <constraint-expression> ;]*

end

Statement types are organized into an inheritance (isA) typology. A user may at-

tempt to add a statement to a forum by assigning attribute values to a statement

type, thereby creating a statement instance. If the constraint expression does not

evaluate as FALSE, then the statement is indeed asserted to the forum. (Constraints

are logical expressions, as illustrated in the following subsection.) Operational state-

ments do more than simply assert attribute values. An assertion of an operational

statement causes the execution of its associated (onAssert) method. Such methods

may engage in computation and assign statement attribute values. Finally, the result-

ing statement is asserted to the forum.

6.2.4 Dialog Goals

As HaveUserPriority, defined previously, illustrates, dialog goals may be specified

in terms of forum properties. Often a goal specification, like that of HaveUser-

Priority, concerns properties of a certain statement type. In such cases, the dialog

system can determine the specific statements that fail the goal (indicated as failures in

figure 6.2). However, a goal specification may concern summary properties across

sets of statements, such as the number of high-priority requirements:

LessThan15HighPriorityRequirements:

E R A HighPriorityRequirement,

b F A Forum, b N A Integer

� (In R F)5(Count R N)5(N < 15)

The goal specification for LessThan15HighPriorityRequirements is met for a

particular goal when there are less than 15 high-priority requirements for the goal.

Monitoring Requirements Development with Goals 267

However, there are no particular individual statements that will fail the goal specifica-

tion. (One might consider the fifteenth high-priority requirement asserted as the state-

ment that caused the goal failure; however, this captures only part of the goal’s intent.)

In general, a dialog goal expresses arbitrary logical formulas concerning a forum.

A change in any value within the scope of a formula can cause its evaluation to be-

come FALSE, thereby making failure attribution di‰cult. For example, a goal con-

cerning a deadline may fail with the passage of time. Nevertheless, the dialog system

can determine whether such a goal specification is met in a forum. Moreover, specific

statements that fail a goal can be determined for dialog goals that characterize prop-

erties of a specific statement type.

Goals also have an intentional mode that is used in combination with the goal

specification. A goal mode may be Achieve or Avoid. The goal mode alters the

way in which satisfaction of the goal specification is interpreted. In Achieve mode,

if the goal specification is met, then the goal succeeds. Conversely, in Avoid mode, if

the goal specification is met, the goal fails. (This leads to the corollary, Achieve(g)

= Avoid(sg).)

A third goal mode, Maintain, is provided for convenience. A goal with mode

Maintain that is monitored prevents the assertion of any statement that violates

the goal’s specification. Thus, a single goal in Maintain mode can be used in lieu of

assertion constraints in multiple statement types. The statement Maintain(g) is sim-

ilar to Achieve(g); however, if Maintain(g) is monitored, then statements cannot

be asserted as the goal fails.

The two dimensions of goal mode and specification provide a simple means of

altering the interpretation of goals. For example, in the early phase of a project, one

might apply HaveUserPriority as an Achieve goal. During this phase, require-

ment statements may be asserted without user priorities; each such requirement

causes the failure of HaveUserPriority. Such failures typically lead to user notifi-

cation and eventual statement modifications. During the final phase of the project,

all requirements will have priorities. To prevent the addition of new requirements

that do not have a user priority, the mode of HaveUserPriority is set to

Maintain.

As illustrated in figure 6.2, a goal may also specify remedy operations. Such oper-

ations may be applied in the case of the goal’s failure to reestablish the goal’s satis-

faction. GoalCheck is an operation that is used to activate goal remedies. When

executed, it checks whether the specified goal has failed. If so, and a Boolean run-

Remedy flag is set to TRUE, then the remedies are executed.

Many goal failures may occur as the result of the same dialog event. However,

each remedy operation is executed in response to a single goal failure. Thus, there is

no predefined global analysis of all goal failures followed by a global remedy. There

are two means of addressing this problem.

268 William N. Robinson

First, a metagoal concerning multigoal failure can be asserted. For example, a

slight modification of the LessThan15HighPriorityRequirements goal yields the

goal MetaGoal-LessThan3ActiveFailedGoals:

MetaGoal-LessThan3ActiveFailedGoals:

E G A ActiveFailedGoal, b F A Forum, b N A Integer

� (In G F)5(Count G N)5(N < 3)

This goal fails if more than three active goals fail. The goal subclass Active-

FailedGoal contains those goals that are currently being monitored and have failed.

A remedy for MetaGoal-LessThan3ActiveFailedGoals can conduct global anal-

ysis of the failed goals in order to provide a more global remedy than remedies for

single goal failures. In general, as an operational statement, a remedy operation may

do complex programming activities, possibly involving user input, to modify the fo-

rum; for example, to modify all statements that have led to a goal’s failure.

A second means of remedying the lack of a predifined global goal failure analysis

concerns composite goals. A composite goal specifies an AND/OR goal tree. A com-

posite goal fails if one of its AND goals fails or if all of its OR goals fail. When

GoalCheck is applied to a composite goal, remedies at each level of the goal tree

are applied to the failed subgoals. (The implementation follows a planning para-

digm, with remedies for the leaf goals executing first, followed by those for higher

subgoals, and ending with the topmost goal remedies.) Thus, the goal tree is used to

specify goals, recognize their failure, and apply remedies to bring about goal success

(cf. Klein 1991).

6.2.5 Dialog Protocols

Dialog goals are used to operationalize a dialog protocol. The practices of a dialog

protocol are specified in the formal properties of dialog goals. Dialog goals them-

selves may be organized in an AND/OR goal tree. Thus, a dialog protocol is for-

malized as a composite dialog goal. A dialog protocol is activated (or inactivated)

through monitoring operations.1

6.2.6 Monitoring

Monitor is a predefined operation, as illustrated in figure 6.2. A monitor has a trig-

ger that specifies properties that must hold for the monitor to be active. A monitor

also specifies operations that are to be executed when the monitor is active. After

each dialog event, the operations of each active monitor are executed.

Monitoring can be used to automate two types of tasks. First, basic operations

can be automatically run. This includes keeping analysis current and automating

synthesis. Second, goals can be monitored to provide alerts (or remedies) when goals

fail.

Monitoring Requirements Development with Goals 269

Commonly, a monitor specifies that an operation is to be executed after every

dialog event. For example, a specific operational statement, such as GoalCheck-

(HaveUserPriority), can be monitored to ensure that a goal failure of Have-

UserPriority is immediately detected and possibly remedied.2 However, some

operations are computationally expensive; for example, checking goal failure in a

large goal tree or applying a complex remedy. In such cases, the monitor can be

used to selectively invoke the operation. Monitors may be run periodically; for exam-

ple, modulo the forum event count or chronological time.

Monitoring may inadvertently introduce recursion among operations. After each

dialog event, each monitor is activated. As a result, remedy operations may be

executed and their results asserted as statements. The new statements may, in turn,

activate more remedy operations that lead to more statements, and so on. As a

pathological example, consider a goal HaveResponse that specifies that all state-

ments must have a response:

HaveResponse:

E S A Statement, b F A Forum, b R A Statement

� (In S F)5(Response S R)

A remedy operation for HaveResponse could add a new statement, Sr, as a re-

sponse. Of course, Sr will need a response as well. In general, such recursion must

be controlled through careful definition of goals and remedy operations.3

As a final point on monitoring, notice that monitoring of monitors follows natu-

rally from the framework. For example, it can be specified that the goal HaveUser-

Priority should be periodically checked by GoalCheck:

MonitorPriority:

E M A Monitor, b F A Forum, b GC A GoalCheck

� (In GC F)5(GC Goal HaveUserPriority)5(In M F)5(M Operator

GC)5(M EventPeriod 5)

The goal MonitorPriority is met when the goal HaveUserPriority is checked

periodically by a monitor, M. (M executes GoalCheck on the HaveUserPriority

goal.) Of course, since MonitorPriority is a goal, it can also be monitored.

6.2.7 Hypothetical Statements

With statement constraints, goal specifications and their remedies, and operation

monitoring, the consequences of adding a statement to the dialog can be di‰cult to

predict. To facilitate user understanding, the dialog system provides an assertion

mode for statements. In standard mode, a statement is asserted, followed by the acti-

vation of monitors and their operations. In hypothetical mode, a statement is tenta-

270 William N. Robinson

tively asserted, and the subsequent events of monitors and operations are displayed

but not asserted. Such a mode allows users to see the consequences of adding a state-

ment to the dialog without actually asserting it.4

6.3 Tool Support for the Dialog Metamodel

The dialog metamodel and support system form a conceptual design for the support

of requirements analysis dialogs. To validate the e¤ectiveness of the design, a soft-

ware implementation was constructed. The implementation environment supports

not only the current design, but the iterative refinement of the design as well.

The dialog support system implementation is called DealScribe. It is part of the

DealMaker tool suite aimed at supporting requirements negotiation (Robinson

and Volkov 1998).

6.3.1 Dialog System Architecture

The three main components of DealScribe interact over a network interface:5

� Database server The database server stores dialog messages, checks constraints

and rejects messages that violate them, answers queries concerning goal status and

active monitors, and answers hypothetical queries. The deductive database Concept-

Base provides these functions. It provides concurrent multiuser access to O-Telos

objects (Jarke et al. 1995). All classes, metaclasses, instances, attributes, rules, con-

straints, and queries are uniformly represented as objects (Mylopoulos et al. 1990).

ConceptBase provides a powerful operational modeling language based on Datalog

with negation (Ceri, Gottlob, and Tanca 1990; Minker 1996); it will terminate and

produce the correct answer for any query it receives. Thus, one can formally describe

a model in ConceptBase, populate it with instances, and have ConceptBase answer

queries about the model or instances of it.

� User interface server The user interface server provides message input forms, dia-

log forum and message views, multiple forums, e-mail notification of new messages,

and secure administration of user access. A modified version of the World Wide Web

discussion system HyperNews provides these functions. In the modified version, a

user can post typed messages to forums, with the types defined in the database server.

A view of the forum can provide an overview of the discussion, in which messages

are laid out in a tree format that shows replies to a particular message indented

under it (see figure 6.6). Statements are stored in ConceptBase and as Web pages.

Thus, one can run both ConceptBase (logical) queries and Web search engine

(match-based) queries, such as those provided by Excite. Finally, Web collaborative

tools (e.g., whiteboard) can be invoked from DealScribe, as an operation, and their

content stored in a forum.

Monitoring Requirements Development with Goals 271

� Clients A Web browser serves as the basic user client. Using this network inter-

face, multiple clients can interact with DealScribe from any Internet connection.

Additional client interfaces include a graphical browser and a (Perl) program Appli-

cation Program Interface (API).

In the following subsections, I summarize how the dialog system functions are

implemented.

6.3.2 Dialog Statements

The statement template presented in section 6.2.3 is essentially the syntax of

ConceptBase class definitions. Thus, a DealScribe information statement, such as

Requirement, can be defined similarly. For example, Requirement, with attributes

perspective, mode, description, and contention, can be defined as follows:

Class Information isA DealScribeMessage

end

Class Requirement isA Information with

attribute

perspective : Perspective;

mode : Mode;

description : String;

contention : FuzzyNumber

end

According to this definition, a Requirement is a type of Information class. The

Information class is a type of DealScribeMessage class. These ConceptBase

defintions correspond directly to the entities illustrated in figure 6.2. However, in

this implementation, the DealScribeMessage class represents the Statement class

illustrated in figure 6.2.

From such ConceptBase definitions, DealScribe can directly generate HTML in-

put forms. A user can fill in, or select, values for attributes of the statement object.

Operation statements are similarly defined. For example, GoalCheck is defined as

follows:

Class Operation isA DealScribeMessage with

attribute

resultString : String;

result : Proposition

end

Class GoalAnalysis isA Operation

end

272 William N. Robinson

Class GoalCheck isA GoalAnalysis with

attribute

goal : DialogGoal;

runRemedy : Boolean

end

Like information statements, the object attributes of operation statements may serve

as input fields for HTML forms; similarly, other attributes may serve as output

fields.

As illustrated in figure 6.2, both informational and operational statements are sub-

types of Statement and are part of a Forum. This is implemented in ConceptBase by

making all statements a subtype of the DealScribeMessage class:

Class DealScribeMessage with

attribute

dsTransactionNumber : Integer;

datetimestamp : Integer;

date : String;

title : String;

userid : String;

username : String;

keywords : String;

body : String;

msgtype : String;

replyto : String

end

The DealScribeMessage class captures attributes common to all HyperNews mes-

sages. Thus, the DealScribe system maintains a representation of all messages found

in a HyperNews (HTML) forum within a ConceptBase database.

Operational statements, such as GoalCheck, discussed previously, have an asso-

ciated method in addition to their basic ConceptBase class defintion. Currently,

all such methods are defined in the Perl programming language. When an opera-

tion is executed, its ConceptBase results are stored in the result attribute, and

an ASCII string representation of those results is stored in the resultString

attribute.

The following presents a portion of GoalCheck’s associated Perl subroutine. The

Perl GoalCheck subroutine is called when it is time to check a goal. The name of a

specific goal is passed to it as an argument. The Perl subroutine shown here connects

to the ConceptBase database to determine the goal’s mode, as well as to determine

those statements that have violated the goal:

Monitoring Requirements Development with Goals 273

sub GoalCheck {

my($AttAssoc,$in) = @_;

Retrieve the goal name from the HyperNews message.

my $goalName = ${$AttAssoc}{"goalName"};

Determine the goal’s mode (using ConceptBase).

my $checkMode = CBrun(‘ask_objnames’, "checkMode[$goalName/

goal]");

Ask ConceptBase to determine

the Violations of the goal.

my $violationMsgs =

GoalFailureMessages($goalName,"Violation",$checkMode);

my $resultString = "";

my $msg;

Place the failed messages names

in the resultString ...

for $msg (@$violationMsgs) {

$resultString .= "$msg->{name} \n";

}

Set the result in the HyperNews message.

${$AttAssoc}{resultString} = "\"$resultString\"";

... more code (elided)

}

Figure 6.3 shows a portion of a GoalCheck statement from DealScribe. As a re-

sult of the user’s selecting a goal and then posting the operation, GoalCheck found

statements that failed the goal and presented them as Web links.

Figure 6.4 shows a portion of a DealScribe Web page for adding a statement.

The table of statement types depicted in the figure and the input and output forms

associated with them are automatically generated from the corresponding Concept-

Base statement model. The ConceptBase statement hierarchy is depicted in figure

6.5. A user can post a statement by selecting a statement type and then clicking the

‘‘Add Message’’ button. All aspects of the user interface that are dependent on the

metamodel are automatically generated. Thus, modifying a dialog model, even dy-

namically, is easy. A new statement type is simply defined, and the statement buttons

and input-output (I/O) forms are then automatically updated.

6.3.3 ConceptBase Statement and Query Semantics

ConceptBase classes, like the aforementioned GoalCheck, define data types that in-

clude typed attributes and constraints. These data types and their instances are stored

in a deductive database. As GoalCheck illustrates, ConceptBase is an object-oriented

274 William N. Robinson

database. Moreover, it uniformly integrates concepts of deductive databases. With-

out leaving the Datalog (with negation) framework, it makes object-oriented ab-

straction mechanisms available to the user, thus providing significant help for data

structuring (as compared with that o¤ered by relational deductive databases). The

query language supported is similar to those o¤ered by other object-oriented data-

bases but, as in deductive databases, is more directly integrated with the rest of the

data model; this has led to some useful ideas with many applications, such as the

parameterization of query classes (Jarke et al. 1995).

ConceptBase provides deductive database techniques, such as arbitrary relation-

ships between tables, recursive processing of tables, and parameterized query classes.

Although such techniques are being incorporated into commercial databases, most

Figure 6.3
A portion of a DealScribe Web page showing the results of asserting a GoalCheck statement. The page is
representative of the input and output forms. Each object attribute is depicted as a row heading in a table.
Attribute values are depicted as the contents of table cells.

Monitoring Requirements Development with Goals 275

Figure 6.4
A portion of a DealScribe Web page showing the selection of statement types as a hierarchy of radio but-
ton tables. Each type is defined in the ConceptBase statement model.

276 William N. Robinson

commercial systems still lack these features (Minker 1996). Nevertheless, these fea-

tures have been helpful in the development of DealScribe—particularly, the para-

meterized query class.

ConceptBase query classes are defined in the same way as its data classes. A

QueryClass is itself an instance of one or more classes. Through its constraint

and isA specification, a QueryClass defines necessary and su‰cient conditions for

objects that are instances of it. Such conditions are used to compute the objects that

answer the query.

Consider the following HaveUserPriority QueryClass, an instance of the

DialogGoal class:

QueryClass HaveUserPriority in DialogGoal isA Requirement with

mode

mode_a : Achieve

constraint

ID_Priority :

$ exists x/Priority (this userPriority x) $

end

Objects that are members of (i.e., in) HaveUserPriority are constrained to be isA

the Requirement class and have a value for attribute named userPriority.6

Thus, query definitions may themselves be instances of one class, while having

objects fulfilling their query constraints from another class. (This is not unlike the sit-

uation for a standard SQL query; however, typically, a SQL query’s type cannot be

queried.)

QueryClass definitions can be queried and manipulated in ConceptBase in the

same way that any other class can be queried and manipulated. Such uniformity of

Figure 6.5
A portion of the ConceptBase database showing part of the hierarchal statement model

Monitoring Requirements Development with Goals 277

manipulation provides a concise way to define and check dialog goals. For ex-

ample, one can define an operation that queries goals of the current dialog protocol

as part of proving interesting properties, such as the goals’ logical consistency.

However, such metagoal analysis, beyond goal violation checking, is not part of

DealScribe.

6.3.4 Dialog Goals

The DialogGoal class is defined in a way similar to statement types:

Class DialogGoal with

attribute

mode : CheckMode;

remedy : DealScribeOperation;

andGoals : DialogGoal;

orGoals : DialogGoal

end

As illustrated previously, a specific goal is defined as an instance of this type. Goal

failure can be determined through a database query. Consider the achievement of

the HaveUserPriority goal. If a Requirement statement does not have a user-

Priority, then the goal fails. More generally, if a goal mode is Achieve, then state-

ments in the isA class specified that do not satisfy the goal’s constraint are

statements that fail the goal. This is captured in the following rule:

Failure Retrieval Rule:

For a goal G with isA type T and with constraint C, goal failures

are in type T that satisfy not C.

Since a DealScribe goal is itself a query, it can be used to find those statements

that are instances of the goal type but are not instances of the goal query. (If the

mode of a goal is Avoid, then it finds statements that do satisfy the goal query.)

The following query implements goal failure detection for dialog statements:

GenericQueryClass FailuresOfQueryGoal isA DealScribeMessage with

parameter

goal : DialogGoal;

mode : CheckMode

constraint

c : $ (FALSE in InSubClassOf[goal/object,ComparisonGoalType/

class]) and ((mode == Avoid) and (exists parent1/

OneLinkIsA[goal/child] (this in parent1) and not (this in

QueryClass) and not (this in goal))) or ((mode == Achieve) and

278 William N. Robinson

(exists parent2/OneLinkIsA[goal/child] (this in parent2) and

not (this in QueryClass) and (this in goal))) $

end

FailuresOfQueryGoal is a parameterized query that, given a goal and a mode, will

return those statements that satisfy the constraint. FailuresOfQueryGoal’s con-

straint in turn implements the Failure Retrieval Rule previously specified. (One-

LinkIsA returns the direct parent isA types of the goal.)

Notice that FailuresOfQueryGoal must first check that the goal does not involve

arithmetic computation (for example, counting a number of class instances and then

comparing that with a value). Such ComputingGoals must be analyzed separately,

because such computations are not intrinsic to ConceptBase.

Goals whose properties cannot be directly computed in ConceptBase are analyzed

separately. For example, LessThan15HighPriorityRequirements is an instance

of CountingGoal. Its attributes include a query that is used to accumulate the items

to be counted and a goal_count indicating a value to be compared using the indi-

cated relation:

QueryClass LessThan15HighPriorityRequirements in CountingGoal with

mode

mode_a : Achieve

query

q : HighPriorityRequirement

goal_count

gc : 15

relation

c : LessThan

end

CountingGoal is a subtype of ComputingGoal. These goal types require some

algorithmic computation that cannot be expressed in ConceptBase queries. To ac-

commodate such goals, DealScribe computes their values externally and caches

them with the ConceptBase goal. Such caching is e‰cient, as only those goals that

are currently being analyzed will be updated.

Identifying what goals are active at any given point is simple, as the following

query shows:

QueryClass ActiveGoalRoots isA DialogGoal with

constraint

c : $ exists mon/StartMonitor (mon in ActiveMonitors) and

exists gc/GoalCheck (gc in mon.Message) and (this in gc.goal)

$

end

Monitoring Requirements Development with Goals 279

The query ActiveGoalRoots returns the names of those goals that are currently

being monitored. The underlying objects include instances of ActiveMonitors and

GoalCheck. These objects are asserted or retracted as users add StartMonitor and

StopMonitor messages to the DealScribe forum.

In general, failure for an AND/OR goal tree is implemented with a recursive query

that descends the tree. The following query, FailureMessagesFromGoalTree, im-

plements this descent:

GenericQueryClass FailureMessagesFromGoalTree isA

DealScribeMessage with

parameter

goal : DialogGoal

constraint

c : $ (this in FailsGoalMode[goal/goal]) or

(exists ag/goal.andGoals

(this in FailureMessagesFromGoalTree[ag/goal])) or

(forall og/goal.orGoals

(this in FailureMessagesFromGoalTree[og/goal])) $

end

When this query is applied as part of the GoalCheck, the user is presented with a

goal tree that includes Web links to the messages that fail each goal (see figure 6.3).

If the user chooses to apply the associated goal remedies, they are applied, in order,

from the leaves to the root of the goal tree.

6.3.5 Monitoring

Monitors are defined in the same way as all other statement types. The following

ConceptBase class defines StartMonitor, which is used to define a monitor in-

stance. (A similar statement is used to stop a monitor.)

Class StartMonitor isA MonitoredAnalysis with

attribute

Trigger : Query;

StartTime : DateTime;

EndTime : DateTime;

TransactionInterval : Integer;

TimeInterval : Integer;

Operator : DealScribeOperation

end

To use StartMonitor, a user selects an operation to be monitored and a trigger

that, when non-nil, will result in the execution of the operation. Although a trigger

280 William N. Robinson

may involve complex temporal expressions, most triggers simply define start and end

times or transaction intervals. For convenience, start and end times may be input

directly.

Monitored operations are executed after every dialog event. To make this happen,

the ActiveMonitors query retrieves instances of StartMonitor whose triggers are

satisfied. Next, DealScribe executes each associated operation, and a record of its

execution is inserted into the dialog forum. As with all statements, an e-mail message

is also sent to users who have indicated that they desire e-mail notification of moni-

tored operations.

Any operation statement can be monitored. To monitor an operation statement,

(1) a user asserts an operation statement, O, then (2) the same user or another user

asserts a StartMonitor statement as a response to O. The original assertion of O

allows for the input parameters of O to be assigned. The assertion of the StartMoni-

tor defines the conditions under which operation O will be executed. DealScribe

runs the operation, according to the monitor parameters, until a StopMonitor is

asserted for O. The forum, as depicted by DealScribe in figure 6.6, indicates (1) the

initial assertion of GoalCheck, (2) the subsequent StartMonitor, (3) the subsequent

execution of the monitored GoalCheck, and finally, (4) the StopMonitor statement.

Thus, monitoring is divided into two parts: (1) the condition under which the opera-

tion will be executed and (2) the operation itself. Additionally, the operation may im-

pose its own conditions that must be met before results are asserted.

Figure 6.6 shows a portion of a DealScribe forum Web page. The initial assertion

of the GoalCheck(RootRequirementsManagement) operation is shown at the top

of the page, and the StartMonitor and subsequent responses are shown below. As

a result of applying GoalCheck(RootRequirementsManagement) early in the re-

quirements development process, a remedy in the RootRequirementsManagement

tree, ContentionAnalysis, has been automatically applied. Thus, both the moni-

tored operation, GoalCheck(RootRequirementsManagement), and its applicable

remedies are executed as the result of monitoring.

6.3.6 Hypothetical Statements

Although the dialog metamodel provides for the expression and monitoring of com-

plex interactions, the consequences of asserting any one statement can be di‰cult to

determine. Of course, the consequences of a statement can be determined by simply

asserting it. However, that may lead to a number of unwanted warning messages or

remedy operations. In cases in which the user would like to explore hypothetical

statements, DealScribe does not assert a statement but instead tentatively asserts

the statement and then queries about the resulting state.

DealScribe uses TELL-HYPO to hypothetically run a DealScribe dialog event.

In standard mode, DealScribe executes the ConceptBase TELL function to add

Monitoring Requirements Development with Goals 281

statements to the database. However, in hypothetical mode, DealScribe executes the

ConceptBase TELL-HYPO function to temporarily add statements to the database,

check constraints, and answer queries. Thus, DealScribe hypothetically asserts the

statement, queries to find the hypothetical ActiveMonitors, and determines the

consequences of the monitored operations.

Consider the standard assertion of a requirement without an assigned user priority.

If the property that a requirement has an assigned user priority were being moni-

tored, say, through GoalCheck(HaveUserPriority), then a warning of goal fail-

ure would be asserted. In asserting the same requirement hypothetically, however,

the same goal failure would be noted, but no actual warning message would be

asserted.

6.3.7 Related Systems

The DealScribe implementation simply demonstrates one means of supporting the

functionality of the dialog metamodel and system. Other support environments (e.g.,

DOORS (Telelogic 2007), Requirements and Traceability Management (RTM),

Figure 6.6
A portion of a DealScribe Web page showing statement headings (with elements in the following order:
number, icon, title, author, date). The initial GoalCheck statement is at the top, followed by a Start-
Monitor response and the subsequent monitored responses of three types: GoalCheck, Contention-
Analysis, and StopMonitor. Note that ContentionAnalysis is the remedy of a subgoal of the
monitored RootRequirementsManagement goal. The final StopMonitor response ends this monitoring
of GoalCheck. (Responses to a message are shown indented, below the message, and with the newest
statements toward the bottom.)

282 William N. Robinson

and RDD-100 [Alford 1992]) were considered but the decision was made to create

DealScribe instead. Adapting a commercial tool to support the dialog metamodel

might have created a more usable system. However, the goal was to develop an envi-

ronment for iterative development of and experimentation with dialog metamodels

and supporting tools. Consequently, DealScribe was built on a metamodeling tool

that provided flexibility in prototyping.

Current requirements engineering tools do not include process model support for

the goal tree and monitor specified in the dialog metamodel and system. However,

many do have a means of adding tool extensions (i.e., an API) by which process sup-

port can be provided. For example, a similar model of standard compliance checking

has been built based on DOORS (Emmerich et al. 1999).

The exploratory research presented in this chapter required a flexible metamodel-

ing environment. Most requirements engineering tools use a relational database to

support their analyses. Although this approach has advantages, the traditional rela-

tional database implementation makes metamodeling di‰cult. In a relational data-

base, queries apply to data instances (records) but not to data schema. Such schema

form the metamodel of figure 6.2. In contrast, both schemas and their instances are

stored and queried in ConceptBase.

The metamodeling environment of ConceptBase has aided the iterative and ex-

perimental development of the dialog metamodel and support system. By querying

the metamodel, external tools can adapt themselves to changes in the metamodel.

For example, DealScribe input and output forms are automatically updated with

changes to the metamodel of figure 6.2. Query classes also provide for analyses of

model instances that are themselves schemas. For example, dialog goals are them-

selves queries; yet queries such as FailuresOfQueryGoal can be formulated to ana-

lyze dialog goals. These metamodeling features have simplified the development of

DealScribe. Although such complexity may not be necessary for a commercial

requirements engineering tool, it has aided the development and experimentation of

the dialog metamodel.

Few commercial requirements engineering tools have a language or support envi-

ronment based on typed predicate logic expressions. Queries and constraints in most

tools are based on SQL or simple object model constraints. In contrast, ConceptBase

provides an e‰cient implementation of Datalog with negation. This language simpli-

fies the transition from the formal theoretical model to the running implementation,

as illustrated in this section and the previous one.

Some research environments may be adapted to support the dialog metamodel and

system. The most obvious is the DOORS requirements tool, extended to support

compliance management (Emmerich et al. 1999). The extended environment can

monitor the compliance of a requirements document with standard documentation

Monitoring Requirements Development with Goals 283

practices. Each practice references document properties as represented in the under-

lying DOORS database. Then an external monitor, FLEA (Cs3 2007), issues notifi-

cations when a practice is not met. DealScribe has similar capabilities; however, the

two systems also have several di¤erences:

1. DealScribe’s goal language is based on the logically expressive Datalog (Minker

1996).

2. DealScribe goals can refer to operation properties as well as document

properties.

3. DealScribe explicitly includes remedy operations that can reestablish goals.

4. DealScribe provides hypothetical statements.

5. DealScribe is implemented in a metamodel environment, thereby facilitating ex-

perimentation and extension.

WinWin is a commonly cited research project on requirements development

groupware (Boehm and In 1996; Egyed and Boehm 1996). The WinWin tool pro-

vides groupware support for tracking team development of requirements, including

conflict detection and resolution. WinWin notifies analysts when new requirements

may conflict with existing requirements, according to its hierarchy of requirements

conflict criteria. In this sense, it provides monitoring and notification. However, the

criteria for notification are encoded into system procedures, thereby making formal-

ism, dynamic criteria changes, or dynamic disabling and enabling of monitors di‰-

cult. Finally, the groupware aspect of the system is based on a paradigm of message

exchanges, as opposed to a globally viewable message forum.

6.4 Development Goals for Managing Inconsistency

A dialog support system like DealScribe can be applied to a variety of tasks that

require the management of a requirements dialog. In general, development goals

that can be expressed in terms of logical expressions over informational and opera-

tional dialog statements can be monitored and maintained. For example, Deal-

Scribe goals can represent aspects of standardized processes, such as ISO 9000 or

IEEE process descriptions (Mazza et al. 1994), and can execute warnings in response

to goal failures (cf. Emmerich et al. 1999). In addition to issuing standards compli-

ance warnings, DealScribe can take an active role in executing tasks. Goals can

specify remedy operations that can be applied in the case of goal failure. Such goals,

in combination with monitoring, can automate tasks such as synthesizing resolutions

as requirements conflicts arise, totaling stakeholder votes for alternative requirements

in cases where stakeholders disagree about requirements, or updating the status of

requirements as beliefs concerning dependent assumptions change (cf. Ramesh and

284 William N. Robinson

Dhar 1994). In these ways, DealScribe supports the asynchronous work of analysts

through monitoring and maintaining of development goals.

This section demonstrates how development goal monitoring can play an active

role in managing requirements development. Rather than continue with the Have-

UserPriority example of the previous sections, I introduce a requirements conflict

detection and resolution dialog protocol, called Root Requirements Management.

This protocol specifies dialog goals that support its particular form of requirements

conflict management. Although this protocol is not a standard, it does specify goals

concerning analyst interactions (e.g., voting), as well as goal remedy operations. As

such, Root Requirements Management demonstrates more fully than other require-

ments conflict detection and resolution protocols how development goal monitoring

can take an active role in managing requirements development.

6.4.1 Root Requirements Management

Root Requirements Management was developed as a dialog protocol for managing

requirements conflicts. It is aimed at addressing two basic objectives: conflict under-

standing and conflict removal. First, Root Requirements Analysis was developed

to aid conflict understanding (Robinson and Pawlowski 1998). This technique un-

covers requirements conflicts, analyzes them as a group, and directs analysis toward

key conflicts. Second, to generate alternative resolutions for each conflict, Conflict-

Oriented Requirements Restructuring (CORR) was developed (Robinson and Vol-

kov 1997). To demonstrate how development goal monitoring can apply to more

complex protocols, I show in this section how a Root Requirements Management

protocol can be defined in terms of goal monitoring. The protocol developed here

consists of (1) Root Requirements Analysis, (2) Conflict-Oriented Requirements

Restructuring, and (3) resolution selection.

6.4.1.1 Root Requirements Analysis Two objectives of Root Requirements Analysis

are (1) to understand the relationships among a project’s requirements and (2) to

order requirements according to the degree of contention over them. This infor-

mation can be used to guide other analyses, such as conflict resolution through

Conflict-Oriented Requirements Restructuring.

The overall procedure of Root Requirements Analysis is as follows:

1. Identify root requirements that cover all requirements in the requirements docu-

ment. Requirements are generalized to derive these root requirements.

2. Identify interactions among root requirements. Root requirements are subjec-

tively compared pairwise to determine the interactions among them; the interac-

tion types are ‘‘very conflicting,’’ ‘‘conflicting,’’ ‘‘neutral,’’ ‘‘supporting,’’ and ‘‘very

supporting.’’

Monitoring Requirements Development with Goals 285

3. Analyze the root requirement interactions. Requirements metrics are derived from

the root requirements interactions.

This technique is important in that it provides a systematic method through which

requirements conflicts can be surfaced and then systematically selected for e‰cient

resolution.

6.4.1.2 Root Requirements Analysis Metrics Once the root requirements conflicts are

identified, they can be used to derive useful metrics. Three that are particularly help-

ful are relationship count, requirement contention, and average potential conflict.

Relationship count is simply a count, for each root requirement, of the number of

interactions the root requirement has with other root requirements, for each of the

five types of interactions. Requirement contention is the percentage (expressed as a

ratio between zero and one) of all interactions the requirement participates in that

are conflicting; thus, if a requirement’s contention is one, then it conflicts with every

other requirement in the requirements document. Finally, average potential conflict is

the conflict potential of a requirement averaged across all of its conflicting relation-

ships.

These metrics are useful in determining the order in which conflicts should be

resolved. For example, resolving the most contentious requirement first not only

directly resolves one conflict but often indirectly resolves others (Robinson and Paw-

lowski 1998). Thus, resolving high-contention requirements first is a practice of Root

Requirements Management that is supported by a dialog goal (ResolveHighest-

ContentionFirst, presented in section 6.4.2).

6.4.1.3 Resolution Generation through Requirements Restructuring The purpose of res-

olution generation is to remove conflict by finding substitute requirements that fulfill

the intent of the original requirements, but without their undesired consequences.

Resolutions can be generated by altering the structure of the original requirements

through transformations. Resolutions fall into three general classes: (1) selection

among the original conflicting requirements, (2) selection among restructurings of

the conflicting requirements, and (3) selection of run time monitoring and re-

covery of the original conflicting requirements (Robinson and Volkov 1996). Such

resolutions are generated through a combination of two classes of restructuring

transformations:

1. object-restructuring transformations, which use object relationships (e.g., isA and

partOf) to find related objects for substitution

2. condition-restructuring transformations, which distribute conflicting positions

across specific contexts, thereby conditionalizing the state under which each require-

ment will be met

286 William N. Robinson

These transformations are applied as a part of the practice of Root Requirements

Management. As such, they are supported as remedies of the dialog goal Resolve-

HighestContentionFirst.

6.4.1.4 Resolution Selection Once resolutions are generated for each conflict, ana-

lysts must select which resolution(s) will become part of the next requirements base-

line. Voting is an e‰cient means for group selection. Resolution selection through

voting is a subgoal of the Root Requirements Management protocol.

6.4.2 A Dialog Protocol for Root Requirements Management

The following summarizes the dialog practices of Root Requirements Management.

These practices can be translated into DealScribe dialog goals as part of the proto-

col for Root Requirements Management:

1. RootRequirementsAnalysis: The analysis portion has three basic subgoals:

a. DeriveRoots: No more than 3 percent of all requirements shall lack an associ-

ated root requirement.7

b. DeriveInteractions: No more than 5 percent of all root requirements shall

lack an associated description of conflict (called a requirement interaction).

c. DeriveContention: No more than five new interactions shall exist before re-

quirements contention analysis is conducted.

2. GenerateResolutions: Resolutions shall be generated for each requirements

conflict according to the following goal:

a. ResolveHighestContentionFirst: Resolutions shall be generated for con-

flicts among the most contentious requirements. To generate resolutions, do the sub-

goals of generating: object, distribution, and interaction resolutions.

3. SelectResolutions: Resolutions shall be selected for each requirements con-

flict according to the following goal:

a. VoteOnResolutions: A vote shall be conducted where there are multiple reso-

lutions of a requirements conflict.

Each of these practices is translated into a DealScribe goal in the following

subsections.

6.4.2.1 Root Requirements Dialog Goals The first goal, DeriveRoots, simply states

that no more than 3 percent of all requirements are to lack an associated root re-

quirement. The definition makes use of RequirementsWithoutARoot, which indi-

cates those requirements that have not been analyzed for roots. DealScribe can

determine the percentage of requirements (query2) that lack an associated root re-

quirement (query1) through answers to the following query classes:

Monitoring Requirements Development with Goals 287

QueryClass RequirementsWithoutARoot isA Requirement with

constraint

noroot : $ not exists r/rootrequirement (r requirements this)

$

end

QueryClass DeriveRoots in PercentGoal with

mode

mode_a : Achieve

query1

q1 : RequirementsWithNoRoot

query2

q2 : Requirement

goal_count

gc : 3

relation

c : LessThan

end

The goal DeriveInteractions is identical to DeriveRoots except that query1

retrieves RootsWithoutAnInteraction rather than RequirementsWithNoRoot.

Also, the DeriveContention goal is similar but uses counts instead of percentages.

It also has one additional attribute that is not a part of DeriveRoots. Derive-

Contention’s remedy attribute indicates an operation statement that should be

executed automatically if goal failure occurs. Upon goal failure, the dialog goal and

results of the goal-checking query are passed to a remedy operation. In this case,

upon failure of DeriveContention, ContentionAnalysis is executed, and the

results are asserted to the dialog.

The composite goal for Root Requirements Analysis is the conjunction of the

three goals discussed in the previous paragraph, as shown in the following:

QueryClass RootRequirementsAnalysis in DialogGoal with

mode

mode_a : Achieve

andGoals

g1 : DeriveRoots;

g2 : DeriveInteractions;

g3 : DeriveContention

end

6.4.2.2 Resolution Generation Dialog Goals The resolution generation goal is a bit

more complex. Recall that DeriveContention contains a degree of inconsistency,

288 William N. Robinson

called ‘‘contention.’’ The goal ResolveHighestContentionFirst seeks to resolve

interactions among the most contentious requirements first. It is defined as follows:

Class MostContentiousUnresolvedRequirements isA Requirement with

constraint

ConReq : $ (not exists gr1/GenerateResolution (gr1 requirements

this) and exists thisCon/Integer (this Contention thisCon)) and

(not exists otherReq/Requirement otherCon/Integer ((otherReq

Contention otherCon) and (otherCon > thisCon) and not exists

gr2/GenerateResolution (gr2 requirements otherReq))) $

end

QueryClass ResolveHighestContentionFirst in DialogGoal isA

RequirementInteraction with

mode

mode_a : Achieve

remedy

r1 : ObjectRestructuring;

r2 : DistributionRestructuring;

r3 : InteractionRestructuring

constraint

RHF : $ exists req1,req2/MostContentiousUnresolvedRequirements

((this requirements r1) and (this requirements r2)) $

end

The definition of ResolveHighestContentionFirst makes use of a derived class,

MostContentiousUnresolvedRequirements. This class is defined to be those re-

quirements for which there has not been a resolution generated and there does not

exist another requirement with a higher level of contention for which there has

not been a resolution generated. Once MostContentiousUnresolvedRequire-

ments is defined, specifying the goal ResolveHighestContentionFirst is easy.

It is simply those requirements that both (1) are in the MostContentious-

UnresolvedRequirements and (2) interact with one another, as denoted by

both being in the requirements of the same RequirementInteraction. Thus,

ResolveHighestContentionFirst makes use of the dialog forum to specify the

goal of always selecting unresolved interactions among requirements with the highest

contention.

The dialog goal ResolveHighestContentionFirst specifies three remedies that

correspond to the three types of resolution generation methods described in section

6.4.1. When ResolveHighestContentionFirst is monitored and fails, the three

operations will be executed.

Monitoring Requirements Development with Goals 289

6.4.2.3 Resolution Selection Dialog Goals The final goal simply specifies that where

there is more than one possible resolution for a requirements conflict, stakeholders

should vote. The goal VoteForResolution specifies this as a counting goal. When-

ever the count of potential resolutions for a particular requirements conflict is greater

than one, the goal fails, and the remedy VoteTally is executed. The operation

VoteTally simply asserts a statement indicating the number of votes each resolution

has received. Of course, voting may be more complex, involving time periods and

multiple rounds; however, VoteForResolution gives a flavor of how resolution se-

lection can be included in the protocol.

6.4.2.4 Analysis and Resolution Dialog Protocol The final protocol is represented as a

composite goal that contains the preceding goals:

QueryClass RootRequirementsManagement in DialogGoal with

mode

mode_a : Achieve

andGoals

g1 : RootRequirementsAnalysis;

g2 : ResolveHighestContentionFirst;

g3 : VoteForResolution

end

Once so defined, this goal model may be selected as part of the input to run the

GoalCheck operation. The operation GoalCheck(RootRequirementsManage-

ment) can be monitored to ensure updated reports and remedies concerning Root

Requirements Management. Of course, RootRequirementsManagement is but one

goal model. Multiple goal models can coexist simultaneously or at di¤erent times.

However, it is the responsibility of the user to ensure that multiple goal models do

not defeat one another’s goals or enter into accidental loops through the interaction

of remedy operations.

6.4.2.5 Summary The preceding definition of the Root Requirements Management

protocol demonstrates how an interesting dialog protocol can be defined in terms of

the dialog metamodel of sections 6.2 and 6.3. The following section demonstrates

that such a protocol definition can be e¤ectively monitored as part of a requirements

development dialog.

6.4.2.6 Observations on the Use of DEALSCRIBE I believe the benefit of dialog goal

monitoring increases as confusion about the dialog increases. As the number of re-

quirements, analysts, and their analyses grows, confusion over the current state of

requirements can also grow.

290 William N. Robinson

Dialog goal monitoring provides assurance that the dialog protocol is being fol-

lowed. In contrast to operation automation, protocol assurance is directly attribut-

able to dialog goal monitoring. On the other hand, it is di‰cult to assess what e¤ect

this assurance has on analysts. Nevertheless, the following subjective findings may be

of interest until subsequent empirical studies can be conducted.

As an analyst, I believe that development goal monitoring provided me with a bet-

ter understanding of the current development state than I had obtained in a manual

case study. Such understanding was gained through warnings that arose in response

to goal failures. Once the goal failures were removed, I was assured that the develop-

ment satisfied the dialog protocol.

I also believe that DealScribe provided me with a better visualization of the

requirements development. In figure 6.3, one can see those statements that fail sub-

goals of a goal tree. Such visibility of goal failure, with its direct linkage to state-

ments, provides tangible assurance that development goals are being tracked. More

generally, the collaborative discussion environment of DealScribe provides a visual-

ization of development that is not available in word-processor-based case studies.

For example, the presentation of analysis as a hierarchical discussion (see figure 6.6)

provides an understanding of how new analysis fits in with older results.

6.4.3 Future Directions

The research on development goal monitoring described in this chapter is continuing

along two directions. First, the functionality of the dialog-monitoring system is being

extended. Currently, goals are checked and remedied according to a predefined goal

tree. Although goal trees can be modified during development, there is no support for

doing so. A future version of DealScribe will support dynamic dialog planning.

Given predefined remedy operations, with pre- and postconditions, the planner will

check goals and dynamically construct and apply operations to reestablish failed

goals. This will simplify the expression and execution of dynamic dialog models. Sec-

ond, a library of predefined development protocols and associated analyses is being

constructed. Future work will focus on expanding this library, proving protocol

properties, and integrating the application of various requirements techniques under

a common dialog protocol.

6.5 Conclusions

A development-goal-monitoring system aimed at supporting multianalyst require-

ments development has been presented. The conceptual design specifies a multiuser

forum of informational and operational statements that can be analyzed and moni-

tored for correspondence with a dialog protocol. The metamodel described and used

in the dialog system defines statements whose properties can be formally defined and

Monitoring Requirements Development with Goals 291

automatically checked. Such a metamodel facilitates analysis, as well as system

extensibility.

An implementation of the development-goal-monitoring system has been pre-

sented in this chapter. DealScribe demonstrates support of a typology of informa-

tional and operational statements, checks and remedies of formal goals, operation

execution in response to monitored goals, and hypothetical statement assertion, all

in a multiuser Web environment.

An exploratory case study has also been presented. It demonstrates that a goal-

monitoring system can provide automation for a multiuser dialog, assurance about

compliance with a dialog protocol, and greater understanding of requirements

development.

The research presented in this chapter contributes to the field of requirements man-

agement by showing how one can formally specify development goals that can be di-

rectly monitored as part of a multiuser dialog. The dialog metamodel provides a

concise, extensible model for uniformly including informational and operational

statements, as well their monitored execution. Development goal monitoring within

a collaborative requirements analysis tool can provide a powerful environment for

managing development and document inconsistencies.

Notes

1. Defining a dialog protocol as a composite goal makes it possible to define multiple dialog protocols for
a forum. Each dialog protocol may be activated (or inactivated) through monitoring operations on its
composite dialog goal. Although this feature has been useful in experimenting with dialog protocols, it
has not been used in practice.

2. The notation GoalCheck(HaveUserPriority) indicates that a specific operation, GoalCheck, is exe-
cuted with the specified arguments, HaveUserPriority.

3. The current implementation does provide some support for preventing or halting recursion of an oper-
ation. It does not execute a new operation of type S if the new operation is activated in response to another
statement of type S and that other statement was asserted in the last monitored cycle.

4. One could argue that such hypothetical considerations should be made part of the dialog history. An
anonymous reviewer of the book remarked that this could be done by managing a history tree. The current
implementation uses a linear statement history with hypothetical statements because of the smaller history
it entails, the simplicity of the user interface, and the ease of implementation.

5. All components communicate using Portable Operating System Interface (POSIX)-compliant Transmis-
sion Control Protocol (TCP) connections.

6. In the ConceptBase query notation, this refers to the instance retrieved from the database—in Have-
UserPriority, a Requirement. Other ConceptBase notations include: x/Type, which constrains vari-
able x to being an instance of class Type, and (this userPriority x), which constrains the value x of
attribute userPriority for object this.

7. The percentages given here are simply intended to illustrate numeric goals. Percentages in goals deter-
mine how much deviation from compliance a dialog may have. Once failure is reached, DealScribe pro-
vides a warning (and possibly a remedy) after each dialog event until there is no goal failure. In a
circumstance in which an analyst is required to manually remedy a goal failure, a percentage goal allows
an analyst some time prior to the activation of automated warnings. Of course, an analyst can directly ap-

292 William N. Robinson

ply GoalCheck to a nonpercentage goal (e.g., RequirementsWithoutARoot) to immediately determine
any failures.

References

Alford, M. 1992. ‘‘Strengthening the Systems Engineering Process.’’ Engineering Management Journal 4,
no. 1: 7–14.

Boehm, B., and H. In. 1996. ‘‘Identifying Quality-Requirement Conflicts.’’ IEEE Software 13, no. 2: 25–
35.

Ceri, S., G. Gottlob, and L. Tanca. 1990. Logic Programming and Databases. New York: Springer-Verlag.

Chen, M., and J. Nunamaker. 1991. ‘‘The Architecture and Design of a Collaborative Environment for
Systems Definition.’’ Data Base 22, no. 1/2: 22–29.

Chikofsky, E. J., and B. L. Rubenstein. 1988. ‘‘CASE: Reliability Engineering for Information Systems.’’
IEEE Software 5, no. 2: 11–16.

Cs3. 2007. ‘‘FLEA Overview.’’ Available at: hhttp://www.cs3-inc.com/flea_overview.htmli.

Curtis, B., H. Krasner, and N. Iscoe. 1988. ‘‘A Field Study of the Software Design Process for Large Sys-
tems.’’ Communications of the ACM 31, no. 11: 1268–1287.

Davy, C. 1990. ‘‘Using CASE to Control a Large Data Analysis Project.’’ In CASE on Trial, ed. K. Spurr
and P. Layzell, 7–16. New York: Wiley.

Egyed, A., and B. Boehm. 1996. ‘‘Analysis of Software Requirements Negotiation Behavior Patterns.’’
Technical report, USC-CSE-96-504, University of Southern California, Los Angeles.

Emmerich, W., A. Finkelstein, C. Montangero, S. Antonelli, S. Armitage, and R. Stevens. 1999. ‘‘Manag-
ing Standards Compliance.’’ IEEE Transactions on Software Engineering 25, no. 6: 836–851.

Fickas, S. and M. S. Feather. 1995. ‘‘Requirements Monitoring in Dynamic Environments.’’ In Proceed-
ings of the Second IEEE International Symposium on Requirements Engineering (RE’95), 140–147. Los
Alamitos, CA: IEEE Computer Society.

Gotel, O., and A. Finkelstein. 1994. ‘‘An Analysis of the Requirements Traceability Problem.’’ In Proceed-
ings of the First IEEE International Conference on Requirements Engineering (RE’94), 94–101. Los Alami-
tos, CA: IEEE Computer Society.

Gotel, O., and A. Finkelstein. 1995. ‘‘Contribution Structures.’’ In Proceedings of the Second IEEE Inter-
national Symposium on Requirements Engineering (RE’95), 100–107. Los Alamitos, CA: IEEE Computer
Society.

Graf, D. K., and M. M. Misic. 1994. ‘‘The Changing Roles of the Systems Analyst.’’ Information Re-
sources Management Journal 7, no. 2: 15–23.

Jarke, M., R. Gallersdorfer, M. A. Jeusfeld, M. Staudt, and S. Eherer. 1995. ‘‘ConceptBase—A Deductive
Object Base for Meta Data Management.’’ Journal of Intelligent Information Systems 4, no. 2: 167–192.

Klein, M. 1991. ‘‘Supporting Conflict Resolution in Cooperative Design Systems.’’ Transactions on Sys-
tems, Man, and Cybernetics 21, no. 6: 1379–1390.

Krasner, H., B. Curtis, and N. Iscoe. 1987. ‘‘Communication Breakdowns and Boundary Spanning Activ-
ities on Large Programming Projects.’’ In Empirical Studies of Programmers: Second Workshop, ed. G.
Olson, S. Sheppard, and E. Soloway, 47–64. Norwood, NJ: Ablex.

Lempp, P., and L. Rudolf. 1993. ‘‘What Productivity Increases to Expect from a CASE Environment:
Results of a User Survey.’’ In Computer Aided Software Engineering (CASE), ed. E. J. Chikofsky, 147–
153. Los Alamitos, CA: IEEE Computer Society.

Liou, Y. I., and M. Chen. 1993–1994. ‘‘Using Group Support Systems and Joint Application Develop-
ment for Requirements Specification.’’ Journal of Management Information Systems 10, no. 3: 25–41.

Lyytinen, K., and R. Hirschheim. 1987. ‘‘Information Systems Failures—a Survey and Classification of
the Empirical Literature.’’ In Oxford Surveys in Information Technology 4, ed. P. Zorkoczy, 257–309.
New York: Oxford University Press.

Monitoring Requirements Development with Goals 293

hhttp://www.cs3-inc.com/flea_overview.htmli

Mazza, C., J. Fairclough, B. Melton, D. De Pablo, A. Sche¤er, and R. Stevens. 1994. Software Engineer-
ing Standards. Upper Saddle River, NJ: Prentice Hall.

Meyer, B. 1986. ‘‘On Formalism in Specification.’’ IEEE Software 2, no. 1: 6–26.

Mi, P., and W. Scacchi. 1992. ‘‘Process Integration in CASE Environments.’’ IEEE Software 9, no. 2: 45–
53.

Miller, J., D. Palaniswami, A. Sheth, K. Kochut, and H. Singh. 1998. ‘‘METEOR2’s Web-Based Work-
flow Management System.’’ Journal of Intelligent Information Systems 10, no. 2: 185–215.

Minker, J. 1996. ‘‘Logic and Databases: A 20 Year Retrospective.’’ In Logic in DataBases, ed. D. Pedre-
schi and C. Zaniolo (Lecture Notes In Computer Science 1154), 3–57. New York: Springer.

Mylopoulos, J., A. Borgida, M. Jarke, and M. Koubarakis. 1990. ‘‘Telos: Representing Knowledge About
Information Systems.’’ ACM Transactions on Information Systems 8, no. 4: 325–362.

Norman, R. J., and J. F. Nunamaker, Jr. 1989. ‘‘CASE Productivity Perceptions of Software Engineering
Professionals.’’ Communications of the ACM 32, no. 9: 1102–1108.

Osterweil, L., and S. Sutton 1996. ‘‘Using Software Technology to Define Workflow Processes.’’ In Pro-
ceedings of the NSF Workshop on Workflow and Process Automation in Information Systems: State-of-the-
art and Future Directions, ed. A. Sheth, 157–160.

Potts, C., K. Takahashi, and A. I. Antón. 1994. ‘‘Inquiry-Based Requirements Analysis.’’ IEEE Software
11, no. 2: 21–32.

Ramesh, B., and V. Dhar. 1994. ‘‘Representing and Maintaining Process Knowledge for Large-Scale Sys-
tems Development.’’ IEEE Expert 9, no. 2: 54–59.

Robey, D., D. L. Farrow, and C. R. Franz. 1989. ‘‘Group Process and Conflict During System Develop-
ment.’’ Management Science 35, no. 10: 1172–1191.

Robinson, W. N., and S. Pawlowski. 1998. ‘‘Surfacing Root Requirements Interactions from Inquiry
Cycle Requirements.’’ In Proceedings of the Third International Conference on Requirements Engineering
(ICRE’89), 82–89. Los Alamitos, CA: IEEE Computer Society.

Robinson, W. N., and S. D. Pawlowski. 1999. ‘‘Managing Requirements Inconsistency with Development
Goal Monitors.’’ IEEE Transactions on Software Engineering 25, no. 6: 816–835.

Robinson, W. N., and S. Volkov. 1996. ‘‘Conflict-Oriented Requirements Restructuring.’’ GSU CIS
Working Paper 96-15, Georgia State University, Atlanta, GA.

Robinson, W. N., and S. Volkov. 1997. ‘‘A Meta-Model for Restructuring Stakeholder Requirements.’’
Proceedings of the Nineteenth International Conference on Software Engineering, 140–149. Los Alamitos,
CA: IEEE Computer Society.

Robinson, W. N., and S. Volkov. 1998. ‘‘Supporting the Negotiation Life Cycle.’’ Communications of the
ACM 41, no. 5: 95–102.

Sheth, A., D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, and A. Wolf. 1996.
‘‘Report from the NSF Workshop on Workflow and Process Automation in Information Systems.’’ ACM
SIGMOD Record 24, no. 4: 55–67.

Telelogic. 2007. ‘‘Increase Quality with Requirements Management and Traceability.’’ Available at
hhttp://www.telelogic.com/Products/doors/index.cfmi.

Vessey, I., and A. P. Sravanapudi. 1995. ‘‘CASE Tools as Collaborative Support Technologies.’’ Commu-
nications of the ACM 38, no. 1: 83–95.

Walz, D. B., J. J. Elam, H. Krasner, and B. Curtis. 1987. ‘‘A Methodology for Studying Software Design
Teams: an Investigation of Conflict Behaviors in the Requirements Definition Phase.’’ In Empirical Studies
of Programmers: Second Workshop, ed. G. Olson, S. Sheppard, and E. Soloway, 83–89. Norwood, NJ:
Ablex.

Walz, D. B., J. J. Elam, and B. Curtis. 1993. ‘‘Inside a Software Design Team: Knowledge Acquisition,
Sharing, and Integration.’’ Communications of the ACM 36, no. 10: 63–77.

294 William N. Robinson

hhttp://www.telelogic.com/Products/doors/index.cfmi

7 Definition of Semantic Abstraction Principles

Mohamed Dahchour and Alain Pirotte

This chapter presents a case study of the method-engineering approach to the design

and implementation of new abstraction principles. Materialization is presented as an

abstraction pattern relating a class of categories (e.g., models of cars) and a class of

more concrete objects (e.g., individual cars) that cannot be wholly expressed in terms

of other generic patterns, like classification and specialization. The structural proper-

ties of materialization are expressed by attributes and its behavioral properties by

deductive rules and integrity constraints. The case study illustrates a possible exten-

sion of the semantic expressive power of various modeling frameworks and CASE

environments.

7.1 Introduction

Conceptual modeling is the activity of formalizing some aspects of physical and so-

cial systems for purposes of understanding and communication. Conceptual models

are typically built in the early stages of system development, preceding design and

implementation. But conceptual models can also be useful even if no system is con-

templated: They then serve to clarify ideas about structure and functions in a percep-

tion of a part of the world.

Advances in conceptual modeling involve narrowing the gap between real-world

concepts and their representation in conceptual models by identifying powerful

abstraction mechanisms allowing an accurate and intuitive representation of ap-

plication domains (Dahchour 2001; Dahchour, Pirotte, and Zimányi 2005; Mylo-

poulos 1998). Thus, more powerful conceptual models help increase mastery of the

software-development process and the quality of the final applications.

Generic relationships in object and semantic models are such powerful abstrac-

tion mechanisms. They are high-level templates for relating classes of objects. Well-

known generic relationships include generalization, classification, and aggregation.

Recent research on conceptual modeling has studied other generic relationships

like materialization (Dahchour, Pirotte, and Zimányi 2002a; Pirotte et al. 1994),

ownership (Yang et al. 1994), role (Dahchour, Pirotte, and Zimányi 2002b; Wier-

inga, De Jonge, and Spruit 1995), grouping (Motschnig-Pitrik and Storey 1995),

viewpoint (Bertino 1992; Motschnig-Pitrik and Mylopoulos 1996), and versioning

(Andono¤ et al. 1996). These generic relationships naturally model phenomena typi-

cal of complex application domains whose semantics escape direct representation

with classical relationships. A review of generic relationships can be found in Dah-

chour 2001 and Dahchour, Pirotte, and Zimányi 2005.

Languages for conceptual modeling can substantially ease the task of modelers if

they are enriched with a variety of generic relationships. This chapter deals with one

such extension, called materialization. Materialization is a powerful and ubiquitous

semantic pattern that relates a class of abstract categories (e.g., models of cars) and

a class of more concrete objects (e.g., individual cars). Its semantics are defined in

terms of the usual isA (generalization) and is-of (classification) abstractions and a

class/metaclass correspondence. New and powerful attribute propagation (i.e., inher-

itance) mechanisms are naturally associated with materialization.

Like other classical abstractions, materialization is a generic relationship, that is, a

template to be instantiated in applications. Application classes can thus be provided

with structure and behavior consistent with the semantics of materialization. As is

usually done with generic relationships, the same name (namely, materialization) is

used for both the generic relationship and its concrete realizations in applications.

This chapter presents materialization and shows how its generic semantics can be

integrated into ConceptBase. The structural semantics of materialization are repre-

sented by a collection of meta-attributes and its behavioral semantics by a set of con-

straints and deductive/active rules. Those generic semantics defined at the metalevel

are then automatically enforced at the class level.

A formalization of materialization along the lines of Telos, without taking into ac-

count implementation issues, is presented in Dahchour 1998. A metaclass implemen-

tation of materialization into VODAK, an object database system representing the

behavior of objects with messages and methods, is reported in Dahchour 2001 and

Dahchour, Pirotte, and Zimányi 2002a. The metaclass approach has also been used

to implement some other generic relationships (e.g., Dahchour, Pirotte, and Zimányi

2004; Halper, Geller, and Perl 1998; Klas and Schrefl 1995; Gottlob, Schrefl, and

Röck 1996).

7.2 The Need for Materialization

Consider the problem of keeping track of cars in a dealer’s inventory. A simple solu-

tion is provided by the instantiation mechanism illustrated in figure 7.1. The applica-

tion designer builds class Car, and all individual cars are created as instances of Car.

Class Car represents information like model name, sticker price, gas mileage, manu-

296 Mohamed Dahchour and Alain Pirotte

facturing date, serial number, and owner identification. The main advantage of such

a representation is that it makes it easy to add a new car to the inventory. A severe

disadvantage, however, is that some information is repeated for cars of the same

model. For example, all cars of model FiatRetro have the same model name,

sticker price, and gas mileage.

An alternative solution based on simple inheritance is shown in figure 7.2. Unlike

in the first solution, in the simple-inheritance solution, the application designer builds

class Car as a superclass with one subclass for each car model, such as the subclasses

FiatRetro_Cars and Wild2CV_Cars. Class Car represents general information

about individual cars, namely, manufacturing date, serial number, and owner identi-

fication. In addition to the properties inherited from Car, its subclasses define as class

attributes common properties (model name, sticker price, gas mileage) of all cars of

the same model.

The main advantage of this solution is that it no longer exhibits the redundancy

present in the first solution: The common properties of all cars of the same model

are not duplicated for each individual car but are instead stored once and for all

as class attributes in the corresponding subclass. The solution introduces a new kind

of redundancy, however, in that the subclasses are structurally equivalent to one

another.

This leads to a third solution, sketched in figure 7.3, which adds to the structure of

the second solution (i.e., a superclass Car and a subclass of Car for each car model)

Figure 7.1
The instantiation solution

Definition of Semantic Abstraction Principles 297

Figure 7.3
The multiple-inheritance solution

Figure 7.2
The simple-inheritance solution

298 Mohamed Dahchour and Alain Pirotte

another superclass, namely, CarModel. Class CarModel gathers all information that

characterizes not individual cars, but collections of car models. Each specific class

representing a collection of cars of the same model (e.g., FiatRetro_Cars) is a sub-

class of both Car and CarModel (with multiple inheritance). The presence of class

CarModel eliminates the redundancy of the second solution.

Still, this third solution is not without problems. First, the subclasses of Car look

like instances of CarModel. More precisely, class FiatRetro_Cars, for example,

can be viewed both as an instance of CarModel and as a subclass of Car. Thus, an

instantiation link between FiatRetro_Cars and CarModel seems more appropriate

than a subclassing one. Second, CarModel and Car are not at the same level of ab-

straction, as CarModel is more abstract than Car. Third, intuitively, the semantic re-

lationship between CarModel and Car looks as though it can be abstracted into a

generic relationship, but classical relationships cannot capture it. The relationship be-

tween CarModel and Car is called materialization (see figure 7.4). It is thus a special

relationship between two classes in which one (here, CarModel) is more abstract than

the other (here, Car).

Each subclass of figure 7.3 becomes a two-faceted construct as shown in figure 7.4

with an object facet (e.g., FiatRetro) that is an instance of CarModel and a class

facet (e.g., FiatRetro_Cars) that is a subclass of Car. (Of the two subclasses in fig-

ure 7.3, only the representation of FiatRetro_Cars is shown in figure 7.4.)

Figure 7.4
Materialization between CarModel and Car

Definition of Semantic Abstraction Principles 299

7.3 Intuitive Definition

The previous section has argued for the need for materialization to represent seman-

tics that cannot be captured by classical relationships. This section presents an intu-

itive definition for materialization, and its formal semantics are analyzed in section

7.4.

Intuitively, materialization relates a class of categories to a class of more concrete

objects analyzed with those categories. Figure 7.5 shows a materialization linking

classes CarModel and Car. CarModel is the more abstract1 class and Car is the

more concrete class of materialization. A materialization link is drawn as a straight

line with an asterisk on the side of the more concrete class.

CarModel represents information typically displayed in the catalog of car dealers,

namely, name and price of a car model, and lists of options for number of doors,

engine size, sound equipment, and special equipment. Class Car represents informa-

tion about individual cars, namely, manufacturing date, serial number, and owner

identification.

Figure 7.6 shows an instance FiatRetro of CarModel and an instance Nico’s

Fiat of Car, of model FiatRetro. Intuitively, the materialization CarModel—

*Car expresses that every concrete car (e.g., Nico’s Fiat) has exactly one model

(e.g., FiatRetro), whereas there can be any number of cars of a given model.

A further intuition about abstractness/concreteness is that each car is a concrete

realization (or materialization) of a given car model, of which it ‘‘inherits’’ a number

of properties in several ways:

� Nico’s Fiat directly inherits the name and stickerPrice of its model Fiat-

Retro; this mechanism is called Type1 attribute propagation (or T1 propagation for

short).

� Nico’s Fiat has attributes #doors, engineSize, and autoSound whose values

are selections among the options o¤ered by multivalued attributes with the same

Figure 7.5
An example of materialization

300 Mohamed Dahchour and Alain Pirotte

name in FiatRetro; this is called Type2 (or T2) attribute propagation. For example,

the value {1200,1300} of engineSize for FiatRetro indicates that each Fiat-

Retro car comes with either engineSize=1200 or engineSize=1300 (e.g., 1200

for Nico’s Fiat). Thus, the set value {1200,1300} of engineSize for FiatRetro

serves as domain, or type, for the engineSize attribute of a subclass of class Car

consisting of cars with model FiatRetro.

� The set value {airbag, alarm, cruiseCtrl} of attribute specialEquip for

FiatRetro means that each car of model FiatRetro comes with three pieces of

special equipment: an airbag, an alarm system, and a cruise control system. Thus,

Nico’s Fiat has three new attributes named airbag, alarm, and cruiseCtrl,

whose suppliers are, respectively, Acme, Burglar_King, and Fiat. Other Fiat-

Retro cars may have di¤erent suppliers for their special equipment, and cars of

models other than FiatRetro may have a di¤erent set of pieces of special equip-

ment. This mechanism is called Type3 (or T3) attribute propagation.

In addition to attributes propagated from FiatRetro, Nico’s Fiat of course has a

value for attributes manufDate, serial#, and owner of Car. The semantics of attri-

bute propagation are defined in section 7.4.2.

Materializations can be involved in compositions, in which the concrete class of

one materialization is also the abstract class of another one, and so on. Figure 7.7

shows a composition of two materializations. It deals with theatre Plays with a

title, an author, and a set of main roles. Plays materialize as Settings that

add production decisions for a theatrical season: a troupe, a director, and a set

of actors for each role. Settings in turn materialize as Performances, with a

theatre in which the performance takes place, a calendar date, the attendance

Figure 7.6
Instances of CarModel and Car from figure 7.5

Definition of Semantic Abstraction Principles 301

#attend on that date, and each role of Play assigned to a specific actor for each

Performance. A class without a more abstract class (like Play in figure 7.7) is called

the root of the hierarchy, and a class without a more concrete class (like Perfor-

mance) is a leaf.

Figure 7.8 shows an instance Ménage_à_Trois of Play, an instance Sett_Ma3_

Fall98 of Setting, associated with Ménage_à_Trois, and an instance Perf_Ma3_

051198 of Performance, associated with Sett_Ma3_Fall98. Ménage_à_Trois

is an ordinary instance of Play (see figure 7.7). Sett_Ma3_Fall98 similarly holds

values for the attributes of Setting; in addition, it inherits the value of attributes

title and author of Ménage_à_Trois; it also creates three new attributes (hus-

band, wife, and lover) from the value of roles in Ménage_à_Trois, and it assigns

them a domain ({Delon, Sharif}, {Bardot, Morgan}, and {Allen, Belmondo},

respectively) for their instances. Perf_Ma3_051198 holds values for the attributes

of Performance (see figure 7.7); it inherits from Sett_Ma3_Fall98 the values of

attributes title, author, troupe, season, and director; and it instantiates

attributes husband, wife, and lover of Sett_Ma3_Fall98.

Figure 7.7
Composition of materializations

Figure 7.8
Instances of Play, Setting, and Performance from figure 7.7

302 Mohamed Dahchour and Alain Pirotte

Abstract classes can materialize into several concrete classes. For example, data

for a movie rental store could involve a class Movie, with attributes director,

producer, and year, that independently materializes into classes VideoTape and

VideoDisc (i.e., VideoTape*—Movie—*VideoDisc).VideoTapes andVideoDiscs

could have attributes like inventory#, system (e.g., PAL, NTSC for VideoTape),

language, availability (i.e., in store or rented), and so on.

7.4 Precise Semantics

We now summarize the necessary elements for a formal definition of materialization.

Materialization is a binary relationship between two classes A and C, where A is more

abstract than C (or C is more concrete than A). Abstractness/concreteness is a user-

specified partial order consistent with the cardinalities and the attribute propagation

mechanisms of materialization. The materialization relationship has cardinality ð1; 1Þ
on the side of the concrete class C and cardinality ð0; nÞ on the side of the abstract

class A.

7.4.1 Two-Faceted Constructs

The semantics of materialization are conveniently defined as a combination of the

usual isA (generalization) and is-of (classification) generic relationships and a

class/metaclass correspondence, as shown in figure 7.9. In a system with metaclasses,

a class can also be seen as an object. Two-faceted constructs make that double role

explicit. Each two-faceted construct is a composite structure comprising an object

(the object facet) and an associated class (the class facet). To underline its double

role, we draw a two-faceted construct as an object box adjacent to a class box.

Figure 7.9
Semantics of materialization

Definition of Semantic Abstraction Principles 303

The semantics of materialization A—*C are expressed with a collection of two-

faceted constructs as follows. Each object facet is an instance of abstract class A,

and the associated class facet is a subclass of concrete class C. Materialization in-

duces a partition of C into a family of subclasses {Ci} such that each Ci is associated

with exactly one instance of A. Subclasses Ci inherit attributes from C through the

classical inheritance mechanism of the isA link. They also ‘‘inherit’’ attributes from

A, through the mechanisms of attribute propagation described in the next section.

Objects of C, with attribute values ‘‘inherited’’ from an instance of A, are ordinary

instances of the class facet associated with that instance of A.

Of course, only application classes, such as A and C (e.g., CarModel and Car), ap-

pear in conceptual schemas. The two-faceted construct machinery is managed by the

implementation described later and is invisible to users. For them, attribute propaga-

tion is built in, and instances of application classes, such as Nico’s Fiat in figure

7.6, come with attribute values propagated from their abstract instances through ma-

terialization links.

Figure 7.10 sketches the semantics of the materialization of figure 7.5. FiatRetro,

an instance of CarModel, is the object facet of a two-faceted construct whose class

facet is FiatRetro_Cars, a subclass of Car, describing all instances of Car with

model FiatRetro. Wild2CV is another instance of CarModel, and Guy’s 2CV is an

instance of class facet Wild2CV_Cars. For users, Nico’s Fiat and Guy’s 2CV are

instances of Car, with an instantiation mechanism that integrates attribute propaga-

tion, just as instantiation in object models with generalization integrates inheritance

from a superclass to its subclasses. In our semantics and their implementation,

Nico’s Fiat and Guy’s 2CV are instances of FiatRetro_Cars and Wild2CV_Cars,

respectively.

Similarly, figure 7.11 illustrates the semantics of a composition of two materializa-

tions, by displaying one two-faceted construct for each materialization. Ménage_à_

Figure 7.10
Semantics of materialization from figure 7.5

304 Mohamed Dahchour and Alain Pirotte

Trois is an instance of Play. For users, Sett_Ma3_Fall98 and Perf_Ma3_051198

are instances of Setting and Performance, respectively. Our semantics describe

them as instances of class facets Settings_of_Ma3 and Perfs_Ma3_Fall98,

respectively.

7.4.2 Attribute Propagation

Objects of a concrete class naturally ‘‘inherit’’ information from objects of the corre-

sponding abstract class, as illustrated in section 7.3. We use, from now on, the term

‘‘attribute propagation’’ for the mechanisms associated with materialization and re-

serve ‘‘inheritance’’ for the usual mechanism for propagating attributes and methods

from a superclass to its subclasses in a generalization.

Attribute propagation with materialization is precisely defined as a transfer of in-

formation from an abstract object to its associated class facet in a two-faceted con-

struct, as illustrated in figures 7.12 and 7.13. (For clarity, attribute propagation types

are shown on abstract classes, although this information really belongs to the mate-

rialization links.)

The following definitions regarding attributes will be useful. A class attribute of

a class C has the same value for all instances of C; an instance attribute of C has its

value defined for each instance of C. Attributes can be monovalued (i.e., their value

is a single atomic value) or multivalued (i.e., their value is a set, possibly empty or

singleton, of atomic values).

7.4.2.1 T1 Propagation For users, the T1 propagation mechanism characterizes the

plain transfer of an attribute value from an instance of the abstract class to associ-

ated instances of the concrete class. In our semantics, the value of a (monovalued or

multivalued) attribute is propagated from an object facet to its associated class facet

as a class attribute (i.e., its value is the same for all instances of the class facet).

For example, the values of the monovalued attributes name and stickerPrice

Figure 7.11
Semantics of materialization from figure 7.7

Definition of Semantic Abstraction Principles 305

Figure 7.12
Attribute propagation between CarModel and Car

306 Mohamed Dahchour and Alain Pirotte

(FiatRetro and 10.000, respectively) in object facet FiatRetro propagate as val-

ues of class attributes with the same name in class facet FiatRetro_Cars (see figure

7.12). The mechanism is identical for multivalued attributes.

7.4.2.2 T2 Propagation The T2 propagation mechanism concerns multivalued at-

tributes of the abstract class A. For users, their value for an instance of A determines

the domain (or type) of instance attributes with the same name, monovalued or mul-

tivalued, in the concrete class C. The associated propagation types will be named

T2mono and T2multi, respectively. Again, our semantics go through abstract objects

and associated class facets.

An example of T2mono propagation is exhibited by engineSize, a multivalued

attribute of CarModel (see figure 7.12). Its set value, noted engineSize={1200,

1300}, for the FiatRetro object facet is the domain of values for a monovalued

Figure 7.13
Attribute propagation in the composition Play—*Setting—*Performance

Definition of Semantic Abstraction Principles 307

instance attribute with the same name in the associated class facet FiatRetro_Cars,

where this is noted engineSize:{1200,1300}. Thus, each FiatRetro car comes

either with engineSize=1200 or with engineSize=1300.

An example of T2multi propagation is exhibited by autoSound, a multivalued

attribute of CarModel. The set value {tape,radio} of autoSound in object facet

FiatRetro indicates that each FiatRetro car comes with either tape, or radio,

or both, or nothing at all as autoSound. The associated class facet FiatRetro_Cars

has a multivalued instance attribute autoSound with the powerset P({tape,

radio}) as its domain.

7.4.2.3 T3 Propagation The T3 propagation mechanism is more elaborate. It also

concerns multivalued attributes of the abstract class, whose value is always a set of

strings. Each element in the set value of an attribute for an object facet generates a

new instance attribute in the associated class facet. The domain of generated attrib-

utes must be specified in the definition of the materialization.2

For example, attribute specialEquip of CarModel propagates with T3 to Car

(see figure 7.12). Its set value {airbag,alarm,cruiseCtrl} for object facet Fiat-

Retro generates three new monovalued instance attributes of domain string,

named airbag, alarm, and cruiseCtrl, in the associated class facet FiatRetro_

Cars. This propagation type will be called T3Inst; it is the only possible T3 propa-

gation for simple materializations.

7.4.2.4 Further Propagation For a composition A—*C—*D of two materializations,

attributes propagated from A to C via A—*C further propagate to D via C—*D.

Attributes that propagate from A with T1 are class attributes in C and thus also in D.

Attributes that propagate from A with T2 or T3 produce instance attributes in C. If

the latter are monovalued, they propagate with T1 to D. If they are multivalued,

then they can propagate with T1, T2, or T3 to D.

For example, attribute roles of Play propagates with T3 in Play—*Setting

and generates multivalued attributes of domain {string} in Setting. These attrib-

utes propagate with type T2mono in Setting—*Performance, producing mono-

valued instance attributes in Performance (see figure 7.13).

Thus, by T3 propagation, three new multivalued attributes are generated in class

facet Settings_of_Ma3 from the set value {husband,wife,lover} of attribute

roles in the Ménage_à_Trois instance of Play. Their value in an instance Sett_

Ma3_Fall98 of Settings_of_Ma3 is a set of names of actors available for playing

each of the husband, wife, and lover roles during a specific theater season

(namely, Fall 1998). Then, by T2 propagation, class facet Perfs_Ma3_Fall98 has

three monovalued instance attributes, named husband, wife, and lover, whose do-

308 Mohamed Dahchour and Alain Pirotte

main is the value of the corresponding attribute in Sett_Ma3_Fall98. Finally, one

among the actors available for each role is chosen for each performance (e.g., Delon

as husband on 05/11/98 as shown in Perf_Ma3_051198). This propagation type

of roles from Play to Setting and to Performance will be denoted T3-T2mono,

with the hyphen signaling two-level propagation. Other two-level propagation types

work as expected.

7.5 More Examples of Materialization

Materialization provides an extra degree of freedom for building conceptual schemas

directly reflecting concepts that are natural in application domains. In summary, for

class C to materialize class A (A—*C), C must be more concrete than A in the partial

order expressing abstractness. Materialization induces a partition of C into a family

of subclasses, each associated with exactly one instance of A. Cardinalities must be

ð1; 1Þ on the side of C and ð0; nÞ on the side of A.

Instances of materialization are ubiquitous, as illustrated by the following

examples:

� Modeling air travel can involve a concept of itinerary (from an origin to a destina-

tion, with a distance, etc.), materialized as a class of flights (for an airline, with a

price, on certain days of the week, periods of the year, etc.), itself materialized as a

class of flights for specific calendar days (with a date, an aircraft, a crew, etc.).

� News items can materialize as articles in a particular edition of a newspaper, in

turn materialized as physical copies of the newspaper.

� Stories can materialize as book titles (e.g., in publisher catalogs), which materialize

as book copies (e.g., in library inventories). Stories can also materialize as theater

plays, themselves materialized as performances, a variant of the example presented

earlier (see figure 7.7). Movies are another materialization of stories; they can in

turn materialize as video titles, which can materialize as physical tapes and discs

available in a video rental store. Books in a library or in a bookstore can also be clas-

sified according to literary genre (e.g., drama, reference, travel). In a library, they can

di¤er according to their borrowing status (e.g., duration, price, reader privileges).

� For our running example with car models and cars, class CarModel can materialize

as both brochures and videos presenting the models.

� Film negatives can materialize as positive prints, di¤ering in size, shades of colors,

etc.

� Source for text formatters (e.g., LaTeX, HTML) materializes into printed versions

of documents of various sizes and shapes.

Definition of Semantic Abstraction Principles 309

� Forms (e.g., income tax forms) materialize as filled-in forms (e.g., income tax

returns).

� Constitutions materialize into laws, in turn materialized as operational regulations.

Thus, materialization expresses various nuances of meta-information. The most com-

mon relationship is classification, between categories and concrete objects classified

into those categories. Materialization also frequently characterizes embodiment, the

relationship between classes of objects and their common abstract definition, with

the possibility of the relationship’s being associated with a transformation of objects

to produce more detailed objects. Pirotte et al. 1994, also introduces the materializa-

tion of relationships (e.g., aggregation) and the materialization of constraints.

7.6 Related Work

An interest in capturing the semantics of materialization has been intuitively per-

ceived, with di¤erent names, for as many as twenty years, according to Tabourier

(1997). Unlike our own work, little research has addressed the definition of a generic

relationship for extending conceptual modeling languages with those semantics.

Also, the works referenced in this section view abstractness and concreteness as

essentially absolute properties, unlike our own work, which treats abstractness/

concreteness as a partial order.

Two constructs related to materialization are mentioned in Object Modeling Tech-

nique (OMT) (Rumbaugh et al. 1991) and referred to as metadata and homomor-

phisms. The term ‘‘materialization’’ was introduced and informally characterized in

Goldstein and Storey 1994. The nearly formal presentation in Pirotte et al. 1994 sub-

sumed that definition. Since then, we have been refining the semantics of materializa-

tion and have implemented it in various settings (Dahchour 2001; Dahchour, Pirotte,

and Zimányi 2002a; see also Kolp 1999; Zimányi 1997). We describe our implemen-

tation of materialization in ConceptBase in section 7.7. The power types of Martin

and Odell 1995 (252) also catch the basic idea: ‘‘a power type is an object type whose

instances are subtypes of another object type.’’ A power type is, in our terms, the ab-

stract class of a materialization, and the other object type is its concrete class. We

find it more appropriate to attach the semantics to the relationship than to the ab-

stract class. Also, our two-faceted constructs clearly show that even if they are tightly

related, the instances of the power type (the object facets) are not the same as the

subtypes of the concrete class (the class facets). Indeed, our semantics implement at-

tribute propagation, not discussed in Martin and Odell 1995, as taking place between

an object facet and its associated class facet. Semantics similar to those of power

types are described as a ‘‘type object’’ design pattern in Johnson and Woolf 1998. A

310 Mohamed Dahchour and Alain Pirotte

knowledge level for object types and an operational level for objects are distinguished

in Fowler 1997, in the spirit of materialization. Several examples of what we call ma-

terialization are presented in Hay 1996. The two directed mappings equivalent to

materialization are referred to as ‘‘is an example of ’’ and ‘‘is embodied in.’’ Similar

semantics are analyzed as the ‘‘intension’’ and ‘‘extension’’ of concepts in Al-Jadir et

al. 1995 and Falquet, Léonard, and Sindayamaze 1994.

Several patterns frequently occurring in the real world are described in Coad,

North, and Mayfield 1995; the closest to materialization is called item-description

pattern. A library of generic relationships for analysis is suggested in Kilov and

Ross 1994; the reference association is closest to materialization, but it is defined

somewhat informally and without attribute propagation.

7.7 Implementation of Materialization

This section shows how the semantics of materialization can be integrated into

ConceptBase.

7.7.1 Class-Level Semantics

The generic semantics of materialization are captured by meta-attribute material-

izes relating two metaclasses AClass and CClass representing, respectively, the

roles of abstract and concrete classes for materializations:

AClass in Class with

attribute

materializes: CClass

end

CClass in Class end

7.7.1.1 Definition of the Materialization Characteristics The following materialization

characteristics are defined as attributes of meta-attribute materializes:

AClass!materializes with

attribute

inhAttrT1: Attribute1Def;

inhAttrT2: Attribute2Def;

inhAttrT3: Attribute3Def

end

Attribute1Def in Class with

attribute

Definition of Semantic Abstraction Principles 311

sources

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4635458

attrProp: Attribute

end

Attribute2Def in Class with

attribute

attrProp: Attribute;

derivAttr:String {* mono, multi *}

end

Attribute3Def in Class with

attribute

attrProp: Attribute;

genAttrType: TypeDef;

genAttrPropag: String

{* T3Inst, T3-T2mono, T3-T2multi *}

end

TypeDef in Class end

Meta-attribute materializes (accessed as AClass!materializes in AClass) is

declared as a metaclass to carry the semantics of all materialization relationships.

Metaclass AClass!materializes defines specific attributes labeled inhAttrT1,

inhAttrT2, and inhAttrT3 specifying the modes for propagating attributes of the

abstract class to the corresponding concrete class. We show later that there is no

need to define a specific attribute to represent materialization cardinalities. In fact,

as the cardinality at the concrete-class side is always ð1; 1Þ and that at the abstract-

class side is often ð0; nÞ, it is more suitable to represent that information by means of

constraints attached to metaclass CClass.

The domains (or destinations in the terminology of ConceptBase) of attributes

inhAttrT1, inhAttrT2, and inhAttrT3 are defined as follows:

� Attribute1Def specifies attributes propagating with T1.

� Attribute2Def specifies attributes propagating with T2 and the kind derived-

Attr (monovalued or multivalued) of the derived instance attribute.

� Attribute3Def specifies attributes propagating with T3, the value type gen-

AttrType (TypeDef), and a propagation type genAttrPropag for the generated

attributes. The possible values for genAttrPropag are T3Inst, T3-T2mono, and

T3-T2multi (see section 7.4.2).

Note that meta-attribute inhAttrT1 (respectively, inhAttrT2 and inhAttrT3) can

be instantiated in applications with as many T1 (respectively, T2 and T3) attributes as

needed. The following shows a partial implementation of the example CarModel—

*Car:

312 Mohamed Dahchour and Alain Pirotte

CarModel in AClass with

materializes

materializesCar: Car

end

Car in CClass end

CarModel!materializesCar with

inhAttrT1

T11:T1Name;

T12:T1StickerPrice

inhAttrT2

T21:T2Doors;

T22:T2EngineSize;

T23:T2AutoSound

inhAttrT3

T31:T3SpecialEquip

end

T1Name in Attribute1Def with

attrProp

attrName:CarModel!name

end

{* T1StickerPrice: Idem *}

T2Doors in Attribute2Def with

attrProp attrDoors:CarModel!#doors

derivAttr derivDoors:"mono"

end

{* T2EngineSize: Idem *}

T2AutoSound in Attribute2Def with

attrProp

attrASound:CarModel!autoSound

derivAttr

derivASound:"multi"

end

T3SpecialEquip in Attribute3Def with

attrProp

attrSEquip:CarModel!specialEquip

genAttrType

genSEquip: String

Definition of Semantic Abstraction Principles 313

genAttrPropag

genPropagSEquip: "T3Inst"

end

String in TypeDef end

Classes CarModel and Car are created as ordinary classes, independently of their

participation in a materialization relationship:

CarModel in Class with

attribute

name:String;

stickerPrice:Integer;

#doors:Integer;

engineSize:Integer;

autoSound:Integer;

specialEquip:String

end

Car in Class with

attribute

manufDate:Date;

serial#:Integer;

owner:String

end

To take into account the materialization relationship between them, the two classes

are declared as instances of AClass and CClass, respectively.

During the creation of CarModel as an instance of AClass, meta-attribute mate-

rializes of AClass is instantiated by materializesCar. In attribute CarModel!

materializesCar, we specify that attributes name and stickerPrice propagate

with T1; #doors and engineSize both propagate with T2, and each produces a

monovalued instance attribute, while autoSound produces, also with T2, a multi-

valued instance attribute; specialEquip generates, with T3, new instance attributes

of type String.

7.7.1.2 Constraints Related to Propagated Attributes Two constraints are related to

propagated attributes, expressing that propagated attributes are attributes of the ab-

stract classes involved in materialization relationships and that T2 and T3 attributes

must be multivalued.

All propagated attributes appearing in the definition of meta-attribute AClass!

materializes (presented in section 7.7.1.1) must be attributes of the more abstract

314 Mohamed Dahchour and Alain Pirotte

class. For instance, T1 attributes (name, stickerPrice), T2 attributes (#doors,

engineSize, and autoSound), and T3 attribute (specialEquip) in the partial im-

plementation of CarModel—*Car presented in section 7.7.1.1 must be attributes of

the abstract class CarModel.

The corresponding constraint T1AttrCnstr for T1 attributes is as follows (a con-

straint for T2 and T3 attributes is similar):

AClass!materializes with

constraint

T1AttrCnstr:

$ forall M/AClass!materializes A/AClass C/CClass T1/

Attribute1Def attr/Attribute

From(M,A) and To(M,C) and (M inhAttr1 T1) and (T1 attrProp

attr)

==> From(attr,A) $

end

The following definition of constraint T2attrAreMultivalued requires that T2

attributes be multivalued:

AClass with

constraint

T2attrAreMultivalued:

$ forall T2/Attribute2Def attr/Attribute

(T2 attrProp attr)

==> (attr in Class!multivalued) $

end

The constraint shows that attribute attr propagating with mode T2 is constrained to

be an instance of Class!multivalued. The predefined metaclass Class is extended

by meta-attribute multivalued, whose domain is Class itself, as shown here:

Class with

attribute

multivalued:Class

constraint

multiCnstr:

$ forall p/Class!multivalued s,d/Class i/Proposition l/Label

P(p,s,l,d) and (i in s)

==> (exists d1,d2/Proposition (d1 in d) and (d2 in d) and (i l

d1) and (i l d2) and not(d1==d2)) $

end

Definition of Semantic Abstraction Principles 315

The associated constraint multiCnstr enforces that every instance p of Class!

multivalued has at least two distinct values, d1 and d2.3 A similar constraint,

say T3attrAreMultivalued, can be defined to constrain T3 attributes to be

multivalued.

Note that Class!multivalued can be used by any class to express that some of

its attributes are multivalued. This is achieved by declaring the attributes in question

as instances of Class!multivalued.

7.7.2 Instance-Level Semantics

This section defines the required structure and behavior relevant to the instance-level

semantics of materialization. Constraints and rules are attached to AClass and

CClass and operate on abstract and concrete objects.

First, recall that according to the semantics of materialization, each abstract object

a, an instance of a given abstract class A, necessarily has a class facet that is a sub-

class of the concrete class materializing A. That information cannot be associated

with metaclass AClass because it concerns abstract objects and not abstract classes.

Therefore, a specific class, say, AbstractObject, is needed to supply that informa-

tion to all abstract objects:

AbstractObject in Class with

attribute, necessary, single

classFacet: Class

end

7.7.2.1 Constraints Related to Abstract Objects Constraint abstractObjCnstr ex-

presses that instances of instances of AClass must be instances of AbstractObject:

AClass with

constraint

abstractObjCnstr:

$ forall A/AClass a/Proposition

(a in A) ==> (a in AbstractObject) $

end

For instance, FiatRetro, an instance of CarModel that is in turn an instance of

AClass, must be an instance of AbstractObject.

Upon creating an abstract object a as an instance of AbstractObject, the system

will necessarily require the instantiation of attribute classFacet, since this latter is

declared (in the definition of AbstractObject in section 7.7.2) as being necessary

and single, meaning that it must have exactly one value, which represents the class

facet associated with object a. A complementary constraint objClassFacetCnstr

316 Mohamed Dahchour and Alain Pirotte

sources

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4635463

requires that this class facet must necessarily be a subclass of the concrete class mate-

rializing the class of a:

AClass with

constraint

objClassFacetCnstr:

$ forall A/AClass C/CClass a/AbstractObject Cf/Class

(A materializes C) and (a in A) and (a classFacet Cf) ==> (Cf

isA C) $

end

Thus, according to the constraints abstractObjConstr and objClassFacet-

Constr, an instance such as FiatRetro of CarModel must be declared as an

instance of AbstractObject and must be associated with a class facet, say Fiat-

RetroCars, that must be a subclass of Car materializing CarModel, the class of

FiatRetro:

FiatRetro in AbstractObject with

classFacet

cfFRCars:FiatRetroCars

end

FiatRetroCars isA Car end

7.7.2.2 Constraints Related to Concrete Objects Constraint concreteObjCnstr ex-

presses that all concrete objects c, instances of a given concrete class C and material-

izing a given abstract object a, must be instances of the class facet associated with a:

AClass with

constraint

concreteObjCnstr:

$ forall A/AClass C/CClass M/AClass!materializes

a/AbstractObject Cf/Class c/Proposition

From(M,A) and To(M,C) and (a in A) and (a classFacet Cf) and

(Cf isA C) and (c in C) ==> (c in Cf) $

end

For example, Nico’s Fiat that is an instance of Car and that materializes Fiat-

Retro must necessarily be an instance of FiatRetroCars, the class facet associated

with FiatRetro (see the abstract object FiatRetro, defined in section 7.7.2.2). Note

that all instances of FiatRetroCars are implicitly instances of Car, because of the

isA link, but the inverse is not guaranteed. That is the reason why constraint con-

creteObjCnstr is explicitly defined.

Definition of Semantic Abstraction Principles 317

7.7.2.3 Cardinality Constraints As mentioned previously, concrete classes always

have cardinality ð1; 1Þ in materializations. That cardinality is expressed by the con-

junction of two constraints minCardCnstrIs1 and maxCardCnstrIs1:

CClass with

constraint

minCardCnstrIs1:

$ forall C/CClass A/AClass M/AClass!materializes c/Proposition

From(M,A) and To(M,C) and (c in C)

==> exists a/AbstractObject Cf/Class (a in A) and (a

classFacet Cf) and (Cf isA C)$;

maxCardCnstrIs1:

$ forall C/CClass A/AClass M/AClass!materializesc/Proposition

From(M,A) and To(M,C) and (c in C)

==> (forall a1,a2/AbstractObject Cf/Class

(a1 in A) and (a2 in A) and (a1 classFacet Cf) and (a2

classFacet Cf) and (Cf isA C) ==> (d1 == d2)) $

end

Constraint minCardCnstrIs1 means that a given concrete object c necessarily cor-

responds to at least one abstract object a (i.e., minimal cardinality is 1), whereas con-

straint maxCardCnstrIs1 means that a given concrete object c corresponds to at

most one abstract object a (i.e., maximal cardinality is 1).

Note that there is no need to define constraints for cardinality ð0; nÞ in abstract

classes. This cardinality is the default in ConceptBase; that is, an abstract object a

may or may not have corresponding concrete objects.

7.7.3 Attribute Propagation

This section deals with the implementation of attribute propagation related to mate-

rialization. Unlike those for generalization, the three mechanisms of attribute propa-

gation provided by materialization concern not only the names of attributes and their

domains, but also their values.

Consider the example of CarModel—*Car, an abstract object FiatRetro, an in-

stance of CarModel, and its associated class facet FiatRetroCars. The constraints

related to attribute propagation must ensure that the following requirements are met:

� T1 attributes (name:String, stickerPrice:Integer) of CarModel must be

attributes of FiatRetroCars. Furthermore, the value of those attributes in Fiat-

Retro (i.e., "FiatRetro" and 10.000, respectively) must be the same for all in-

stances of FiatRetroCars.

318 Mohamed Dahchour and Alain Pirotte

� T2 attributes (#doors, engineSize, and autoSound) of CarModel must be attrib-

utes of FiatRetroCars. Furthermore, the value of #doors and engineSize for

instances of FiatRetroCars must be monovalued and must be selected from the

possible values of #doors and engineSize in FiatRetro. As for the value of

autoSound for instances of FiatRetroCars, it must be multivalued and must be

selected as a subset of the corresponding attribute value in FiatRetro.

� Values of the T3 attribute specialEquip in FiatRetro (i.e., airbag, alarm, and

cruise) must be created as new attributes of FiatRetroCars whose domain is sup-

plied in advance by the user, here String.

Now we address how T1, T2, and T3 attributes of CarModel can be physically

stored in FiatRetroCars. Three alternatives can be considered:

1. Define a rule that systematically makes the class facet FiatRetroCars a subclass

of CarModel. The advantage of this approach is that all attributes of CarModel will

automatically be stored once and for all in FiatRetroCars. This approach presents

a severe disadvantage, however: When declared as a subclass of CarModel, Fiat-

RetroCars inherits not only attributes but also constraints and rules concerning

these attributes. For instance, constraint T2attrAreMultivalued (defined in sec-

tion 7.7.1.2) requires that #doors and engineSize be multivalued for instances of

CarModel. If FiatRetroCars is considered a subclass of CarModel, this constraint

will be inherited, transparently to the user. As a result, #doors and engineSize will

be constrained to be multivalued for instances of FiatRetroCars, which is obvi-

ously an undesirable behavior. For this reason, this approach must be discarded.

2. Define an active rule that will systematically add T1, T2, and T3 attributes of

CarModel to class facet FiatRetroCars. This active rule will be required to execute

after the creation of abstract object FiatRetro and its associated FiatRetroCars,

which is just a subclass of Car. Furthermore, some constraints and/or rules will have

to be supplied to control the values of the propagated attributes. This is the approach

used in the following.

3. Define some constraints that just alert the user that T1, T2, and T3 attributes of

CarModel must be made attributes of FiatRetroCars. This approach reveals noth-

ing about the way these attributes are stored in FiatRetroCars. All that is required

is that propagated attributes be stored in FiatRetroCars. Thus, if a propagated at-

tribute has not been stored in FiatRetroCars, the associated constraint will request

the user to add it explicitly.

7.7.3.1 Propagation of T1 Attributes Active rule T1Propagation automatically

propagates T1 attributes of an abstract class A to each class facet associated with

each instance of A:

Definition of Semantic Abstraction Principles 319

ECArule T1Propagation with

ecarule

T1AttrInClassFacetRule:

$ M/AClass!materializes A/AClass C/CClass T1/Attribute1Def

a/AbstractObject Cf/Class att/Attribute

ON Tell((a classFacet Cf))

IF From(M,A) and To(M,C) and (Cf isA C) and (M inhAttrT1 T1)

and (T1 attrProp att) and (a in A)

DO CALL(PropagAttribute(A,Cf,att)) $

end

Rule T1AttrInClassFacetRule reads as follows: Upon the association of a class

facet Cf with a given abstract object a, if A, the class of a, defines its attribute att

as a T1 attribute, then execute the predicate PropagAttribute(A,Cf,att),4 which

will carry out the propagation of att from abstract class A to class facet Cf.

Rule T1AttrAreClassAttrRule states that T1 attributes are class attributes:

AClass with

rule

T1AttrAreClassAttrRule:

$ forall c,v/Proposition l/Label

(exists M/AClass!materializes A/AClass C/CClass

T1/Attribute1Def a/AbstractObject Cf/Class att/Attribute

From(M,A) and To(M,C) and (M inhAttrT1 T1) and (T1 attrProp

att) and Label(att,l) and (a in A) and (a classFacet Cf) and

(a l v) and (c in Cf))

==> (c l v) $

end

In class facets, for a given T1 attribute T1, if the value of the propagated attribute

att in a given abstract object a is v, then all instances c of the class facet Cf associ-

ated with a will come with the same value v.

Another alternative for dealing with T1 attributes is the use of a delegation mecha-

nism (Lieberman 1986) that would permit concrete instances to access directly the

T1 attribute values in abstract instance a without storing it redundantly in class fac-

ets. Unfortunately, ConceptBase does not provide facilities for using a delegation

mechanism.

7.7.3.2 Propagation of T2 Attributes Active rule T2MonoPropagation automatically

propagates T2 monovalued attributes of an abstract class A to each class facet asso-

ciated with each instance of A:

320 Mohamed Dahchour and Alain Pirotte

ECArule T2MonoPropagation with

ecarule

T2MonoAttrInClassFacetRule:

$ M/AClass!materializes A/AClass C/CClass T2/Attribute2Def

a/AbstractObject Cf/Class att/Attribute

ON Tell((a classFacet Cf))

IF From(M,A) and To(M,C) and (Cf isA C) and (M inhAttrT2 T2)

and (T2 attrProp att) and (T2 derivAttr "mono") and (a in A)

DO CALL(PropagAttribute(A,Cf,att)),

TELL((att in Class!single)) $

end

Rule T2MonoAttrInClassFacetRule reads similarly to rule T1AttrInClass-

FacetRule (presented in section 7.7.3.1). However, in part DO of rule T2Mono-

AttrInClassFacetRule, not only do T2 attributes att propagate from abstract

class A to class facet Cf, but they are also asserted as instances of Class!single to

express their ‘‘monovaluedness.’’ The constraint controlling the values of T2 attrib-

utes is as follows:

AClass with

constraint

T2ValuePropCnstr:

$ forall M/AClass!materializes A/AClass C/CClass

T2/Attribute2Def a/AbstractObject att/Attribute Cf/Class

c,v/Proposition l/Label

From(M,A) and To(M,C) and (M inhAttrT2 T2) and (T2 attrProp

att) and Label(att,l) and (a in A) and (a classFacet Cf) and

(c l v) and (c in Cf) ==> (a l v) $

end

(A similar active rule, say, T2MultiAttrInClassFacetRule, can be defined for

propagating multivalued T2 attributes.) Values of T2 attributes (either monovalued

or multivalued) in concrete objects are restricted to a set of fixed values supplied by

the corresponding abstract object a (see the preceding constraint definition).

Constraint T2ValuePropCnstr reads as follows: For each T2 propagated attri-

bute att, labeled l in class facet Cf, which is associated with abstract object a, if a

concrete object c, an instance of Cf, has value v for that attribute, then v is necessar-

ily a value of that attribute in the corresponding object facet a. For instance, the T2

attribute #doors:Integer of CarModel must be stored as an attribute of class facet

FiatRetroCars associated with FiatRetro, an instance of CarModel. The domain

of #doors in FiatRetroCars is also Integer, but its value in Nico’s Fiat, an

Definition of Semantic Abstraction Principles 321

instance of FiatRetroCars, is either 3 or 5, as specified by the abstract instance

FiatRetro.

7.7.3.3 Propagation of T3 Attributes Active rule T3Propagation implements the

propagation of T3 attributes:

ECArule T3Propagation with

ecarule

T3ValuePropRule:

$ M/AClass!materializes A/AClass C/CClass T3/Attribute3Def

a/AbstractObject Cf/Class att/Attribute v/Proposition

D/TypeDef l,lab/Label

ON Tell((a classFacet Cf))

IF From(M,A) and To(M,C) and (Cf isA C) and (M inhAttrT3 T3)

and (T3 attrProp att) and Label(att,l) and (T3 genAttrType D)

and (a in A) and (a l v) and P(v,v,lab,v)

DO CALL(AddNewAttribute(Cf,lab,D) $

end

Rule T3ValuePropRule deals with the association of a class facet Cf with a given

abstract object a. If A, the class of a, defines att as a T3 attribute with domain D

for the generated attributes, and if v, labeled lab, is a possible value of att for ab-

stract object a, then predicate AddNewAttribute(Cf,lab,D) is executed,5 which

creates a new attribute with label lab and domain D in class facet Cf.

Consider the example of CarModel—*Car. After the creation of abstract object

FiatRetro of CarModel and of its associated class facet FiatRetroCars, then,

upon the instantiation of its T3 attribute specialEquip with a set of values airbag,

alarm, and cruise, the active rule automatically inserts airbag, alarm, and

cruise as new attributes of FiatRetroCars with domain String specified in field

genAttrType of structure Attribute3Def (see the partial implementation of

CarModel—*Car presented in section 7.7.1.1).

7.7.4 Multiple Materializations

The generic semantics of simple materializations presented in the previous sections

also hold for multiple materializations in which an abstract class materializes in

more than one concrete class (e.g., CDBookCopy*—Book—*BookCopy). Let A be

an abstract class that materializes in two concrete classes C1 and C2 (i.e., C1*—A—

*C2). The following declarations show how this case is subsumed by the generic def-

initions previously given.

Classes A, C1, and C2 are first declared independently of materialization. Then

to take materializations C1*—A—*C2 into account, A is created as an instance

322 Mohamed Dahchour and Alain Pirotte

of AClass, and attribute materializes of AClass is instantiated in A by two

attributes, materializesC1 and materializesC2, with destinations C1 and C2,

respectively:

A in AClass with

materializes

materializesC1:C1;

materializesC2:C2

end

C1 in CClass end

C2 in CClass end

A!materializesC1 with

inhAttrT1 ...

inhAttrT2 ...

inhAttrT3 ...

end

{* Idem for A!materializesC2 *}

Then, meta-attributes A!materializesC1 and A!materializesC2 are declared as

instances of metaclass Class to capture di¤erent characteristics of materializations

C1*—A and A—*C2, respectively. In such materializations, an abstract object a, an

instance of A, must have two associated class facets Cf1 and Cf2 as subclasses of C1

and C2, respectively. This requirement is ensured by the constraint ObjClassFacet-

Constr for simple materializations defined in section 7.7.2.1.

7.7.5 Composition of Materializations

This section shows how compositions of materializations such as Play—

*Setting—*Performance are implemented using the definitions given in the previ-

ous sections. Let A be an abstract class that materializes in concrete class C that in

turn materializes in D (i.e., A—*C—*D). In such a composition of materializations,

the intermediate class C is at the same time concrete in materialization A—*C and

abstract in C—*D. Therefore, whereas A and D are to be declared as instances of

AClass and CClass, respectively, C has to be declared as an instance of both

AClass and CClass. As ConceptBase allows multiple classifications, this require-

ment is easily implemented:

A in AClass with

materializes

materializesC:C

end

Definition of Semantic Abstraction Principles 323

C in AClass, CClass with

materializes

materializesD:D

end

D in CClass end

A!materializesC with

inhAttrT1 ...

inhAttrT2 ...

inhAttrT3 ...

end

{* Idem for C!materializesD *}

Now let us see how attributes propagate in composition of materializations. T1, T2,

and T3 attributes of class C propagate to class D exactly as in any simple materializa-

tion. As for T1, T2, and T3 attributes of the root abstract class of A—*C—*D (i.e., A),

they propagate to the leaf concrete class D as follows. Let a be an instance of A, Cf_a

its associated class facet (which is a subclass of C); c an instance of Cf_a (indirectly

an instance of C), Cf_c its associated class facet (which is a subclass of D); and finally

d an instance of D. Instances d of D have attribute values corresponding to all attrib-

utes defined in A. Only those attributes of A propagating with T3 and genAttr-

Propag = T3-T2mono or genAttrPropag = T3-T2multi should be physically

stored in Cf_c. T1 and T2 attributes as well as T3 attributes with genAttrPropag =

T3Inst are also physically stored in Cf_c, but in data models supporting delegation,

there is no need to store them in Cf_c.

7.7.6 Querying Materializations

Generic queries can be defined against materialization relationships. These queries

may include the following:

� Give all concrete classes for a given abstract class.

� Give the abstract class for a given concrete class.

� Given two classes A and C, test whether A is an abstract class of C.

� Given a materialization A—*C, return all T1 (or T2 and T3) attributes of A.

� Give all concrete objects (instances of a given concrete class) materializing a given

abstract object.

� Give the abstract object for a given concrete object.

For example, query AllCClasses returns all concrete classes associated with a given

abstract class A passed as parameter:

324 Mohamed Dahchour and Alain Pirotte

AllCClasses in GenericQueryClass isA CClass with

parameter

A: AClass

constraint c: $ (A materializes this)$

end

For the partial instantiation of CarModel—*Car presented in section 7.7.1.1, the an-

swer to AllCClasses with CarModel as parameter would be Car. Remember that

the answer (object) we look for is indicated by the predefined operator this.

Another generic query, AllCObjects, at the instance level is as follows:

AllCObjects in GenericQueryClass with

parameter

abstobj:AbstractObject;

concrclass:CClass

Constraint

c: $ exists Cf/Class (abstobj classFacet Cf) and (Cf isA

concrclass) and (this in Cf)$

end

Query AllCObjects returns all concrete objects associated with a given abstract ob-

ject abstobj passed as parameter. The concrete class concrclass materializing the

class of abstobj must also be passed as parameter. For the abstract object Fiat-

Retro defined in section 7.7.2.2, the answer to AllCObjects with FiatRetro as pa-

rameter abstobj and class Car as parameter concrclass consists of Nico’s Fiat.

7.8 Conclusion

This chapter has first presented the materialization data abstraction. Materialization

is a generic relationship between a conceptual class and its concrete manifestations.

Specifically, we have given a formal definition of materialization as a combination of

the usual generalization and classification generic relationships and a class/metaclass

correspondence; we have characterized several mechanisms of attribute propagation

through materialization; we have exhibited examples that demonstrate that material-

ization is frequently encountered in practice; and we have surveyed related work that

involved concepts similar to materialization.

In addition, the chapter has presented an implementation of materialization in

ConceptBase. Two metaclasses, AClass and CClass, were built as templates to

capture the semantics of materialization at the class level, and an additional class

AbstractObject was defined to capture some particular semantics of materializa-

tion that only concern the instance level.

Definition of Semantic Abstraction Principles 325

Metaclass AClass was used to define meta-attribute materializes, which refers

to metaclass CClass. Thanks to the class status of ConceptBase attributes, the meta-

attribute materializes can be declared as a metaclass to carry the semantics of

materialization. A set of attributes were attached to meta-attribute (metaclass)

materializes to represent the structural semantics of materialization, such as the

three associated propagation types. A collection of roughly one dozen rules and con-

straints were defined to ensure the behavioral semantics of materialization at both

the class and the instance levels in a coordinated manner.

Specific materializations were created as instances of the meta-attribute materi-

alizes and the abstract and concrete classes involved in them were created as

instances of the metaclasses AClass and CClass, respectively. Upon these instantia-

tions, the system then automatically enforced the corresponding constraints and rules

derived from the metalevel. Compositions of materializations in which a concrete

class is also an abstract class in another materialization were treated by means of

multiple classifications.

Our implementation has demonstrated the power and flexibility of ConceptBase

for integrating new generic relationships like materialization. Here are in a nutshell

the strengths of ConceptBase that played a central role in our implementation:

� the first-class status of attributes

� an unlimited extensibility by metaclass hierarchies with the possibility of multiple

classification

� the ability to specify deductive rules and integrity constraints as ordinary attributes

of (meta)classes

� the fact that queries are ordinary classes with membership constraints

� active rules that allow the specification of arbitrary actions to be executed if certain

events/conditions hold in the object base

Although the expressive power of these last is still limited, their presence is vital. We

used them, in particular, to implement the three attribute propagation modes associ-

ated with materialization.

Our implementation has also pointed out, however, some limitations of

ConceptBase:

� Parameterized queries within constraints: Some definitions of constraints and rules

seem to be complex and di‰cult to read. This would not be the case if Concept-

Base made it possible to include parameterized queries in the definition of constraints.

This facility would allow expressions like inst in ClassA and inst in QueryB[list

of instantiated parameters] to be written within a constraint of a class.

� Dynamically propagating/adding an attribute to a given class: To define the

attribute/value propagation mechanisms of materialization, specific predicates like

326 Mohamed Dahchour and Alain Pirotte

those proposed in section 7.7.3 are needed to dynamically propagate attributes from

source to destination classes.

� The IF clause of active rules: The definition of active rules supports only one ex-

pression in their IF clauses. This is certainly too restrictive. In fact, some complex

active rules, such as the active rule for propagating T1 attributes in section 7.7.3.1,

that for propagatingmonovalued T2 attributes in section 7.7.3.2, and that for propagat-

ing T3 attributes in section 7.7.3.3, naturally require more than one expression in their

IF clauses. Complex conditions in active rules are allowed inConceptBase, but only one

free variable is permitted. Using Ask statements in the DO part can circumvent this.

Notes

1. The notion of abstractness/concreteness of materialization captures domain semantics. It is distinct
from the notion of abstract class in object models, in which an abstract class is a class without instances,
whose complete definition is typically deferred to subclasses.

2. For the sake of clarity, this domain is not shown in figures 7.12 and 7.13.

3. Meta-attribute multivalued is defined in the same spirit as meta-attributes single and necessary
(see chapter 3). Note also that a multivalued attribute can be viewed as a necessary and not single
attribute.

4. The semantics of the predicate PropagAttribute(C1,C2,attr) are more generic. They consist in
copying (and not moving) an attribute attr from a source class C1 to a target class C2. Attribute attr is
assumed to belong to class C1 but not to C2.

5. The semantics of predicate AddNewAttribute(C,Lab,Dest) are more generic. They add a new attri-
bute with label Lab and destination (domain) Dest in class C.

References

Al-Jadir, L., T. Estier, G. Falquet, and M. Léonard. 1995. ‘‘Evolution Features of the F2 OODBMS.’’
In Proceedings of the Fourth International Conference on Database Systems for Advanced Applications
(DASFAA’95), ed. T. W. Ling and Y. Masunaga, 284–291. Singapore: World Scientific.

Andono¤, E., G. Hubert, A. Parc, and G. Zurfluh. 1996. ‘‘Integrating Versions in the OMT Models.’’ In
Proceedings of the Fifteenth International Conference on Conceptual Modeling (ER’96) (Lecture Notes in
Computer Science 1157), ed. B. Thalheim, 472–487. Berlin: Springer-Verlag.

Bertino, E. 1992. ‘‘A View Mechanism for Object-Oriented Databases.’’ In Proceedings of the Third Inter-
national Conference on Extending Database Technology (EDBT’92) (Lecture Notes in Computer Science
779), ed. A. Pirotte, C. Delobel, and G. Gottlob, 136–151. Berlin: Springer-Verlag.

Coad, P., D. North, and M. Mayfield. 1995. Object Models: Strategies, Patterns, and Applications. Upper
Saddle River, NJ: Yourdon.

Dahchour, M. 1998. ‘‘Formalizing Materialization Using a Metaclass Approach.’’ In Proceedings of the
Tenth International Conference on Advanced Information Systems Engineering (CAiSE’98) (Lecture Notes
in Computer Science 1413), ed. B. Pernici and C. Thanos, 401–421. Berlin: Springer-Verlag.

Dahchour, M. 2001. ‘‘Integrating Generic Relationships into Object Models Using Metaclasses.’’ Ph.D.
diss., Department of Computing Science and Engineering (INGI), University of Louvain, Louvain,
Belgium.

Dahchour, M., A. Pirotte, and E. Zimányi. 2002a. ‘‘Materialization and Its Metaclass Implementation.’’
IEEE Transactions on Knowledge and Data Engineering 14, no. 5: 1078–1094.

Dahchour, M., A. Pirotte, and E. Zimányi. 2002b. ‘‘A Generic Role Model for Dynamic Objects.’’ In Pro-
ceedings of the Fourteenth International Conference on Advanced Information Systems Engineering (CAiSE

Definition of Semantic Abstraction Principles 327

2002) (Lecture Notes in Computer Science 2348), Toronto, ed. A. B. Pidduck, J. Mylopoulos, C. C. Woo,
and M. Tamer Ozsu, 643–658. New York: Springer-Verlag.

Dahchour, M., A. Pirotte, and E. Zimányi. 2004. ‘‘A Role Model and Its Metaclass Implementation.’’ In-
formation Systems 29, no. 3: 235–270.

Dahchour, M., A. Pirotte, and E. Zimányi. 2005. ‘‘Generic Relationships in Information Modeling.’’ Jour-
nal of Data Semantics 4 (Lecture Notes in Computer Science 3730), ed. S. Spaccapietra, 1–34. New York:
Springer.

Falquet, G., M. Léonard, and J. Sindayamaze. 1994. ‘‘F2-Concept: A Database System for Managing
Classes Extensions and Intensions.’’ In Information Modeling and Knowledge Bases V, ed. H. Jaakola, H.
Kangassalo, T. Kitahashi, and A. Márkus, 243–256. Amsterdam: IOS Press.

Fowler, M. 1997. Analysis Patterns: Reusable Object Models. Reading, MA: Addison-Wesley.

Goldstein, R. C., and V. C. Storey. 1994. ‘‘Materialization.’’ IEEE Transactions Knowledge and Data
Engineering 6, no. 5: 835–842.

Gottlob, G., M. Schrefl, and B. Röck. 1996. ‘‘Extending Object-Oriented Systems with Roles.’’ ACM
Transactions on O‰ce Information Systems 14, no. 3: 268–296.

Halper, M., J. Geller, and Y. Perl. 1998. ‘‘An OODB Part-Whole Model: Semantics, Notation, and Imple-
mentation.’’ Data & Knowledge Engineering 27, no. 1: 59–95.

Hay, D. 1996. Data Models Patterns: Conventions of Thought. New York: Dorset House.

Johnson, R., and B. Woolf. 1998. ‘‘Type Object.’’ In Pattern Languages of Program Design, vol. 3, ed. R.
Martin, D. Riehle, and F. Buschmann. Reading, MA: Addison-Wesley.

Kilov, H., and J. Ross. 1994. Information Modeling: An Object-Oriented Approach. Upper Saddle River,
NJ: Prentice Hall.

Klas, W., and M. Schrefl. 1995. Metaclasses and Their Application. Lecture Notes in Computer Science
943. New York: Springer-Verlag.

Kolp, M. 1999. ‘‘A Metaobject Protocol for Integrating Full-Fledged Relationships into Reflective Sys-
tems.’’ Ph.D. diss., INFODOC, Université Libre de Bruxelles.

Martin, J., and J. Odell. 1995. Object-Oriented Methods: A Foundation. Upper Saddle River, NJ: Prentice
Hall.

Motschnig-Pitrik, R., and J. Mylopoulos. 1996. ‘‘Semantics, Features, and Applications of the Viewpoint
Abstraction.’’ In Proceedings of the Eighth International Conference on Advanced Information Systems
Engineering (CAiSE’96) (Lecture Notes in Computer Science 1080), Crete, ed. P. Constantopoulos, J.
Mylopoulos, and Y. Vassiliou, 514–539. New York: Springer-Verlag.

Motschnig-Pitrik, R., and V. C. Storey. 1995. ‘‘Modeling of Set Membership: The Notion and the Issues.’’
Data & Knowledge Engineering 16, no. 2: 147–185.

Mylopoulos, J. 1998. ‘‘Information Modeling in the Time of the Revolution.’’ Information Systems 23,
nos. 3–4: 127–155.

Pirotte, A., E. Zimányi, D. Massart, and T. Yakusheva. 1994. ‘‘Materialization: A Powerful and Ubiqui-
tous Abstraction Pattern.’’ In Proceedings of the Twentieth International Conference on Very Large Data
Bases (VLDB’94), ed. J. Bocca, M. Jarke, and C. Zaniolo, 630–641. San Francisco: Morgan Kaufmann.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. 1991. Object-Oriented Modeling and
Design. Upper Saddle River, NJ: Prentice Hall.

Tabourier, Y. 1997. ‘‘Les power types ont 20 ans.’’ Ingénierie des Systèmes d’Information 5, no. 5: 15–30.

Wieringa, R. J., W. De Jonge, and P. Spruit. 1995. ‘‘Using Dynamic Classes and Role Classes to Model
Object Migration.’’ Theory and Practice of Object Systems 1, no. 1: 61–83.

Yang, O., M. Halper, J. Geller, and Y. Perl. 1994. ‘‘The OODB Ownership Relationship.’’ In Proceedings
of the International Conference on Object-Oriented Information Systems (OOIS’94), London, ed. D. Patel,
Y. Sun, and S. Patel, 278–291. New York: Springer-Verlag.

Zimányi, E. 1997. ‘‘Implementing Materialization in Logtalk.’’ YEROOS technical report no. TR-97/09,
Laboratoire de Bases de Données, Département d’Informatique, Ecole Polytechnique Fédérale de Lau-
sanne, Switzerland.

328 Mohamed Dahchour and Alain Pirotte

8 Metadatabase Design for Data Warehouses

Christoph Quix

8.1 Introduction

Data warehouses (DWs) provide large-scale caches of historical data. They sit be-

tween information sources gained externally or through online transaction processing

(OLTP) systems and decision support or data-mining systems, following the vision of

online analytic processing (OLAP). There are three main arguments in favor of the

caching approach that DWs represent:

1. Performance and safety considerations: The concurrency control methods of

most database management systems (DBMSs) do not react well to a mix of short

update transactions (as in OLTP) and OLAP queries, which typically search a large

portion of the database. Moreover, OLTP systems are often critical for the opera-

tion of an organization and must not be under danger of interference from other

applications.

2. Logical interpretability problems: Inspired by the success of spreadsheet tech-

niques, OLAP users tend to think in terms of highly structured, multidimensional

data models, whereas information sources o¤er at best relational, often just semi-

structured data models.

3. Temporal and granularity mismatch: OLTP systems focus on current operational

support in great detail, whereas OLAP often considers historical developments at a

somewhat less detailed granularity.

Thus, quality considerations have accompanied data warehouse research from the

beginning. A large body of literature has evolved over the past few years in regard

to addressing the problems introduced by the DW approach, such as the trade-o¤ be-

tween timeliness of DW data and disturbance of OLTP work during data extraction,

the minimization of data transfer through incremental view maintenance, and a

theory of computation with multidimensional data models.

However, the frequent use of highly qualified consultants in data warehouse appli-

cations indicates that we are far from a systematic understanding and usage of the

interplay between quality factors and design options in data warehousing. The goal

of the European DWQ project (Jarke and Vassiliou 1997) was to address these issues

by developing, prototyping, and evaluating comprehensive ‘‘foundations for data

warehouse quality,’’ delivered through enriched metadata management facilities in

which specific analysis and optimization techniques are embedded.

Discussions with DW tool vendors, DW application developers, and DW adminis-

trators has shown that the standard framework used in the DW literature is insu‰-

cient to capture in particular the business role of data warehousing. A DW is a major

investment made to satisfy some business goal of an enterprise; the quality model

selected and the DW design should reflect this business goal as well as its subsequent

evolution over time. The next section discusses this problem in detail. The new ar-

chitectural framework I present in that section separates (and links) explicitly the

concerns of conceptual enterprise perspectives, logical data modeling (the main em-

phasis of DW research to date), and physical information flow (the main concern of

commercial DW products to date).

8.2 An Extended Data Warehouse Architecture

The traditional data warehouse architecture, recommended both in research and in

the commercial trade press, is shown in figure 8.1. Physically, a data warehouse sys-

tem consists of databases (source databases, materialized views in the data ware-

house); data transport agents, which ship data from one database to another; and a

repository that stores metadata about the system and its evolution. In this architec-

ture, heterogeneous information sources are first made accessible in a uniform way

through extraction mechanisms called wrappers, then mediators (Wiederhold 1992)

take on the task of integrating information from di¤erent data sources and resolving

conflicts between inconsistent information in the data sources. The resulting stan-

dardized and integrated data are stored as materialized views in the data warehouse.

The DW base views are usually just slightly aggregated; in order to customize them

for di¤erent groups of analyst users, data marts containing more-aggregated data

about specific domains of interest are frequently constructed as second-level caches.

These caches are then accessed by data analysis tools ranging from query facilities

and spreadsheet tools to full-fledged data-mining systems based on knowledge-based

or neural-network techniques.

The content of the repository determines to a large extent the way the data ware-

house system can be used and evolved. The main goal of the approach described in

this section is therefore to define a metadatabase schema that can capture and link all

relevant aspects of DW architecture and quality.

I tackle this di‰cult task in several steps. First, I present standards for metadata

management in data warehousing and discuss their shortcomings. Then, I describe

an example from industrial practice that shows the complexity of data warehouse

330 Christoph Quix

metadata. Next, I discuss the shortcomings of the traditional architecture and pro-

pose a conceptual enterprise perspective to solve some of these shortcomings. Fi-

nally, I elaborate on the extended metamodel resulting from the approach presented

in this section and show how it can be implemented in a repository.

8.2.1 Standards for Data Warehouse Metadata

Two industry standards have emerged in recent years: the Open Information Model

(OIM) by the Metadata Coalition (MDC), and the Common Warehouse Metamodel

(CWM) by the Object Management Group (OMG).1 A detailed comparison of both

approaches can be found in Vaduva and Vetterli 2001 and Vetterli, Vaduva, and

Staudt 2000.

Figure 8.1
Traditional data warehouse architecture

Metadatabase Design for Data Warehouses 331

In essence, the goal of OIM is to support life-cycle-wide tool interoperability. The

portion of OIM focused on data warehousing addresses the description of static

aspects such as database schema elements (following the SQL standard), OLAP

schema elements, and record-oriented database elements and report definitions, as

well as a hierarchy of dynamic aspects, including data transformation maps, trans-

formation steps, and transformation packages. OIM uses UML both as a modeling

language and as the basis for its core model. It is divided into submodels, or pack-

ages, that extend UML in order to address the di¤erent areas of information

management. The Database and Warehousing Model is composed of the Database

Schema Elements package, the Data Transformations Elements package, the OLAP

Schema Elements package, and the Record Oriented Legacy Databases package. The

Database Schema Elements package contains three other packages: a Schema Ele-

ments package (covering the classes, modeling tables, views, queries, indexes, etc.), a

Catalog and Connections package (covering physical properties of a database and the

administration of database connections), and a Data Types package (standardizing a

core set of database data types).

CWM is narrower but provides more support for data warehousing itself. In addi-

tion, it di¤ers from OIM by relying on object-oriented and semistructured modeling

technologies such as UML, XML, and CORBA (Common Object Request Broker

Architecture). It is organized in a foundational metamodel comprising business in-

formation, data types and CWM types, expressions, keys, and indexes, on which a

number of more specific model packages for both MOLAP (Multidimensional On-

Line Analytical Processing) and ROLAP (Relational On-Line Analytical Process-

ing) solutions are based. These address warehouse deployment in terms of hardware

and software; packages for accessing relational, XML-based, and record-oriented

sources; packages to enable multidimensional and relational data warehouses to

reach OLAP functionality; and process-oriented packages comprising individual

transformations, process flow, and day-to-day operation.

The shortcomings of these standards have been discussed in (Vetterli, Vaduva, and

Staudt 2000). Both standards focus mainly on technical metadata, and neither pro-

vides detailed mechanisms for handling business metadata. Moreover, neither stan-

dard has any support for capturing information about the quality of data in a data

warehouse. Therefore, we want an extended metadata model for data warehouses to

capture not only technical metadata but also business metadata. The next subsection

motivates the approach presented in this section by means of an example from indus-

trial practice.

g Figure 8.2
Metadata sources in the data warehouse control process of a bank (Schäfer et al. 2000): (a) loading and
refreshing the operational data store; (b) preparing a large number of specialized mutlidimensional models;
(c) personalizing information delivery and providing access to background information

Metadatabase Design for Data Warehouses 333

8.2.2 The Need for Extended Metadata Management

The challenge of metadata management is probably best illustrated by figure 8.2,

which describes the basic information flow in DB-Prism, a data warehouse for finan-

cial control in a large international bank (Schäfer et al. 2000). The figure lists no

less than sixteen submodels addressing di¤erent perspectives of metadata, reflecting

the di‰culties of reconciling di¤erent kinds of financial semantics, heterogeneity of

source data models and source availability, bottlenecks involved in scheduling huge

data flows during daily refreshment, and personalization of client interests beyond

their role definitions.

A conceptual perspective documenting the meaning of data and their relationships

has been a critical success factor of the system. However, the mapping of this concep-

tual approach to the logical level—that is, the incremental creation of data in the

warehouse from various sources and the restructuring of data into numerous cube

formats and report structures—has been equally important. Given the size and com-

plexity of the system, it is not surprising that physical-level optimization is also very

important.

These aspects cannot be considered independently of one another but are closely

interlinked. The precise documentation and, where possible, automation of these

tasks is the goal of the metadata management facilities in DB-Prism. Therefore, it is

necessary to develop an integrated metadata framework that captures all relevant

aspects of data warehouse metadata.

8.2.3 Adding a Conceptual Perspective to Data Warehousing

Almost all current research and practice consider a data warehouse architecture as

a stepwise information flow from information sources through materialized views

toward analyst clients, as shown in figure 8.1. For example, projects such as The

Stanford-IBM Manager of Multiple Information Sources (TSIMMIS) (Chawathe

et al. 1994), Squirrel (Hull and Zhou 1996), and Ware House Information Prototype

at Stanford (WHIPS) (Hammer et al. 1995) focus on the integration of heteroge-

neous data via wrappers and mediators, using di¤erent logical formalisms and

technical implementation techniques. The Information Manifold project at AT&T

Research (Levy, Srivastava, and Kirk 1995) is the only one that provides a concep-

tual domain model as a basis for integration. A key observation is that the architec-

ture in figure 8.1 covers the tasks faced in data warehousing only partially and is

therefore unable even to express, let alone support, a large number of important

data quality problems and strategies for the management of data.

The main argument I wish to make is the need for a conceptual enterprise perspec-

tive. In figure 8.3, the flow of information introduced in figure 8.1 is stylized on the

right-hand side, whereas the process of creating and using the information is shown

334 Christoph Quix

on the left. Suppose an analyst wants to know something about the business—the

question mark in the figure. He or she does not have the time to observe the busi-

ness directly but must rely on existing information gained by operational depart-

ments, which is documented as a side e¤ect of OLTP systems. This way of

gathering information implies a bias that needs to be compensated for when OLTP

data are selected for uploading into a DW and cleaning; there they are then further

preprocessed and aggregated in data marts for certain analysis tasks. Considering the

long path the data have taken, it is obvious that the last step, the formulation of

queries that are conceptually adequate for the information needs of the business an-

alyst and the conceptually adequate interpretation of the answers, also presents a

major problem to the analyst.

The traditional DW literature covers only two of the five steps depicted in figure

8.3. Thus, it has no answers to typical practical questions such as ‘‘How can my op-

erational departments put so much money into their data quality, and still the quality

of my DW is terrible?’’ (answer: The enterprise views of the operational departments

are not easily compatible with one another or with the analysts’ view) or ‘‘What is

the e¤ort required to analyze problem x for which the DW currently o¤ers no infor-

mation?’’ (answer: It could simply be a problem of inappropriate aggregation in the

materialized views or it could require access to not-yet-integrated OLTP sources, or

it might even involve setting up new OLTP sensors in the organization).

Figure 8.3
Data warehousing in the context of an enterprise

Metadatabase Design for Data Warehouses 335

An adequate answer to such questions requires an explicit model of the concep-

tual relationships between an enterprise model, the information captured by OLTP

departments, and the OLAP clients whose task is the decision analysis. I have argued

that a DW is a major investment made for a particular business purpose. Therefore

the enterprise model is not a minor part of the environment but instead it is required

that all other models be defined as views on this enterprise model. Perhaps surprisingly,

even information source schemas define views on the enterprise model—not vice

versa, as suggested by figure 8.1.

8.2.4 A Repository Model for the Extended Data Warehouse Architecture

Through the introduction of an explicit business perspective as shown in figure 8.3,

the wrapping and aggregation transformations performed in the traditional data

warehouse literature can all be checked for interpretability, consistency, and com-

pleteness with respect to the enterprise model, provided an adequately powerful rep-

resentation and reasoning mechanism is available. At the same time, the logical

transformations need to be implemented safely and e‰ciently through physical data

storage and transportation—the third perspective in the approach described in this

section. It is clear that these physical quality aspects require completely di¤erent

modeling formalisms than the conceptual ones; typical techniques stem from queuing

theory and combinatorial optimization. As a consequence, the data warehouse meta-

framework proposed clearly separates three perspectives, as shown in figure 8.4: a

Figure 8.4
The proposed data warehouse metadata framework

336 Christoph Quix

conceptual enterprise perspective, a logical data-modeling perspective, and a physical

data flow perspective.

No single decidable formalism could handle all these aspects uniformly in a meta-

database. Instead, the architectural framework is captured in a deductive object data

model in a comprehensive but relatively shallow manner. Special-purpose reasoning

mechanisms such as the ones mentioned previously can be linked to the architectural

framework as it is discussed in section 8.3.

The metadatabase system ConceptBase and its modeling language Telos are used

to store an abstract representation of data warehouse applications in terms of the

three-perspective scheme just outlined. The advantage of ConceptBase is that it

provides query facilities and definitions of constraints and deductive rules, thus en-

abling analysis and consistency checking of models. Telos is well suited to analysis

of models because it allows specialized modeling notations (including the adaptation

of graphical representations [Jarke et al. 1999]) to be formalized by means of meta-

classes. Since ConceptBase treats all concepts including metaclasses as first-class

objects, it is suitable for managing abstract representations of DW objects to be mea-

sured (Jeusfeld et al. 1998).

A condensed ConceptBase model of the architecture notation is given in figure 8.5,

using the graph syntax of Telos. Heavy arrows denote specialization links. The top

Figure 8.5
Structure of the repository metamodel

Metadatabase Design for Data Warehouses 337

sources

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4635271
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4691040/fig8_5.gel

level object is ObjectType. It is a meta-metaclass that is instantiated by all meta-

classes of the model. DW_Object is the base class for all metaclasses related to the

architecture of a data warehouse. It classifies objects from any perspective (concep-

tual, logical, or physical) and at any level (source, data warehouse, or client). Within

each perspective, I distinguish between the modules it o¤ers (e.g., client model) and

the type of information found within these modules (e.g., concepts and their sub-

sumption relationships). The horizontal links hasSchema and isViewOn establish

the way the horizontal links in figure 8.4 are interpreted: The types of schemas (i.e.,

relational or multidimensional structures) are defined as logical views on the concepts

in the conceptual perspectives. On the other hand, the components of the physical

perspective get a schema from the logical perspective.

Each object in the metamodel for data warehouses can have an associated set

of materialized views called quality factors. These materialized views (which can

also be specialized to the di¤erent perspectives [not shown in the figure]) constitute

the bridge to the quality model. Thus, a link is established between the Quality-

FactorTypes (i.e., classes of quality factors) and the object types. This link is dis-

cussed in more detail in section 8.3.

Experimentation with this notation has shown that it can represent physical data

warehouse architectures of commercial applications. The logical perspective cur-

rently supports relational schema definitions, whereas the conceptual perspective sup-

ports the family of extended entity-relationship and similar semantic data-modeling

languages. Note that all objects in figure 8.5 are metaclasses: actual conceptual mod-

els, logical schemas, and data warehouse components are represented as instances of

the metaclasses in the metadatabase. In the following subsections, I elaborate on the

purpose of representing each of the three perspectives.

8.2.5 Conceptual Perspective

The conceptual perspective o¤ers a business model of the information systems of an

enterprise. The central role is played by the enterprise model, which gives an inte-

grative overview of the conceptual objects of an enterprise. The models of both the

client and the source information systems are views on the enterprise model; that is,

their contents are described in terms of the enterprise model. This is the major di¤er-

ence between my approach and the classical approach in data warehouse systems, in

which the ‘‘global’’ enterprise model is usually seen as a view on the local source

models. One goal of the conceptual perspective is to provide a model of the informa-

tion that is independent of the physical organization of the data, so that relationships

between concepts can be analyzed by intelligent tools in order to simplify the integra-

tion of the information sources, for example. On the client side, the interests of user

groups can also be described as views on the enterprise model.

338 Christoph Quix

In the implementation of the conceptual perspective in the metadatabase, the cen-

tral class is called Model (see figure 8.6). A Model is related to a source, to a client,

or to the relevant section of the enterprise, and it represents the concepts that are

available in the corresponding source, client, or enterprise. The classes Client-

Model, SourceModel, and EnterpriseModel are needed to distinguish among the

models of several sources, clients, and the enterprise itself. A model consists of Con-

cepts and Relationships. A Concept represents a concept of the real world, that

is, the business world. Relationships are n-ary relationships between concepts or

domains (e.g., integer or string). For example, ‘‘employee’’ and ‘‘department’’ can

be represented as concepts, and ‘‘works in’’ is a binary relationship between em-

ployee and department. Basically, this implementation allows the representation of

extended entity-relationship models. Furthermore, semantic relationships between

concepts can be expressed as Assertions in a formal language, that is, a description

logic (Calvanese et al. 2001). These assertions can be formulated to express generic

domain knowledge (DomainAssertions), properties and limitations of a source

(IntraModelAssertions), and relationships between sources, such as containment

and consistency (InterModelAssertions). This allows a reasoner to check the con-

sistency and correctness of the conceptual model and to check for the subsumption of

concepts. This information can then be used to determine which sources need to be

accessed for the materialization of a particular concept in the data warehouse.

The results of the reasoning process are stored in the model as attributes is-

SubsumedBy of the corresponding concepts. Essentially, the repository can serve

as a cache for reasoning results. Any tool can ask the repository whether or not a

Figure 8.6
Part of the metamodel in the conceptual perspective

Metadatabase Design for Data Warehouses 339

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4691048/fig8_6.gel

particular concept is subsumed by another concept. If the result has already been

computed, the query can be answered directly by the repository. Otherwise, a rea-

soner is invoked by the repository to compute the result.

The metadata repository ConceptBase also provides some basic functionality for

checking the correctness of the conceptual model. The following example shows the

definition of the class Relationship. As indicated in figure 8.6, a relationship has

an arity and relates a number of concepts or domains. Constraints that are checked

by the metadata repository are used to ensure that a relationship relates the correct

number of concepts and each concept has a unique position in the relationship:

Class Relationship in ObjectType isA ConceptRelationship with

attribute,single,necessary

arity : Integer

attribute

component : ConceptDomain

constraint

arity_constraint :

$ forall r/Relationship i/Integer

(r arity i) ==> (i >= 2) $;

position_constraint :

$ forall r/Relationship c1,c2/Relationship!component a/Integer

p1,p2/Integer

(Ai(r,component,c1) and Ai(r,component,c2) and (c1 position

p1) and (c2 position p2) and not(c1 == c2) and A(r,arity,a))

==> (not (p1 == p2) and (p1 <= a) and (p2 <= a)) $;

all_positions_constraint :

$ forall r/Relationship i/Integer a/Integer

A(r,arity,a) and (i <= a) ==> (exists c/Relationship!component

Ai(r,component,c) and (c position i)) $

end

So far, I have shown how the models of the sources and the enterprise are repre-

sented in the conceptual perspective. I now briefly describe the conceptual model at

the client level. Data warehouse systems use special multidimensional structures to

represent their data in a way that is most e‰cient for the user. Therefore, in the con-

ceptual client model, it is important to know how aggregations are defined and which

attributes of a concept are aggregated. Figure 8.7 shows the client level of the meta-

model for the conceptual perspective.

Aggregations aggregate concepts with respect to a specific DimensionLevel,

which is defined by a DimensionAttribute and a Level. For example, if customers

are aggregated by cities, the dimension attribute is ‘‘address’’ and the level is ‘‘city.’’

340 Christoph Quix

Furthermore, we need to know which attributes are aggregated and which Aggrega-

tionFunction is used for the aggregation.

8.2.6 Logical Perspective

The logical perspective conceives a data warehouse from the viewpoint of the actual

data models involved; that is, the data model of the logical schema is given by the

corresponding physical component that implements the logical schema. The key con-

cept in the logical perspective is Schema. As a model consists of concepts, a schema

consists of Types. The relational model was implemented as an example of a logical

data model; other data models such as the multidimensional or the object-oriented

data model can also be integrated into this framework (Gebhardt, Jarke, and Jacobs

1997; Vassiliadis 1998).

As in the conceptual perspective, I distinguish in the logical perspective between

ClientSchema, DWSchema, and SourceSchema for the schemata of clients, the data

warehouse, and the sources. For each client or source model, there is one corre-

sponding schema. This restriction is guaranteed by a constraint in the architecture

model. The link to the conceptual model is implemented through the relationship be-

tween concepts and types: Each type is expressed as a view on concepts.

The metamodel in the logical perspective can be further refined to capture the def-

inition of queries that are used to extract the data from the sources (see Jarke et al.

1999 for details).

8.2.7 Physical Perspective

The data warehouse industry has mostly explored the physical perspective, so many

aspects in the physical perspective are taken from the analysis of commercial data

Figure 8.7
Conceptual model for the client level

Metadatabase Design for Data Warehouses 341

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4691056/fig8_7.gel

warehouse solutions and tools, such as the product suite of MicroStrategy (www

.microstrategy.com), the Oracle Warehouse Builder tools (www.oracle.com), and the

Extract-Transform-Load (ETL) tools of Ascential Software (www.ascentialsoftware

.com) and Informatica (www.informatica.com). The basic physical components in

a data warehouse architecture are Agents and DataStores. Agents are programs

that control other components or transport data from one physical location to an-

other. DataStores are databases, which store the data that are delivered by other

components.

As shown in figure 8.8, the basic class in the physical perspective is DW_

Component. A data warehouse component may be composed of other components,

as is expressed by the attribute hasPart. Furthermore, a component deliversTo

another component a Type, which is part of the logical perspective. Another link to

the logical model is the attribute hasSchema of DW_Component. Note that a compo-

nent may have a schema, that is, a set of several types, but it can deliver only a type

to another component. This is a result of the observation that agents usually trans-

port only ‘‘one tuple at a time’’ of a source relation rather than a complex object.

There are two types of Agents: ControlAgents, which control other components

and agents (e.g., notify another agent to start the update process), and Transpor-

tationAgents, which transport data from one component to another component.

An Agent may also notify other Agents about errors or its termination.

Figure 8.8
Physical perspective of the data warehouse metamodel

342 Christoph Quix

gel

http://www.oracle.com
http://www.ascentialsoftware.com
http://www.ascentialsoftware.com
http://www.informatica.com
https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4691064/fig8_8.gel

A DataStore physically stores the data that are described by models and sche-

mata in the conceptual and logical perspective. As in the other perspectives, I distin-

guish between ClientDataStore, DW_DataStore, and SourceDataStore for data

stores of clients, the data warehouse, and the sources, respectively.

8.3 Managing Data Warehouse Quality

In this section, I discuss how to extend the DW architecture model to support explicit

quality models. There are two basic issues to be resolved. On the one hand, quality is

a subjective phenomenon, so quality goals must be organized according to the stake-

holder groups that pursue these goals. On the other hand, quality goals are highly

diverse. They can be neither assessed nor achieved directly but require complex mea-

surement, prediction, and design techniques, often in the form of an interactive pro-

cess. The overall problem of introducing quality models in metadata is therefore how

to achieve wide coverage without giving up the detailed knowledge available for cer-

tain criteria. Only a combination of these two elements enables systematic quality

management.

The following subsections show how a basic structure of quality dimensions can be

formally captured in an extension to the goal-question-metric approach from soft-

ware engineering and how such an extension can be implemented and used in the

DW metadatabase. A detailed discussion of quality dimensions for data warehouses

can be found in Jarke et al. 1999 and Quix et al. 1999.

8.3.1 Hierarchical Quality Assessment: An Adapted Goal-Question-Metric Approach

It is clear that there can be no decidable formal framework that comes close to cover-

ing all aspects of quality measurement in a uniform language. When designing the

metadatabase extensions for quality management, another solution that still main-

tains the overall picture o¤ered by shallow quality management techniques such as

quality function deployment (QFD) but is at the same time is open to the embedding

of specialized assessment and design techniques is required.

The solution to this problem proposed in this section builds on the goal-question-

metric (GQM) approach widely used in software quality management (Oivo and

Basili 1992). The idea of GQM is that quality goals can usually not be assessed di-

rectly. Instead, their meaning is circumscribed by questions that need to be answered

when evaluating the quality. Quality questions again can usually not be answered di-

rectly but rely on metrics applied to either the product or process in question; tech-

niques such as statistical process control charts are then applied to derive, from the

measurements, the answer for a particular question.

In the preceding example, the goal of responsiveness can be refined into questions

about the trade-o¤ between query and update performance (logical perspective),

Metadatabase Design for Data Warehouses 343

about the bottlenecks present at the physical level, and about the completeness or

even redundancy of the utilized data sources (conceptual perspective). These ques-

tions can then be answered using the previously mentioned metrics.

The repository solution uses a similar approach to bridge the gap between quality

goal hierarchies on the one hand and very detailed metrics and reasoning techniques

on the other. The bridge is defined by the idea of quality queries as materialized

views over the data warehouse; the views are defined by generic queries over the

quality measurements. Figure 8.9 motivates this approach by zooming in on the re-

pository. The stakeholder assesses the quality of the data warehouse by posing

queries concerning quality to the repository. The repository answers the queries by

accessing quality data obtained from measurement agents (the black triangles in fig-

ure 8.9). The agents communicate with the components of the real data warehouse to

extract measurements.

The stakeholder may redefine his or her quality goals at any time. This leads to an

update of the quality model in the repository and possibly to the configuration of

new measurement agents responsible for delivering the base quality data. Analo-

gously, a stakeholder with appropriate authorization can redefine the architecture of

the data warehouse via the repository. Such an evolutionary update (e.g., the specifi-

cation of a new data source) leads to a reconfiguration of the real data warehouse.

Ultimately, the quality measurements will then reflect an e¤ect of such an update

and will give evidence as to whether the evolution has led to an improvement in any

of the quality goals.

Figure 8.9
Quality management via the data warehouse repository

344 Christoph Quix

The use of the repository for data warehouse quality management has significant

advantages:

� Data warehouse systems already incorporate repositories to manage metadata

about the data warehouse; extending this component for quality management is a

natural step.

� Existing metadata about the data warehouse (e.g., source schemas) can be directly

used for formulating quality goals and measurement plans.

� The quality model can be kept consistent with the architecture model (i.e., the re-

pository can prevent the stakeholders from formulating quality goals that cannot be

validated with the given architectural data).

� The stakeholder accesses the repository as a data source for delivering quality

reports to the stakeholders, who formulate quality goals; in fact, producing such

reports is the same kind of activity that is performed to deliver aggregated data to

the client tools of a data warehouse.

The final advantage is not just a technical remark. Quality data (i.e., values of

quality measurements) are derived from DW components. The values are materi-

alized views on the properties of these components. These values have themselves

quality properties, such as timeliness and accuracy. It makes a di¤erence whether

the value of a quality measurement is updated each hour or once a month. Although

I do not go into detail regarding this ‘‘second-level’’ quality, I note that the same

methods that are used to maintain the quality of the DW can also be used to main-

tain the quality of the DW repository (hosting the quality model).

8.3.2 The Quality Metamodel

Quality data are derived data and are maintained by the data warehouse system. The

strategy for implementing the quality model in the DW repository provides more

technical support than GQM implementations for general software systems. Such

systems lack a built-in repository. The expressive query language o¤ered by the

ConceptBase repository system simplifies the quality management tasks and supports

the DW administrator in monitoring the quality of the DW. In the following, I elab-

orate on how a version of GQM can be modeled by Telos metaclasses in Concept-

Base and then be used for quality goal formulation and quality analysis.

Data warehouse systems are unique in the sense that they rely on a run time meta-

database (or repository) that stores information about the data and processes of the

system. This opens the opportunity to implement the GQM approach in such a way

that it directly refers to the concepts in the metadatabase of the data warehouse.

Under such an implementation, the stakeholders can represent their quality goals

explicitly, and the metadatabase maintains the relationship between data warehouse

Metadatabase Design for Data Warehouses 345

objects and quality values. Thus, the quality metamodel can be used for both design

and analysis purposes. To do so, one has to take into account that a quality factor

maps an arbitrary object of a data warehouse (e.g., the number of null values of

source relation ‘‘Sales’’) to some value. Thus, a quality factor relates concepts with

di¤erent abstraction levels, here, a schema concept to a number.

Because of this, the concepts of the quality metamodel (see figure 8.10) are all at

the metaclass level (with the notable exception of ObjectType, a meta-metaclass).

Remember that ObjectType has already been used as the base class in the meta-

model for DW architecture. The quality metamodel provides the notation for for-

mulating quality goals, queries, and measurements. The quality meta-model will be

instantiated in two steps. First, an administrator or a designer of the data warehouse

will define types of quality goals and quality factors. For example, ‘‘improve the

availability of a data store’’ is a type for a quality goal; that is, it represents a class

of quality goals and has to be established for a concrete data store. On the other

Figure 8.10
A metamodel for data warehouse quality

346 Christoph Quix

gel

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/d4691072/fig8_10.gel

hand, ‘‘number of minutes o¿ine per week’’ is a type for a quality factor, which can

be measured for a data store. In the second step of the implementation, these types

are instantiated by concrete quality goals that have been established for a certain

data warehouse object or by concrete quality factors that represent an actual mea-

surement of a certain data warehouse object. (This is discussed in more detail in sec-

tion 8.3.3, and an example is given in section 8.4.)

In figure 8.10, a metamodel for data warehouse quality implementing the GQM

approach is shown. The upper part of the model allows stakeholders to formulate

quality requirements for an object type. The Purpose of a QualityGoal is inter-

preted as a direction (e.g., ‘‘improve’’ or ‘‘achieve’’ some quality goal). Quality

goals are established for a Stakeholder. Finally, a quality goal is linked to a

QualityDimension (e.g., availability, usability, or correctness).

QualityGoals are mapped to a collection of QualityQuestions that are used to

decide whether the goals have been achieved. These questions are implemented as

queries to the DW repository. The most simple kind of quality query just evaluates

whether the current QualityMeasurement for a particular data warehouse object is

within the expected interval. A quality measurement uses a metric unit (e.g., the av-

erage number of null values per tuple of a relation).

8.3.3 Implementation Support for the Quality Metamodel

The abstraction levels of the concepts in the quality model require closer consider-

ation (Jeusfeld et al. 1998). In standard software metrics, a quality factor is a function

that maps a real-world entity to a value of a domain, usually a number. In the ap-

proach discussed in this section, abstract representations of real-world entities in the

DW repository are maintained. Thus, quality factors can be recorded as explicit rela-

tionships between the abstract representations (i.e., the DW objects) and the quality

values. This is also the reason why the quality factor is represented as a diamond

node in figure 8.10, as it represents a relationship between DW objects and quality

values. By its nature, such a quality factor relates objects of di¤erent abstraction lev-

els. For example, a quality value of 0.8 could be measured for the percentage of null

values of the Employee relation of some data source. Employee is a relation (the

type of instances of the Employee data structure), whereas 0.8 is just a number.

A remark has to be made on the use of the quality model by instantiation. Typical

instances of ObjectType are items such as Relation (logical perspective) or Con-

cept (conceptual perspective). These items are independent of the DW application

domain. They are used to describe a DW architecture, but they are not components

of a concrete DW architecture. A concrete architecture consists of items such as the

data source for Employee and concrete wrapper agents. Therefore, when we instan-

tiate the quality model, we describe types of quality goals, types of queries, and types

Metadatabase Design for Data Warehouses 347

of measurements. For example, we can describe a completeness goal for relational

data sources, which is measured by counting the percentage of null values in the

relation. Such types (or patterns) can be reused for any concrete DW architecture.

For example, the quality factor for a relational source for Employee would be

instantiated from the quality factor type by instantiating the expected and achieved

quality values. The classification of quality factors is described in detail in Jarke et al.

1999 and Quix et al. 1999.

This two-step instantiation is essential since it allows the repository to be pre-

loaded with quality goal, query, and measurement types independent of the applica-

tion domain. In other words, the repository has knowledge of quality management

methods.

8.4 Example Scenario

The example scenario is based on a case study with Telecom Italia, one of the in-

dustrial partners in the DWQ project (Trisolini, Lenzerini, and Nardi 1999). The

scenario is as follows: Telecom wants to build a data warehouse that collects infor-

mation about customers, services, and promotions (indicated by the conceptual en-

terprise model TelecomModel). The data for the warehouse can be integrated from

three di¤erent sources: the billing department, the statistics department, and the mar-

keting department. Each of the sources has only a part of the information that is

necessary for the data warehouse. For example, the billing department has only in-

formation about customers and services. Figure 8.11 gives an overview of the con-

ceptual models and also presents a part of the logical schema of the data warehouse.

Figure 8.12 shows the physical perspective of the data warehouse.

In the scenario, it is assumed that the users of the warehouse have established a

quality goal to achieve more-current data in the warehouse. According to the two-

phase instantiation process, we first define a quality goal type:

QualityGoalType AchieveMoreCurrentData with

description

description : "Not more than a certain percentage of data may

become invalid due to age"

direction

dir : Achieve

imposedOn

imposedOn : DataStore

forPerson

forPerson : DecisionMaker

dimension

348 Christoph Quix

Figure 8.11
Conceptual and logical model of the example scenario (figure 8.12 continues this figure on the right side)

Metadatabase Design for Data Warehouses 349

dim : Volatility

concreteBy

concreteBy : "Which Data Stores have a volatility outside the

expected range?"

end

Now a decision maker can establish this quality goal for a specific data store.

In the example, "Ron Sommer" will establish the quality goal on the TelecomData-

Store:

AchieveMoreCurrentData VolatilityForDW with

imposedOn

obj : TelecomDataStore

forPerson

person : "Ron Sommer"

end

The definition of the quality goal type specifies that the goal is concrete by means

of a question: "Which Data Stores have a volatility outside the expected

Figure 8.12
Physical perspective of the example (figure 8.11 continues this figure on the left side)

350 Christoph Quix

range?" The next frames show the definition of this question in Telos and its imple-

mentation as a quality query:

"Which Data Stores have a volatility outside the expected range?"

in QualityQuestionType with

implementedBy

implementedBy : BadVolatilityOfDataStores

evaluates

eval : DataStoreVolatility0

end

View BadVolatilityOfDataStores in QualityQuery isA

DataStoreVolatility0 with

constraint

c: $ exists i/Integer s/"P[0;100]" (this achieved i) and (this

expected s) and not (i in s) $

end

The definition of the entire quality goal is graphically summarized in figure 8.13.

The di¤erent abstraction levels are indicated by di¤erent shades of gray.

Now the administrator of the data warehouse can check whether the current data

warehouse fulfills the requirement of having a volatility inside the expected range by

executing the quality query on the metadata repository (see figure 8.14).

The quality query evaluates all quality factors of the type DataStore-

Volatility0 and checks whether the value achieved by the data store is within the

expected range. Thus, we can use both the quality and the architecture information

of the data warehouse to find weaknesses in the design of the data warehouse.

Furthermore, quality factors are linked by a dependsOn relationship. This relation-

ship makes it possible for us to trace quality problems back to their sources. To fol-

low the dependsOn relationship between quality factors, we could use the following

query:

QualityQuery CauseOfBadQuality isA DW_Object with

parameter

badObject : DW_Object

constraint

c: $ exists q1,q2/DataStoreVolatility0 (q1 onObject badObject)

and (q1 in BadVolatilityOfDataStores) and (q1 dependsOn q2)

and (q2 in BadQuality) and ((q2 onObject this) or (exists

o/DW_Object (q2 onObject o) and (this in

CauseOfBadQuality[o/badObject]))) $

end

Metadatabase Design for Data Warehouses 351

Figure 8.13
Example of a quality goal

352 Christoph Quix

8.5 Conclusion

The goal of the work I have presented in this chapter is to enrich metadata manage-

ment in data warehouses such that it can serve as a meaningful basis for systematic

quality analysis and quality-driven design. To reach this goal, it was necessary to

overcome two limitations of current data warehouse research.

First, the basic architecture in which data warehouses are typically described

turned out to be too weak to allow a meaningful assessment of quality of data. As

quality is usually detected only by its absence, quality-oriented metadata manage-

ment requires that we address the full sequence of steps from the capture of the en-

terprise reality in operational departments to the interpretation of DW information

by the client analyst. This again implied the introduction of an explicit enterprise

Figure 8.14
A quality query and its result

Metadatabase Design for Data Warehouses 353

perspective as a central feature in the architecture. To forestall the possible objection

that full enterprise modeling has proven a risky and expensive e¤ort, I remind read-

ers that the approach to enterprise model formation taken in this chapter is fully in-

cremental, so that it is perfectly feasible to construct the enterprise model step by step

(e.g., as a side e¤ect of source integration or of other business process analysis

e¤orts).

The second major limitation is the enormous variety of quality factors, each asso-

ciated with its own measurement and design techniques. The quest for an open qual-

ity management environment that could accommodate existing or new techniques of

this kind led to an adaptation and repository integration of the GQM approach, in

which parameterized queries and materialized quality views serve as the missing link

between specialized techniques and the general quality framework.

The power of the repository modeling language determines the boundary between

precise but narrow metrics and a comprehensive but shallow global repository. The

deductive object base formalism of the Telos language provides a fairly sophisticated

level of global quality analysis for prototype implementation but is still fully adapt-

able and general. Once the quality framework has su‰ciently stabilized, a procedur-

ally object-oriented approach could do even more by encoding some metrics directly

as methods, (at the expense of flexibility, of course). Conversely, a simple relational

metadatabase could take up some of the present models with fewer semantics than

o¤ered in the ConceptBase system, but with the same flexibility.

As shown throughout the chapter, this approach has been fully implemented, and

some validation has taken place to fine-tune the models. The experiences gained

so far indicate that the approach is a promising way toward more systematic and

computer-supported quality management in data warehouse design and operation.

Note

1. In 2001, the Metadata Coalition joined with the OMG to develop a common standard for data ware-
house metadata. The home page of the Metadata Coalition (www.mdcinfo.com) now redirects users to the
home page of the OMG (www.omg.org).

References

Calvanese, D., G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. 2001. ‘‘Data Integration in Data
Warehousing.’’ International Journal of Cooperative Information Systems 10, no. 3: 237–271.

Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J.
Widom. 1994. ‘‘The TSIMMIS Project: Integration of Heterogeneous Information Sources.’’ In Tenth
Meeting of the Information Processing Society of Japan (IPSJ), Tokyo, 7–18. Available at hhttp://
dbpubs.stanford.edu:8090/aux/index-en.htmli.

Gebhardt, M., M. Jarke, and S. Jacobs. 1997. ‘‘A Toolkit for Negotiation Support Interfaces to Multi-
dimensional Data.’’ In Proceedings of the ACM SIGMOD Conference on Management of Data, ed. J.
Peckham, 348–356. New York: ACM Press.

354 Christoph Quix

http://www.mdcinfo.com
http://www.omg.org
hhttp://dbpubs.stanford.edu:8090/aux/index-en.htmli
hhttp://dbpubs.stanford.edu:8090/aux/index-en.htmli

Hammer, J., H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. 1995. ‘‘The Stanford Data Ware-
housing Project.’’ IEEE Data Engineering Bulletin, Special Issue on Materialized Views and Data Ware-
housing, 18, no. 2: 41–48.

Hull, R., and G. Zhou. 1996. ‘‘A Framework for Supporting Data Integration Using the Materialized and
Virtual Approaches.’’ In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Montreal, ed. H. Jagadish and I. Singh Mumick, 481–492. New York: ACM Press.

Jarke, M., M. A. Jeusfeld, C. Quix, and P. Vassiliadis. 1999. ‘‘Architecture and Quality for Data Ware-
houses: An Extended Repository Approach.’’ Information Systems 24, no. 3: 229–253.

Jarke, M., and Y. Vassiliou. 1997. ‘‘Data Warehouse Quality: A Review of the DWQ Project.’’ In Pro-
ceedings of the Second Conference on Information Quality, ed. D. Strong and B. Kahn, 297–313. Cam-
bridge, MA: MIT Press.

Jeusfeld, M. A., M. Jarke, H. W. Nissen, and M. Staudt. 1998. ‘‘ConceptBase: Managing Conceptual
Models about Information Systems.’’ In Handbook of Information Systems, ed. P. Bernus, K. Mertins,
and G. Schmidt, 265–285. Berlin: Springer-Verlag.

Levy, A. Y., D. Srivastava, and T. Kirk. 1995. ‘‘Data Model and Query Evaluation in Global Information
Systems.’’ Journal of Intelligent Information Systems 5, no. 2: 121–143.

Oivo, M., and V. Basili. 1992. ‘‘Representing Software Engineering Models: The TAME Goal-Oriented
Approach.’’ IEEE Transactions on Software Engineering 18, no. 10: 886–898.

Quix, C., P. Vassiliadis, M. Bouzeghoub, and M. Jarke. 1999. ‘‘Quality-Oriented Data Warehouse De-
sign.’’ Technical report, DWQ Project. Available at hhttp://www.dbnet.ece.ntua.gr/~dwq/i.

Schäfer, E., J.-D. Becker, A. Boehmer, and M. Jarke. 2000. ‘‘Controlling Data Warehouses with Knowl-
edge Networks.’’ In Proceedings of Twenty-Sixth International Conference on Very Large Data Bases
(VLDB), ed. A. El Abbadi, M. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter and K.-Y.
Whang, 715–718. San Francisco: Morgan Kaufmann.

Trisolini, S., M. Lenzerini, and D. Nardi. 1999. ‘‘Data Integration and Warehousing in Telecom Italia.’’
In Proceedings of the ACM SIGMOD International Conference on Management of Data, ed. A. Delis,
C. Faloutsos and S. Ghandeharizadeh, 538–539. New York: ACM Press.

Vaduva, A., and T. Vetterli. 2001. ‘‘Meta Data Management for Data Warehousing: An Overview.’’ Inter-
national Journal of Cooperative Information Systems 10, no. 3: 273–298.

Vassiliadis, P. 1998. ‘‘Modeling Multidimensional Databases, Cubes, and Cube Operations.’’ In Proceed-
ings of the Tenth International Conference on Scientific and Statistical Database Management, ed. M. Rafa-
nelli and M. Jarke, 53–62. Los Alamitos, CA: IEEE Computer Society.

Vetterli, T., A. Vaduva, and M. Staudt. 2000. ‘‘Meta Data Standards for Data Warehousing: Open Infor-
mation Model vs. Common Warehouse Metamodel.’’ SIGMOD Record 29, no. 3: 68–75.

Wiederhold, G. 1992. ‘‘Mediators in the Architecture of Future Information Systems.’’ IEEE Computer 25,
no. 3: 38–49.

Metadatabase Design for Data Warehouses 355

hhttp://www.dbnet.ece.ntua.gr/~dwq/i

9 A Conceptual Information Model for the Chemical Process Design
Lifecycle

Birgit Bayer and Wolfgang Marquardt

9.1 Introduction

Demand is growing in process industries for an improvement of process design that

results in both shorter development cycles and better plants. The current state of the

art in design support is based mainly on separate or loosely linked software pack-

ages, which are applied for special tasks and purposes. With these software tools,

growing amounts of data, documents, and all other kinds of information are

handled. Flow charts, process descriptions, equipment specifications, experimental

data, mathematical models, simulation results, cost calculations, safety reports, and

documentation are created, used, and stored in di¤erent and often very specialized

software systems in proprietary formats. These di¤erent pieces of information need

to be managed, since they are valuable resources of knowledge. Although they are

created and handled within di¤erent tools, there are often dependencies and redun-

dancies among these pieces of information. Thus, automated information exchange

has been recognized as being of major importance for improving and enhancing engi-

neering work (Beßling et al. 1997). Empirical studies have shown that companies are

working toward integrated solutions for the management of information, but that

there are still unsolved problems. These include the data exchange between heteroge-

neous tools and the integration of di¤erent life cycle phases (Hameri and Nihtilä

1998).

For the integration of existing software tools and the development of software

environments that provide central services and support functionalities, a thorough

understanding of the domain to which the software will be applied is necessary. The

tools, the information handled within these tools, and the work processes using that

information need to be understood together with their dependencies. Such an under-

standing can be acquired best by the development of a conceptual information

model.

Information modeling is a commonly used method for the analysis and formaliza-

tion of information structures as the basis for software design (Mylopoulos 1998).

An information model for the chemical process design life cycle has to be powerful

enough to represent all data created and used during the design process. As a high-

quality data model, it should be correct, minimal, and understandable. Since the do-

main of chemical process design—like any other engineering domain—contains a

huge amount of information, a model designed for its representation must be de-

signed for extensibility (McKay, Bloor, and de Pennington 1996). Therefore, we pro-

pose the development of a metamodel, in addition to the model itself. Within this

metamodel, which represents the model of the particular information model being

considered, semantical details are abstracted. Types of classes, attributes, and meth-

ods can be defined for later use in information models. Also, recurring structural pat-

terns and symmetries can be formalized. The metamodel provides a structure and an

organizational scheme for the whole model and its data instances. The class level of

the information model itself must provide a rich semantic description of individual

concepts in order to provide design knowledge for the tools that support the design

process. From our point of view, an extensible data model must aim at describing the

universe of discourse precisely in the sense of an ontology (Uschold and Gruninger

1996). It must abstract from specific purposes. Numerous approaches to data models

for chemical engineering and related disciplines have been presented in the past (see

Bayer and Marquardt 2003 for a critical review). Each of the data models in these

approaches has a specific and original scope and is built for a distinct purpose.

Thus, its coverage is limited compared to the information that is handled during the

design life cycle of chemical plants.

A conceptual data model for the products, the documents, and the work processes

of the design life cycle of chemical processes has been developed. This model, called

CLiP (Conceptual Lifecycle Process), has been designed within the Collaborative Re-

search Center IMPROVE (Information Technology Support for Collaborative and

Distributed Design Processes in Chemical Engineering) (Marquardt and Nagl 1998;

Nagl and Marquardt 2001) as a basis for the understanding of design processes in

chemical engineering and for the development of specific computer-based support

tools. CLiP is independent of any specific implementation within a software system.

It forms a model framework that can be used as the basis for the integration of exist-

ing information models and for future modeling activities (Bayer and Marquardt

2004). Therefore, the focus is set on the description of general concepts within the

domain of chemical engineering and their dependencies.

This chapter provides an overview of CLiP. In the following section, the model

framework itself is presented, along with its main concepts and their relations. This

framework has been modeled in O-Telos using the ConceptBase system (Jeusfeld et

al. 1998).

It is then shown how the metamodel provides a means of structuring a detailed in-

formation model for the chemical process design life cycle. Not only has the informa-

358 Birgit Bayer and Wolfgang Marquardt

tion created and used during design processes been considered within CLiP, but also

the design processes themselves. Therefore, concepts to describe activities and docu-

ments handled within activities have been introduced. They are presented after the

model framework itself. The last section of the chapter introduces some more de-

tailed concepts that have been derived to represent knowledge about chemical pro-

cesses as a basis for design support functionalities. In that section, some advantages

and drawbacks of ConceptBase are discussed that led to the decision to model parts

of CLiP within ConceptBase and others with UML (Rumbaugh, Jacobson, and

Booch 1999).

9.2 The Model Framework CLiP

The framework of CLiP covers three metamodel levels on which modeling concepts

are given at di¤erent degrees of abstraction: the meta-metalevel, holding the general

system; the metalevel, with technical, material, and social systems; and the simple

class level, with the chemical process system. Metadata are used to understand and

describe data and the use of data in information systems (Jarke et al. 2000). There

are di¤erent possible specifications of metadata; here, metamodels are specified in

the sense of a dictionary to describe data elements and relations among them. The

two metalevels of CLiP have been developed independently from the domain of

chemical engineering. They represent ideas of systems theory and systems engineer-

ing (e.g. Bunge 1979; Patzak 1982).

9.2.1 Overview

System is introduced on the meta-metalevel as the root concept of the model frame-

work (see figure 9.1). Di¤erent kinds of systems can be distinguished on the meta-

level. TechnicalSystems represent all kinds of technical artifacts that are built to

fulfill some functionality. Technical systems are either Devices or Connections.

Devices hold the major functionality and are linked by connections. Furthermore,

MaterialSystem and SocialSystem are introduced as instances of System. A ma-

terial system abstracts matter and substances, which can be used in various manners

by technical systems. A SocialSystem can be a group of persons or a single person.

On the simple class level, the concept of TechnicalSystem is further refined

to ChemicalProcessSystems, which consist of three distinguished parts: the Pro-

cessingSubsystem, OperatingSubsystem, and ManagementSystem. There are

two di¤erent instantiations of MaterialSystem at this level of detail: Pro-

cessingMaterial, which is processed in order to get a specified product, and

ConstructionMaterial (not shown in figure 9.1), used to build the ChemicalPro-

cessSystem. The behavior of processing material can be described by Material-

Models. These can, for example, be referenced by ProcessingSubsystemModels

A Conceptual Information Model for the Chemical Process Design Lifecycle 359

sources

https://bscw.dbis.rwth-aachen.de/pub/bscw.cgi/4635148

describing the ProcessingSubsystem. Material models and processing subsystem

models are examples of MathematicalModels, which are instances of Technical-

System.

9.2.2 The General System

The root concept of CLiP, from which all other modeling concepts can be derived, is

the system. There are numerous definitions of systems given in the literature in the

area of systems theory and systems engineering. They all share some common con-

cepts that can be summarized by the following definition, according to Patzak

(1982, 19) translated from German by the authors: ‘‘A system consists of a set of ele-

ments which have properties and which are concatenated through relations.’’ This

definition is the basis for the model of any system in CLiP (figure 9.2). The system

contains elements that are systems themselves. Systems refer to other systems. These

associations refer to the fact that systems and their elements can interact with or can

be related to other systems, which are either part of the same system or belong to the

systems environment (Bunge 1979). A special kind of relationship between systems is

Figure 9.1
The three metalevels of CLiP

360 Birgit Bayer and Wolfgang Marquardt

the modeled_by association. A system can be a model of another system. This

means that it can be used to describe and predict the properties of the original system

with several (known and unknown) simplifications and assumptions (see, for exam-

ple, Minsky 1965). This very abstract introduction of the model as a system includes

all kinds of models, like mathematical models, real systems that are a copy of an-

other system at a di¤erent scale, and even information models.

Every system has at least one Property. In di¤erent contexts during a system’s

life cycle, di¤erent properties are of interest. These can be grouped together under

an Aspect. Thus, di¤erent aspects of a system, which contain one or more di¤erent

properties, as shown in figure 9.2, can be considered.

9.2.3 Technical Systems

Three di¤erent kinds of systems are introduced on the metalevel of the modeling

framework (see figure 9.1): the technical system, the material system, and the social

system. The technical system is an artifact that is designed to fulfill some required

function. Examples of technical systems are chemical plants, cars, computer systems,

infrastructure systems like sewage systems, and mathematical models.

The function of a technical system is its ability to transform some input into a

required output; it is specified during system design. Technical systems (see figure

9.3) can contain other technical systems (for example, a sewage system contains a pu-

rification plant), and they can interact with one another (e.g., the interaction among

single computers in a network). A technical system can be a model of another tech-

nical system; examples are a mathematical model of the power train of a car used to

predict the car’s acceleration times and final speed and a pilot plant as a physical

model of an industrial-scale plant.

Within a technical system, two classes of subsystems can be distinguished: Devices,

which hold the major functionality, and connections, which link the di¤erent devices

together. Both devices and connections can be decomposed. A device can contain

Figure 9.2
The general system (meta-metalevel)

A Conceptual Information Model for the Chemical Process Design Lifecycle 361

one or more devices and some connections. When two or more devices are combined

into one, at least one connection is needed to connect the devices. A connection can

also be formed from the combination of two or more connections; there is always a

device between each pair of connections.

The properties of a technical system are named TSProperty, with TS standing for

‘‘technical system.’’ Five aspects of technical system properties that are of major

importance during the design life cycle can be distinguished: TSRequirement, TS-

Function, TSRealization, TSBehavior, and TSPerformance. Technical system

requirements describe the desired function and behavior of the system being designed

and how the system should be constituted. Technical system function refers to the

desired or planned function of the technical system (the actual function of the system

during its use and operation is described by technical system performance). A techni-

cal system realization is the development of the system in a specified manner so that

all functions of the technical system are fulfilled. It covers geometrical, mechanical,

physical and organizational properties (Patzak 1982). Technical system behavior

describes how the system behaves under certain circumstances. The behavior results

from the planned function and the realization of the technical system as well as from

its environment. Technical system performance refers to the analysis and description

of the technical system with respect to the requirements. Here, the behavior is

abstracted under a specific view in order to determine whether the realized system

performs the functions given in the requirements and if the design process was suc-

cessful. The costs that can be associated with a technical system, its design, and its

usage (TSCosts) are a special type of performance; they are of importance during

the design and use of a technical system, since economic evaluations strongly influ-

ence design decisions.

Figure 9.3
The technical system (metalevel)

362 Birgit Bayer and Wolfgang Marquardt

Every property has multiple possible appearances given as Data (see figure 9.4). At

any specific observation, each property can be described only by specific data. For

the identification of that observation, the concept of Support has been introduced,

by means of which the background of an observation can be given (Klir 1985).

Most often, the background is a specific time or a spatial coordinate characterizing

an observation. The complex relations among technical system property, data, and

support are described explicitly by the technical system property data function. This

property data function assigns data from a set of possible data actually observed at a

specific support to a property. It can refer, in the case of measurements, to a data log

in which the data of a property are recorded for di¤erent supports, usually over some

time interval. For numerical simulations, the property data function can refer to a

mathematical function.

In order to illustrate the complex information model given in figure 9.4, we use the

small example of a tra‰c light. One of the properties of this technical system is the

mode of the upper light. Possible data values of this property are ‘‘on’’ and ‘‘o¤.’’

One function is to turn the tra‰c light to red, that is, to change the data of the upper

light from ‘‘o¤ ’’ to ‘‘on’’ at a distinct time. This function does not change the prop-

erty; there is still the mode of the upper light as a property of the system. Also, the

possible data values are not changed; they are still ‘‘on’’ and ‘‘o¤.’’ Rather, the rela-

tion between the property and the data is changed between two di¤erent points in

time (i.e., for two di¤erent supports). A technical system property together with its

data at a distinct point in time can be defined as a StateVariable of the technical

system. The totality of all state variables builds the State of the technical system.

Thus, the state specifies a technical system at one point in time. The change of the

state with time describes the system’s behavior.

The function of a technical system can change the TSPropertyDataFunction;

that is, the data and support of some properties of the technical system are changed

Figure 9.4
Technical system properties and data

A Conceptual Information Model for the Chemical Process Design Lifecycle 363

(figure 9.5). Not only the properties and states of a technical system are influenced by

its functions, but also those of material, energy, or information processed within the

technical system (Koller 1975). In the area of chemical engineering, the transforma-

tion of material is the most important function. Therefore, it is explicitly modeled

that a technical system function can change the TSPropertyDataFunction as well

as a material property data function (MatPropertyDataFunction), which relates a

MaterialProperty to data. The material properties together with their data and

the support are relevant state variables in chemical engineering, in addition to the

technical system properties themselves. Thus, the state of a technical system is com-

posed not only of state variables derived from technical system properties but also

from those of material properties (see figure 9.5). An input state and an output state

can be defined for a technical system function holding the properties, data, and sup-

port related to another via the property data functions before and after their change

through the function.

9.2.4 Functions of Technical Systems

During the design of a technical system, the detailed specification of the di¤erent

functions that need to be fulfilled by that system is a very important and complex

task. The specification of the functions and their association with the individual parts

of the system’s realization influence to a large degree the behavior and thus the per-

formance of the system. Therefore, the categorization of functions is an important

step toward the representation of knowledge for technical design processes like chem-

ical process design.

Figure 9.5
Input and output of technical system functions (metalevel)

364 Birgit Bayer and Wolfgang Marquardt

In di¤erent technical domains, classifications of basic and elementary functions are

given (see, for example, Blair and Whitston 1971; Koller 1975). Patzak (1982) com-

bines these classifications into a general one in which basic functions are given that

are independent of the domain to which the technical system belongs. In figure 9.6,

these domain-independent classes of technical system functions are given: Trans-

port, a change in position and time; Combine and Separate, changes in amount

and composition, respectively; Transform a change in form, kind, and character;

and finally Conserve, a function applied to a system with the intention that its state

not be changed. The TSFunctions shown in figure 9.6 can be applied to material

systems, energy systems, or information systems.

9.2.5 Chemical Process Systems

On the simple class level, the concept of technical systems is further refined to the

chemical process system, which consists of three distinguished parts (Backx, Bosgra,

and Marquardt 1998): ProcessingSubsystem, OperatingSubsystem, and Man-

agementSystem (figure 9.7). The processing subsystem holds functionalities of mate-

rials processing; the operating subsystem comprises the technology for controlling

this processing subsystem; and finally, the management system refers to the Per-

sonnel working on the chemical plant. ProcessingSubsystem and Operating-

Subsystem are instances of TechnicalSystem, whereas ManagementSystem is

an instance of SocialSystem. The function of the chemical process system is given

by ChemicalProcessElements. Further aspects of the chemical process system

are ChemicalProcessRealization, ChemicalProcessBehavior, and Chemi-

calProcessPerformance with ChemicalProcessSystemCosts. In figure 9.8, the

chemical process system is given with its subsystems and associated systems and their

functions and realizations; the figure shows how these contribute to the overall func-

tion (the chemical process elements) and the chemical process realization. The chem-

ical process elements can partially be mapped onto ProcessSteps that are the

Figure 9.6
Basic functions of technical systems (metalevel)

A Conceptual Information Model for the Chemical Process Design Lifecycle 365

Figure 9.7
Chemical process system with its subsystems and properties (simple class level)

Figure 9.8
Chemical process system with its functions and realizations (simple class level)

366 Birgit Bayer and Wolfgang Marquardt

functions of the processing subsystem. Such a mapping can be done for most chemi-

cal process elements, since the major function of the chemical process system is iden-

tical to the function of the processing subsystem (i.e., the processing of some material

in order to obtain a specified chemical product); the functions of the operating sub-

system, the Control, and the ManagementFunctions are further functions that are

required in order to obtain the overall function.

The chemical process realization consists of the plant built from numerous Plant-

Items and contains the ProcessControlSystem (the realizations of Processing-

Subsystem and OperatingSubsystem, respectively). Personnel (the ‘‘realization’’

of the management system) are working toward the realization of this chemical

process.

9.2.6 Functions of Chemical Process Systems

Process steps represent the functions of the processing subsystem (see figure 9.8).

Within chemical process systems, material is processed in order to produce some

specified compound from raw materials. This processing comprises physical, chemi-

cal, and biological procedures that are performed in a specific order. These proce-

dures can be subsumed as ProcessSteps (figure 9.9). Separation, agglomeration,

and absorption are examples of process steps. Chemical and biological procedures

are described by Reactions. UnitOperations are elementary process steps based

on physical phenomena. Unit operations, reactions, and other process steps can be

combined into complex procedures represented by CompositeProcessSteps and

complete chemical Processes.

Although the number of chemical processes is enormous, there is a relatively small

number of unit operations that can be combined into any kind of process. Several

chemical engineering handbooks deal with unit operations and their realization in

particular equipment (e.g., Perry and Chilton 1984). The categorizations of unit

operations they give can be used accordingly to develop a class hierarchy. The data

model developed by the Process Data Exchange Institute (pdXi) initiative (ISO

Figure 9.9
Process steps (simple class level)

A Conceptual Information Model for the Chemical Process Design Lifecycle 367

1998) also includes a class hierarchy of unit operations. Technische Güte und Liefer-

bedingungen (TGL) 25000 (TGL 1974) was a standard of the German Democratic

Republic that gave an exhaustive description of unit operations, their applications,

and the equipment required for their implementation. Two classifications of unit

operations were given in that standard: classification schema A, in which the physical

state of the processed processing materials serves as the organizing principle, and

classification schema B, in which the unit operations are organized according to the-

oretical chemical engineering considerations. Both classification schemas have been

integrated into CLiP with the goal of describing knowledge about chemical processes

and making it available in a database to support design processes (e.g., for selecting

appropriate process steps for a given task within a chemical process). This integra-

tion is discussed in detail later in the chapter.

9.2.7 Partial Model Structure of CLiP

On the simple class level, CLiP is divided into partial models holding concepts that

belong together in the sense that they describe one distinct part of the domain of in-

terest completely. Figure 9.10 shows the partial models related to the chemical pro-

cess system; these partial models correspond to some of the concepts introduced in

figure 9.1: The main concepts of CLiP introduced on the di¤erent metalevels provide

the overall structure of the model. Within the partial models of the chemical process

system and its three (sub)systems, all information about these systems is given. This

information comprises the di¤erent properties of the systems. The concepts related to

these properties are again grouped into partial models that are nested within the par-

tial model of the system itself. In figure 9.10, three partial models are shown that are

used to model di¤erent properties of the chemical process system: function, realiza-

tion, and behavior.

The partial models can be set up and used largely independently of one another.

Still, there are a lot of interdependencies among them. These interdependencies are

modeled explicitly in CLiP with associations between concepts belonging to di¤erent

partial models, thus defining the interfaces between the partial models. By dividing

the model into parts and reintegrating these with associations, an open and extensible

model structure is obtained. New partial models can be introduced by developing

them independently and then describing their relations to the existing ones. Thus,

partial models provide additional structuring functionality in the metamodeling

framework.

9.3 Workflow Modeling within CLiP

In addition to the concepts describing technical systems with their properties in de-

tail, CLiP also covers modeling concepts that allow the representation of the flows

368 Birgit Bayer and Wolfgang Marquardt

of the work performed by designers during chemical process design and of the infor-

mation that is processed within these workflows. Two concepts, namely, documents

and activities, have been introduced for this purpose. They are presented in this sec-

tion, together with their relations to the information models discussed so far.

9.3.1 Documents

Within the metamodel level of CLiP, concepts have been introduced to describe

documents and their relations to information about di¤erent systems (see figure

9.11). A Document can contain numerous technical system properties (instances of

TSProperty), social system properties (instances of SocSysProperty), and material

properties (instances of MaterialProperty), together with their data and the sup-

port that is needed to distinguish di¤erent observations of these properties.

Within the chemical process design life cycle, activities are steps in a work process

that create, modify, or delete some kind of input information and thereby produce an

Figure 9.10
Partial models at the simple class level of CLiP (represented by UML packages)

A Conceptual Information Model for the Chemical Process Design Lifecycle 369

output. They represent manipulations of information by an engineer or some soft-

ware. This is described within CLiP by assigning input and output documents to a

particular activity. These documents hold the properties of the system on which the

activity operates. The content of these documents is read and interpreted and may be

changed during the execution of the activity.

Many documents that are used in technical design processes have a (partially) pre-

defined content and format. The format is often specified, either through the software

tool that is working on the document or by some standard. Therefore, Document-

Templates can be defined for many documents. Document templates refer to the

properties and the support that must be specified for a particular document (not

shown in figure 9.11) but do not contain any data for the properties. Thus, the struc-

ture of a document can be defined in a document template.

9.3.2 Activities

A social system is introduced on the metalevel as one special type of system. It repre-

sents groups of persons (teams, societies) or individuals. The most important aspect

of social systems in design processes is the Activity, which is one of their functions

(see figure 9.12). An activity is performed in order to reach a given Goal. It can be

decomposed into subactivities. A temporal or logical order can be given by prerequi-

sites and through scheduling conditions (not shown in the figure). The execution of

an activity requires resources; these are mainly technical systems like computers, soft-

ware programs, or experimental setups. An activity is executed by an Actor, either

an individual person or a team, who may have to possess Skills in order to be able

Figure 9.11
Documents within CLiP (meta-metalevel)

370 Birgit Bayer and Wolfgang Marquardt

to perform the execution. A more detailed description of activities and their charac-

teristics is given by Eggersmann, Krobb, and Marquardt (2000).

Three basic types of activities performed during a design process (not shown in fig-

ure 9.12) can be distinguished: Synthesis, a creative and constructive activity in

which a system or some data of a system property are created or set; Analysis, a

descriptive activity in which the system and its properties with their data are investi-

gated and screened; and Decision, the judgment about the system based on the

results of the analysis (Eggersmann et al. 2001).

The relations of activities that are performed during the use of a technical system

(e.g., during the operation of a chemical plant) to the technical system properties are

di¤erent from those for design activities. During a system’s use, activities are not per-

formed to create and modify documents that describe the system. Rather, inter-

ventions into the technical system aim at influencing and changing its function

and behavior. Such activities modify the state of the system. This is modeled within

CLiP by means of a change of the technical system property data function a¤ected

by an activity (see figure 9.13). The activity model shown in figures 9.12 and 9.13

allows the definition of workflow models, in which the di¤erent activities performed

(e.g., during process design) can be given in a specified order together with the input

and output information they are working on and the technical system that is influ-

enced by the execution of each activity. Since activities can be decomposed into sub-

activities, the description of work processes at di¤erent levels of detail is possible,

ranging from enterprise models and workflow models to detailed activity models in

which the single activities of an actor are described. Since activities do not have to

Figure 9.12
Social systems and activities in the context of technical system design (metalevel)

A Conceptual Information Model for the Chemical Process Design Lifecycle 371

be connected by control flows, the description of ill-defined work processes is also

possible. Here, the available input documents reflect a certain contextual situation

and provide information as to whether a particular activity is executable or not.

Thus, CLiP provides flexible possibilities for the modeling of workflows and activities

as a basis for the understanding and analysis of di¤erent work processes. CLiP mod-

els can then be used to develop di¤erent support functionalities ranging from admin-

istrative workflow support to tracing and support of fine-grained work processes.

Also, operating procedures for chemical plants can be described, and the description

can be used to support and automate process operation and control, resulting in dy-

namic and flexible production processes.

9.4 Representation of Domain Knowledge Using ConceptBase

In addition to the description of a domain by means of the introduction of major

concepts and the depiction of their dependencies, information models can also be

used to represent domain knowledge. Within ConceptBase, this can be accomplished

through the introduction of constraints and rules, which give more detailed infor-

mation about individual concepts and their dependencies. Also, ConceptBase’s con-

sistent support of multiple inheritance and instantiation can be used to implement

powerful class hierarchies. The following subsections show such a representation of

domain knowledge using the example of process steps according to the aforemen-

tioned TGL 25000 (TGL 1974). Furthermore, some drawbacks of ConceptBase are

discussed that led to the decision to model the detailed class diagrams of CLiP with

UML rather than ConceptBase.

Figure 9.13
Activities during use of a technical system (metalevel)

372 Birgit Bayer and Wolfgang Marquardt

9.4.1 Classification of Chemical Process Functions

As noted in section 9.2.6, both schemas A and B for classifying unit operations of

TGL 25000 were integrated within CLiP and implemented with ConceptBase. The

goal of this modeling e¤ort was the description of knowledge about chemical pro-

cesses to make it available in a database for supporting design processes (e.g., for

the selection of appropriate process steps for a given task within a chemical process).

Figure 9.14 provides an overview of the implementation of classification schema

A. TGL 25000 distinguishes five major types of unit operations: EnthalpyChange,

Combination, Agglomeration, Separation, and Dispersion. Since these types

of functions used within chemical processes can be composite, they are introduced

within CLiP as subclasses of ProcessStep and not of UnitOperation, since the lat-

ter is defined to be elementary. The di¤erent unit operations given in TGL 25000 are

subclasses of UnitOperation and of the type of ProcessStep to which they belong

(see, for example, the unit operation Absorption in figure 9.14).

Classification schema B of TGL 25000, in which the unit operations are classified

according to the active principle and phenomena on which they are based, is

Figure 9.14
Classification schema A of TGL 25000

A Conceptual Information Model for the Chemical Process Design Lifecycle 373

sketched in figure 9.15. Within this schema, the four basic types of procedures that

are used to classify the unit operations are HydromechanicalOperation, Heat-

Transfer, MaterialTransfer, and MechanicalOperation. Since these types of

procedures can be composite and complex, they are introduced as subclasses of

ProcessStep and not of UnitOperation. Di¤erent subclasses of the four major

types of procedures are given in classification schema B that further specify the na-

ture of the procedures and the phenomena on which they are based on; one example

is Sorption, which is a subclass of MaterialTransfer. The di¤erent unit opera-

tions given in TGL 25000 are subclasses of UnitOperation and of the type of

ProcessStep to which they belong (see, for example, Absorption in figure 9.15).

9.4.2 Multiple Inheritance and Instantiation

Since the classification principles of the two schemas given in TGL 25000 are di¤er-

ent, the subclasses of process steps according to classification schema B are instan-

tiations of di¤erent types of TSFunctions than the ones according to classification

schema A (compare figures 9.14 and 9.15). The single unit operations inherit these

instantiations links.

Figure 9.15
Classification schema B of TGL 25000

374 Birgit Bayer and Wolfgang Marquardt

Within ConceptBase, both classification schemas of TGL 25000 have been imple-

mented as presented here. Because of the two di¤erent specialization principles, this

led to a very complex data model with numerous multiple instantiations and multiple

specializations. An example is shown in figure 9.16: Absorption is a UnitOpera-

tion that is both a Separation and a Combination according to classification

schema A. Following classification schema B, Absorption is a Sorption that is a

MaterialTransfer. Thus, Absorption has four superclasses. Since Separation

is an instance of Separate, Combination is an instance of Combine, and Sorption

is an instance of Transport, Absorption is an instance of these three metaclasses

(and of course of TSFunction as well).

9.4.3 Rules and Constraints

Figures 9.14 and 9.15 show the major concepts of classification schemas A and B of

TGL 25000. Within both schemas, further subclasses of unit operations are intro-

duced and classified according to the materials processed or the phenomena that

occur. Within classification schema A, these classifications could be modeled by

introducing subclasses like SeparationOfLiquids and SeparationOfLiquidsTo-

LiquidAndGas. This would lead to a large number of abstract classes and a complex

Figure 9.16
Absorption, with its classes and superclasses

A Conceptual Information Model for the Chemical Process Design Lifecycle 375

hierarchy with numerous multiple inheritances. Advanced modeling functionalities of

ConceptBase like constraints and rules can be introduced for each specific unit oper-

ation limiting the application of the operation to a particular processing material at a

specific aggregate state and thus reducing the need for multiple inheritance.

The following frame definition of the unit operation Absorption together with

its constraints illustrates this (for an introduction to the O-Telos language used in

ConceptBase, see Jarke, Jeusfeld, and Quix 1998):

SimpleClass Combination in Class,Combine isA ProcessStep with

attribute

combined_to: AggregateState;

combined_from1: AggregateState;

combined_from2: AggregateState

end

SimpleClass Separation in Class,Separate isA ProcessStep with

attribute

separated_from: AggregateState;

separated_to1: AggregateState;

separated_to2: AggregateState

end

SimpleClass Absorption in Class,Separate,Combine isA

Separation,Combination with

constraint

applicability_sep:

$ forall u/Absorption a/AggregateState

(u separated_from a)

==> (a == Gas) $;

separated_phases:

$ forall u/Absorption a,b,c/AggregateState

(u separated_from a) and (u separated_tol b) and

(u separated_to2 c)

==> (((a == Gas) and (b == Liquid) and (c == Gas)) or

((a == Gas) and (b == Gas) and (c == Liquid))) $;

applicability_comb:

$ forall u/Absorption a/AggregateState

(u combined_to a)

==> (a == Liquid) $;

combined_phases:

$ forall u/Absorption a,b,c/AggregateState

376 Birgit Bayer and Wolfgang Marquardt

(u combined_to a) and (u combined_from1 b) and

(u combined_from2 c)

==> (((a == Liquid) and (b == Liquid) and (c == Gas)) or

((a == Liquid) and (b == Gas) and (c == Liquid))) $

end

Absorption consists of the transfer of some chemical component from a gas phase

into a liquid phase to purify the gas phase. It thus can be interpreted as a separation

from gas to liquid and gas as well as a combination of a liquid and a gas phase into a

liquid phase. Therefore, Absorption is a specialization of Separation and of Com-

bination (and is thus an instance of Separate and of Combine) inheriting all their

attributes, which are also shown in the frame definition.

Four constraints on Absorption are defined: applicability_sep limits the ap-

plication of absorption to the separation of gases; separated_phases ensures that

the gas is separated into a liquid and a gas phase; applicability_comb limits the

application to combining the inputs into a liquid phase; and combined_phases

ensures that a liquid and a gas are combined into a liquid. These four constraints en-

sure that all instantiations of Absorption are in accordance with the definition of

absorption given in TGL 25000. Similar constraints can be defined for all other unit

operations. This kind of implementation of domain knowledge within a database for

chemical process design guarantees that every process step created fulfills a required

function.

An alternative to the introduction of constraints for implementing the knowledge

given in TGL 25000 into ConceptBase is the introduction of rules that define which

unit operations can be applied to which process steps. To illustrate this, we examine

the three unit operations absorption, gas centrifugation, and decantation, which are

all special types of separations. Within the class Separation, for each of these unit

operations a rule is defined specifying which kind of separation they can implement:

SimpleClass Absorption in Class,TSFunction isA UnitOperation end

SimpleClass GasCentrifugation in Class,TSFunction isA

UnitOperation end

SimpleClass Decantation in Class,TSFunction isA UnitOperation end

SimpleClass Separation in Class,Separate isA ProcessStep with

attribute

separated_from: AggregateState;

separated_to1: AggregateState;

separated_to2: AggregateState;

applicableUO: UnitOperation

A Conceptual Information Model for the Chemical Process Design Lifecycle 377

rule

AbsorptionRule:

$ forall s/Separation

(s separated_from Gas)

==> (s applicableUO Absorption) $;

GascentrifugationRule:

$ forall s/Separation

(s separated_from Gas)

==> (s applicableUO GasCentrifugation) $

DecantationRule:

$ forall s/Separation

(s separated_from Liquid)

==> (s applicableUO Decantation) $;

end

Token SomeSeparation in Class,Separation with

separated_from

sep_from: Gas

end

QueryClass SeparateGas isA UnitOperation with

constraint

function:

$ exists t/Separation

(t separated_from Gas) and (t applicableUO this) $

end

The absorption rule says that absorption is applicable to the separation of a gas; the

gas centrifugation rule says the same for gas centrifugation. The decantation rule

states that a decantation can be used to separate a liquid. If these rules are imple-

mented within a knowledge base, queries can be processed, for example, to get a list

of all possible unit operations that can be applied to the task of separation of a gas-

eous input (in this example, the result of such a query will be absorption and gas cen-

trifugation, but not decantation). So this implementation can be used as a basis for

design support: The designer can formulate the required process function as a query

and will get as the result all process steps that can be applied to fulfill that function in

principle.

9.4.4 Discussion of Multiple Inheritance, Rules and Constraints

From a data-modeling point of view, multiple instantiations and multiple specializa-

tions are disadvantageous. For example, they can lead to inconsistencies among

378 Birgit Bayer and Wolfgang Marquardt

attributes inherited from di¤erent superclasses having the same name but di¤erent

values. In such cases, rules and constraints are needed for resolving conflicts (within

ConceptBase/Telos, a multiple-generalization/multiple-instantiation axiom is set

[Jarke, Jeusfeld, and Quix 1998]). Furthermore, conceptual as well as implementa-

tion simplicity is lost with multiple specialization. On the other hand, multiple spe-

cialization allows more powerful specifications of classes and thus provides more

possibilities for the reuse of information (Rumbaugh et al. 1991).

One has to decide, therefore, how complex the model one is creating may become

and in how much detail the knowledge should be represented. In order to ensure con-

sistency of the model according to TGL 25000, constraints like the ones given in sec-

tion 9.4.3 need to be defined. If the data model will be used as a knowledge base for

design, using multiple specialization might be called for, while in cases where the use

of the data model will be more lightweight a single classification schema might prove

su‰cient.

9.5 Conclusions

This chapter has presented the conceptual information model CLiP, covering prod-

uct data, documents, and activities of chemical engineering design processes. This in-

formation model is primarily intended for the analysis of the chemical process design

life cycle, ranging from the design of the chemical process itself to the design of the

control system and of operating procedures. With their very general structure and

abstract level of detail, the metalevels of CLiP can serve as a modeling framework

for the development of more detailed data models needed for a specific purpose or

even for the integration of existing data models. Through the introduction of con-

straints and rules, the information model can be extended toward a knowledge base

for chemical engineering design.

CLiP has been implemented and formalized with metamodels that are modeled in

O-Telos. Thus, the conceptual model framework of CLiP is implementable within

ConceptBase. The flexibility of introducing several metamodel layers was a prerequi-

site for the development of a domain-independent model framework. On the simple

class level, this framework has been specialized to represent information related to

the chemical process design life cycle. To do this, another feature of ConceptBase

has been utilized: Knowledge about process steps and their possible classifications

has been formalized through the introduction of constraints and rules, which can be

used to ensure consistent process designs or for the development of a knowledge base

about chemical process functions.

A complete description of all product data and activities occurring in the design

life cycle remains as work to be done. Also, the requirements that can be stated about

a technical system before the design process starts have not yet been considered.

A Conceptual Information Model for the Chemical Process Design Lifecycle 379

Furthermore, the behavior of the chemical process system and its three (sub)systems,

together with its relations to function and realization, has not yet been covered in

su‰cient detail. The mappings between the performance of the realized system and

the requirements that are stated at the beginning of the design process are of special

interest.

Information models like CLiP are a prerequisite for the development of specific

application tools and information management facilities and for the integration of

tools into software environments. But for these software development tasks, informa-

tion models on a di¤erent level of conceptualization and formalization than the one

provided by CLiP are required. More detailed models are needed, for example, to

describe the internal data structures of the tools and their functionalities. These

have to be consistent with the conceptual information model presented here, which

has been developed from the perspective of an application expert in order to describe

his domain of interest. Therefore, further model development, refinement, and inte-

gration are needed on di¤erent levels. These modeling issues are currently investi-

gated within the Collaborative Research Center IMPROVE.

Acknowledgments

We gratefully acknowledge the financial support of the Deutsche Forschungsgemein-

schaft (DFG) within the Collaborative Research Center (SFB) 476, ‘‘Information

Technology Support For Collaborative and Distributed Design Processes in Chemi-

cal Engineering.’’ Furthermore, we would like to thank M. Eggersmann, C. Krobb,

R. Schneider, and L. von Wedel for many fruitful discussions. Finally, we are very

grateful to Jan Morbach for his help with the final editing of the manuscript.

References

Backx, T., O. Bosgra, and W. Marquardt. 1998. ‘‘Towards Intentional Dynamics in Supply Chain
Conscious Process Operations.’’ In Proceedings of the Third International Conference on Foundations of
Computer-Aided Process Operations, ed. J. F. Pekny and G. E. Blau. Available at hhttp://che.www.ecn
.purdue.edu/FOCAPO98/i.

Bayer, B., and W. Marquardt. 2003. ‘‘A Comparison of Data Models in Chemical Engineering.’’ Concur-
rent Engineering: Research and Applications 11, no. 2: 129–138.

Bayer, B., and W. Marquardt. 2004. ‘‘Towards Integrated Information Models for Data and Documents.’’
Computers & Chemical Engineering 28, no. 8: 1249–1266.

Beßling, B., B. Lohe, H. Schoenmakers, S. Scholl, and H. Staatz. 1997. ‘‘CAPE in Process Design—
Potential and Limitations.’’ Computers & Chemical Engineering 21 (Suppl.): S17–S21.

Blair, R., and W. Whitston. 1971. Elements of Industrial Systems. New York: Prentice Hall.

Bunge, M. 1979. Ontology II: A World of Systems. Vol. 4 of Treatise on Basic Philosophy. Dordrecht:
Riedel.

Eggersmann, M., S. Gonnet, G. Henning, C. Krobb, and H. Leone. 2001. ‘‘Modeling of Actors within a
Chemical Engineering Work Process Model.’’ In Proceedings of the International CIRP Design Seminar,
ed. T. Kjellberg, 203–208. Paris: CIRP.

380 Birgit Bayer and Wolfgang Marquardt

hhttp://che.www.ecn

Eggersmann, M., C. Krobb, and W. Marquardt. 2000. ‘‘A Modeling Language for Design Processes in
Chemical Engineering.’’ In Conceptual Modeling (ER 2000) (Lecture Notes in Computer Science 1920),
ed. A. H. F. Laender, S. W. Liddle, and V. S. Storey, 369–382. Berlin: Springer.

Hameri, A.-P., and J. Nihtilä. 1998. ‘‘Product Data Management—Exploratory Study on State-of-the-Art
in One-of-a-Kind Industry.’’ Computers in Industry 35, no. 3: 195–206.

ISO (International Organization for Standardization). 1998. ISO 10303, Part 231: Process Engineering
Data: Process Design and Process Specifications of Major Equipment. Committee draft ISO TC184/SC4/
WG3 N740, International Organization for Standardization, Geneva.

Jarke, M., M. A. Jeusfeld, and C. Quix, eds. 1998. ConceptBase V5.0 User Manual. RWTH Aachen,
Aachen. Available at hhttp://www-i5.informatik.rwth-aachen.de/CBdoc/userManual-V50/i.

Jarke, M., M. A. Jeusfeld, C. Quix, T. Sellis, and P. Vassiliadis. 2000. ‘‘Metadata and Data Warehouse
Quality.’’ In Fundamentals of Data Warehouses, ed. M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassilia-
dis, 123–178. Berlin: Springer.

Jeusfeld, M. A., M. Jarke, H. W. Nissen, and M. Staudt. 1998. ‘‘ConceptBase—Managing Conceptual
Models about Information Systems.’’ In Handbook on Architectures of Information Systems, ed. P. Bernus
and G. Schmidt, 265–285. Berlin: Springer.

Klir, G. J. 1985. Architecture of Systems Problem Solving. New York: Plenum.

Koller, R. 1975. ‘‘Physikalische Grundfunktionen zur Konzeption technischer Systeme.’’ Industrie-
Anzeiger 97, no. 17: 321–325.

Marquardt, W., and M. Nagl. 1998. ‘‘Tool Integration via Interface Standardization?’’ DECHEMA
Monographie 135: 95–126.

McKay, A., M. S. Bloor, and A. de Pennington. 1996. ‘‘A Framework for Product Data.’’ IEEE Trans-
actions on Knowledge and Data Engineering 8, no. 5: 825–838.

Minsky, M. L. 1965. ‘‘Matter, Mind, and Models.’’ In Proceedings of the International Federation of Infor-
mation Processing Congress, ed. A. Kalenich, 1: 45–49. Washington, DC: Spartan.

Mylopoulos, J. 1998. ‘‘Information Modeling in the Time of Revolution.’’ Information Systems 23, nos.
3–4: 127–155.

Nagl, M., and W. Marquardt. 2001. ‘‘Tool Integration via Cooperation Functionality.’’ In Third Euro-
pean Congress of Chemical Engineering (ECCE 3), paper 6-5. Available at hhttp://www.dechema.de/
veranstaltung/ecce/cd/toc.htmi.

Patzak, G. 1982. Systemtechnik—Planung komplexer innovativer Systeme. Berlin: Springer.

Perry, H., and C. H. Chilton. 1984. Chemical Engineers Handbook. New York: McGraw-Hill.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. 1991. Object-Oriented Modeling and
Design. Englewood Cli¤s, NJ: Prentice Hall.

Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The Unified Modeling Language Reference Manual.
Reading, MA: Addison-Wesley.

Technischen Güte und Lieferbedingungen (TGL). 1974. TGL 25000: Chemical Engineering Unit
Operations—Classification. Departmental Standard of the German Democratic Republic, Berlin.

Uschold, M., and M. Gruninger. 1996. ‘‘Ontologies: Principles, Methods and Applications.’’ Knowledge
Engineering Review 11, no. 2: 93–136.

A Conceptual Information Model for the Chemical Process Design Lifecycle 381

hhttp://www-i5.informatik.rwth-aachen.de/CBdoc/userManual-V50/i
hhttp://www.dechema.de/

Contributors

Birgit Bayer
BASF AG
WLE/FB-A15
Postfach
67056 Ludwigshafen
Germany
hbirgit-bayer@web.dei

Alex Borgida
Department of Computer Science
Hill Centre, Busch Campus
Rutgers University
New Brunswick, NJ 08903, USA
hborgida@aramis.rutgers.edui

Mohamed Dahchour
Institut National des Postes et Télécommunications
Department of Informatics
Av. Allal Al Fassi
Rabat, Morocco
hdahchour@inpt.ac.mai

Armin Eberlein
Department of Electrical and Computer Engineering
University of Calgary
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
heberlein@enel.ucalgary.cai

Matthias Jarke
RWTH Aachen
Informatik V and Fraunhofer FIT
Ahornstr. 55
D-52056 Aachen
Germany
h jarke@cs.rwth-aachen.dei

mailto:hbirgit-bayer@web.dei
mailto:hborgida@aramis.rutgers.edui
mailto:hdahchour@inpt.ac.mai
mailto:heberlein@enel.ucalgary.cai
mailto:hjarke@cs.rwth-aachen.dei

Manfred A. Jeusfeld
Tilburg University
Department of Information Management
Warandelaan 2
Postbus 90153
5000 LE Tilburg
The Netherlands
hManfred.Jeusfeld@uvt.nli

Ralf Klamma
RWTH Aachen
Informatik V
Ahornstr. 55
D-52056 Aachen
Germany
hklamma@cs.rwth-aachen.dei

Kalle Lyytinen
Case Western Reserve University
10900 Euclid Avenue
Cleveland, OH 44106, USA
hKalle.Lyytinen@case.edui

Wolfgang Marquardt
RWTH Aachen
Lehrstuhl für Prozesstechnik
Templergraben 55
D-52056 Aachen
Germany
hmarquardt@lpt.rwth-aachen.dei

John Mylopoulos
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 2E4
h jm@cs.toronto.edui

Wolfgang Nejdl
Universität Hannover
Institut für Informationssysteme, Wissenbasierte Systeme
Appelstraße 4
D-30167 Hannover
Germany
hnejdl@kbs.uni-hannover.dei

384 Contributors

mailto:hManfred.Jeusfeld@uvt.nli
mailto:hklamma@cs.rwth-aachen.dei
mailto:hKalle.Lyytinen@case.edui
mailto:hmarquardt@lpt.rwth-aachen.dei
mailto:hjm@cs.toronto.edui
mailto:hnejdl@kbs.uni-hannover.dei

Alain Pirotte
University of Louvain
IAG Management School (IAG)
Information Systems Unit (ISYS)
1, Place des Doyens
B-1348 Louvain-la-Neuve, Belgium
hpirotte@info.ucl.ac.bei

Christoph Quix
RWTH Aachen
Informatik V
Ahornstr. 55
D-52056 Aachen
Germany
hquix@cs.rwth-aachen.dei

William N. Robinson
Computer Information Systems Department
College of Business
Georgia State University
35 Broad Street, Suite 927
Atlanta, GA 30302-4015, USA
hwrobinson@gsu.edui

Martin Wolpers
Fraunhofer FIT.ICON
Schloss Birlinghoven
53754 Sankt Augustin
Germany
hmartin.wolpers@fit.fraunhofer.dei

Contributors 385

mailto:hpirotte@info.ucl.ac.bei
mailto:hquix@cs.rwth-aachen.dei
mailto:hwrobinson@gsu.edui
mailto:hmartin.wolpers@fit.fraunhofer.dei

Index

Note: The letter t following a page number denotes a table, the letter f denotes a figure, and the letter n
denotes an endnote.

Abiteboul, S., 49
Abrial, J.-R., 6, 7, 9
Abstract classes, 300, 301–302, 303, 305, 310, 311,

322
Abstractionism, 4
Abstraction levels. See Data level; IRDS; Model

level; Notation definition level; Notation level
Abstraction mechanisms, xv, 3, 295–296. See also

Aggregation; Classification; Generalization;
Generic relationships; Instantiation;
Materialization

Abstractness, 299, 300, 309, 310, 327n1
Abstract objects, 296, 305, 307, 316, 324–325
Access-oriented metamodeling, 75–80
Actions, 11, 20, 24, 25, 26
Activities, 3, 8, 11, 20, 23, 24–25. See also

Dynamic aspects
Actors, 20, 21–22, 23, 34, 36
Adaptability
goal-based, 60
metamodel-based, 43, 50, 51
of modeling environments, 52–53
in modeling languages, 44–45
of ontologies, 55
Adaptation, goal-driven method, 61, 62
AD/Cycle, 55
Agent responsibility, modeling, 11
Agents, 26
Agents, modeling, 3, 11, 34, 36, 60
Aggregation, 9, 17, 33, 295. See also Relationships,

part-whole
Alford, M., 50, 283
Al-Jadir, L., 311
Alternatives, modeling, 11
Anderson, J., 20, 24, 34
Andono¤, E. G., 296
AND/OR trees, 28–29, 30
Antón, A. I., 261
Argumentation framework, 27–28

ARIS House and Toolkit, 50, 51, 63–65, 66f
Aristotle, 3
Armenise, P., 58
Artifact focus of method engineering, 89–90, 154
Artificial intelligence, 10, 12, 26, 28, 170–171
Artz, J., 3
Assertions, 17–18
Associations, 1, 4
Atkinson, N., 9
Attribute propagation, 296, 300–302, 304, 305–

309, 310
Attributes, 7, 15–16
of relationships, 16
Authority, modeling, 34
Awareness metamodels, 46

Backx, T., 365
Balzer, R., 11
Bandinelli, S., 60
Basili, V. R., 61, 343
Bayer, B., 358
Beckett, D., 233
Begeman, M., 27
Bellamy, J., 169, 216
Bergsten, P., 55, 58
Berliner sehen, 79
Berners-Lee, T., 50, 76, 236
Bernstein, P. A., 43, 51, 65
Bertino, E., 296
Beßling, B., 357
Blair, R., 365
Bloor, M. S., 358
Bobrow, D., 11
Boehm, B. W., 170, 284
Boloix, G., 54
Boman, M., 12
Booch, G., 47, 54, 57, 61, 359
Borgida, A., 10, 11, 12
Bosgra, O., 365

Bouma, L. G., 169
Boundary objects, 46
Bower, G., 3
Brachman, R., 10
Brickley, D., 233, 235
Brinkkemper, S., 44, 55
Brodie, M. L., 12, 47, 53
Bruns, G., 27
Bubenko, J., 9
Buneman, P., 49
Bunge, M., 359, 360
Business process engineering, 44, 74

Cþþ, metadata in, 44
Calvanese, D., 19, 43, 339
Carnot, 50
CASE, 54, 58, 261
Castro, J., 60
Catarci, T., 43
Cauvet, C., 12
CDIF (Case Data Interchange Format), 54
Ceri, S., 105, 271
Chawathe, S., 334
Checkland, P. B., 56
Chemical engineering, xvi, 44, 356–357. See also

CLiP
Chemical process modeling, 372–379. See also

CLiP
Chemical process system modeling, 365–368, 380
Chen, M., 57, 260, 261
Chen, P., 6, 7
Chen, W., 105
Chikofsky, E. J., 259
Chilton, C. H., 367
Chung, L., 30, 34, 229
CIM (Conceptual Information Model), 9
Classes, 5–6, 13–15
abstractness/concreteness, 299, 300, 309, 310,
327n1

dynamic and intrinsic properties, 15
reified, 18–19

Class facets, 299, 303–305, 310, 316–322
CLASSIC, 10
Classification, 34, 78–79, 348, 373–375. See also

Instantiation
in materialization, 295, 296, 303, 310

Classification, multiple, 94
Class instances. See Objects
Class-metaclass correspondence, 296
Clausing, D., 74
CLiP
activities, 369, 370–372
chemical process system functions, 365–367, 367–
368

chemical process systems, 359, 360f, 365–368,
380

metalevels, 359, 360f
partial model structure, 369

process steps, 367, 372, 373, 374, 377, 378
systems, 359–361
technical system functions, 361, 362, 363–365,

374–375
technical system properties, 362–364, 369, 371
technical systems, 361–365
unit operations, 367–368, 374, 375
workflow modeling, 368–372
Clustering of information, 3
Coad, P., 311
Codd, E., 2, 6, 9
Coleman, D., 61
Collaboration history, 46
Collins, A., 3
Common Lisp Object System (CLOS), 44
Common Object Model (COM), 51, 65
Commonsense knowledge, 10
Communities of practice, 46, 78, 79
Complex activities, 24–25
Complex models, 374–376, 378–379
ConceptBase, 51, 55, 58, 72–75, 73f, 89–167. See

also Telos
active rules, 134–138, 319
CLiP, use in, 372–373, 375–377, 379
data flow diagrams, modeling, 139, 143–148, 150–

151, 152, 155, 159
data warehouse design, use in, 337–338, 340,

345
DealScribe, use in, 271–283
entity-relationship approach, modeling, 139, 140–

143, 149–150, 155, 156, 159
event types, modeling, 145–146, 148
internotational constraints, modeling, 139, 151–

155
intranotational constraints, modeling, 148–151,

155
introduction, 89–91
materialization in, 296, 311–325, 326–327
metalevel formulas, 130–134
multilevel statements, 155–159
process models, modeling, 140, 160–165, 166,

167
as prototyping environment for method

application, 90
queries, 102, 105, 118–127, 134, 135
RATS, use in, 171–172, 178, 187, 189
RDF metadata in, 240
stratification, 130
strengths and weaknesses, 326–327, 374–376,

378–379
Telos, relationship to, 89, 90, 91, 98, 101f, 117
~this, 119, 150, 292n6
UML, modeling, 158
views, 127–130
Concepts, 1, 4, 13
Conceptual model, chemical process system, 359–

368
Conceptual model, workflow, 367–372

388 Index

Conceptual modeling, 1, 3, 12, 13, 38n4, 47, 92. See
also Information modeling

abstraction mechanisms, role of, 295–296
for end-user training, 172
history, 4–12
for integrating information, 57, 198–199, 247, 357
in KBS Hyperbook, 245, 247–254
in RATS, 172, 174, 178, 181, 185–187
in RDF and RDF Schema, 233
Conceptual models. See also Domain models
consistency and correctness of, 339, 340
Conceptual perspective on data warehouses, 334,

336–341
Concrete classes, 300, 301–302, 303, 305, 311, 322
Concreteness, 299, 300, 309, 310, 327n1
Concrete objects, 296, 300, 316, 317–318, 324–325
Congolog, 25, 26
Conklin, J., 27
Conradi, R., 60
Constantopoulos, P., 43
Constraints, 17. See also ConceptBase; Databases;

Materialization; RATS; Telos; UML; Yourdan
method

on relationships, 15–16
rigid, 190–192
soft, 187–190
Constructivism, 79
Context adaptation, 46
Context Interchange Project, 50
Context metamodels, 46
Context models, 56
Contextualism, 4
Cooperative information systems, distributed, 45
Copeland, G., 9
Corcho, O., 54
CPCE, 60
Cs3, 260, 284
Curtis, B., 58, 259, 260
CWM (Common Warehouse Metamodel), 331–

333
Cybulski, J. L., 60
CYC, 50

Dahchour, M., 295, 296, 310
Dahl, O.-J., 5
DAML-OIL, 50, 51
Dardenne, A., 11, 26, 61
Darimont, R., 29
Data Abstraction, Databases, and Conceptual

Modeling, Workshop on, 12
Databases, 1, 3, 12, 47
deductive, 90, 102–105, 275
integrity constraints, 103, 104
introspection in, 44
key constraints, 16
logical schema, 7
object-oriented, 9, 274–275
relational model, 2

semantic data models, 9
transactions, 136–137
violations, 104
Data dictionaries, 48
Data flow diagrams, 11–12, 90
ConceptBase model of, 139, 143–148, 150–151,

152, 155, 159
Data integration, 43, 49
Data level, 110, 156–159, 160, 161f. See also IRDS
Datalog, 72, 75, 102–105, 107, 116, 130, 134, 156,

167, 253
Data marts, 330, 331f, 335
Data models, 9, 44
object-oriented, 7, 9–10
Data quality, 329–330, 333
Data quality factors, 338, 343, 346–348, 354
Data quality goals, 343–347, 348–352
Data quality management, 343–348
Data quality models, 343, 344, 345, 347–348
Data Transformation Elements package, 67, 68f,

333
Data warehouse design, xvi
business aspects, 330, 333, 336, 338, 339
client level, 336, 340, 341, 343
conceptual perspective, 334, 336–341
implementation, 339–341
data warehouse level, 336
enterprise model, 336, 338, 340
logical perspective, 334, 336–338, 341, 348, 349f
metadata framework, 336–338
physical perspective, 334, 336–338, 341–343, 348,

349f
quality data, 344, 345–346
quality factors, 338, 343, 346–348, 354
quality goals, 343–347, 348–352
quality management, 343–348
quality metamodel, 345–348
quality models, 343, 344, 345, 347–348
queries, 335, 341, 343–344, 346, 347, 348, 351,

353f
repository model, 336–338
source level, 336, 341, 343
views, 330, 334, 336, 338, 344, 345
Data warehouses, 45, 50
architecture, 330–342
metamodel, 337–338
repository, 330, 336–338, 340, 344–345
data quality, 329–330, 333
metadata-based management of, 330, 334, 335,

348–352
metadata standards, 331–333
metamodels, 333, 339
metrics for quality measurement, 343, 344, 345,

346, 347, 348
strengths and limitations, 329, 353
Davis, G.-B., 61
Davy, C., 260
Dayal, U., 43

Index 389

DB-Prism, 332f, 334
DealScribe, 271–282. See also Requirements

development
application to Roots Requirements Management,
287–290

components, 271–272
ConceptBase, use of, 271–283
dialog forum, 281, 282f
dialog goals, 278–280
dialog statements, 272–274, 277f
goal checking, 278–280, 281, 282
goal monitoring, 280–281, 282f
queries, 274–280
related systems, 282–284
strengths, 290–291

Decker, S., 252
DeGiacomo, G., 25
De Jonge, W., 296
DeMarco, T., 11
De Man, J., 170
Dependencies, strategic, 34–36
de Pennington, A., 358
Description logic, 10–11, 45
mapping from entity-relationship approach, 50
translation into, 19

Descriptive metamodeling, 72–80
Descriptive method engineering, 72–80
Design rationale, 27, 62, 170
Development situations, modeling, 46
Dhar, V., 62, 262, 285
Dhraief, H., 240, 241, 242
Dialog goals, 258, 262, 265, 266f, 267–269, 273,

278–280, 287–288
Dialog planning, dynamic, 291
Diamond model, 43, 51–62
Distributed application development, 48, 49
Domain models. See also RATS
chemical processes, 372–378
data warehouse, 334
in KBS Hyperbook, 247

DOORS, 174
Dorfman, M., 12
Dublin Core, 46, 76, 240, 245
Dubois, E., 11, 170
DWQ Project, 330
Dynamic aspects, 9, 15, 20–26, 167

Eggersmann, M., 371
Egyed, A., 284
Elam, J. J., 259
Embodiment, 310, 311
Emmerich, W., 260, 283, 284
Enterprise modeling, 12, 27, 336, 338, 340. See also

Organizations, modeling
Entities, 3, 7, 9, 11, 17
Entity-relationship approach, 6–7, 7f, 9, 11–12, 265
modeled by ConceptBase, 139, 140–143, 147,
149–150, 152, 155, 156, 159

ontology for, 53
reified relationships in, 17
relationship to Telos, 90
translation into description logic, 19, 50
Entity-Relationship Approach, International

Conference on the, 12
Entity-relationship diagrams, 265
EPROS, 60
ERAE, 11
ETL (Extract-Transform-Load), 342
ETSI (European Telecommunication Standards

Index), 216
Events, 9
Excelerator, 55, 58
Expert systems, 44
Extensible systems, 11, 51, 91, 102, 250, 336, 358
Extension of concepts, 311

Facets. See Class facets; Object facets
Falkenberg, E. D., 54, 55
Falquet, G., 311
Farquhar, A., 50
Farrow, D. L., 250
Feather, M. S., 26, 260
Fendt, K., 79
Fenton, N. E., 165
Fickas, S., 11, 26, 29, 260
Fikes, R., 50
Findler, N., 10
Finkelstein, A., 28, 58, 262
Fixpoint semantics for deductive databases, 102–

103, 105
Flores, F., 51
Formal semantics, xv–xvi, 17
Fowler, M., 12, 311
Frame representations, 10
Franz, C. R., 260
Fröhlich, P., 245
Fuggetta, A., 60
Fuxman, A., 51

Galbraith, J., 34
Gans, G., 51
Gebhardt, M., 341
Geller, J., 296
Gemstone, 9
Generalization, 4, 9, 11, 33, 54, 70
in materialization, 295, 303
in Telos, 94
Generalization hierarchies
metadata level, 50
Generic relationships, 295–296. See also

Abstraction mechanisms
Ghezzi, C., 49, 60
Gillies, A. C., 229
GIST, 11
Glastra, M., 60
Goal analysis, 28–29, 31. See also Goal checking

390 Index

Goal aspect of metamodeling, 43, 52, 60–62
Goal checking, 265, 268–270, 272–274, 275f, 278–

280, 281, 282, 290
Goal classification, 29
Goal dependencies, 34, 35
Goal-driven method adaptation, 61, 62
Goal failure, 267–270, 278–280, 282, 283, 288
remedying, 284, 285
visualizing, 291
Goal monitoring, 258, 261–262, 270–271, 280–281,

282f, 284–292
Goals, xv, 3, 11. See also Dialog goals; Goal

checking; Goal failure; Goal monitoring
in MECCA, 79
in RATS, 173
notations, relation to, 60, 62
ontologies, relation to, 60, 62
process models, relation to, 59, 60, 62
Goals, modeling, 26–34, 61
Goals, reasoning with, 29
Gödel, Kurt, 43
Gödel programming language, 44
Goh, C. H., 50
Goldman, N., 190
Goldstein, R. C., 310
Gomez-Peres, A., 54
GOPPR, 51, 54, 68, 70–71, 71f
Gotel, O., 28, 262
Gottlob, G., 105, 271, 296
GQM (goal-quality-metric) approach, 61, 343, 345,

347
Graf, D. K., 259
Graham, I., 229
Graph-based method engineering, 68–71
Green, P., 53
Greenspan, S., 11, 72, 91
Grouping, modeling, 9, 296
Gruber, T. R., 53
Gruninger, M., 358
Guarini, N., 54
Guha, R. V., 233, 235

Halper, M., 296
Hameri, A.-P., 357
Hammer, J., 334
Hammer, M., 3, 9
Harmsen, F., 44, 54, 55, 61
Harvest, 45–46
Hauser, J. R., 74
Hay, D., 311
Heineman, G. T., 58
Hendler, J., 50, 76
Henke, N., 245
Herbrand semantics, 102, 158
Hernandez, J., 55
Hershey, E. A. III, 55, 58
Heterogeneous information sources, 10, 45, 80,

330, 357

Heterogeneous systems, 45, 170
Heterogeneous viewpoints, 49, 74
Hirschheim, R., 53, 260
Hong, S., 44
Horrocks, I., 50
Huhns, M. N., 50
Hull, R., 9, 334
Hume, David, 3
Huyts, S., 170
Hyperbooks, 245
HyperCASE, 60
Hypothetical statements, 270–271, 281, 282f, 284,

292n4

i* formalism, 34–37, 61–62
IEC (International Electrotechnical Commission),

247
IEEE Transactions on Software Engineering, 45
Iivari, J., 60
IN (Intelligent Network), 180, 219
In, H., 284
Indexing, resource, 45–46
Individuals, 1, 13, 14
Information bases, 1, 2. See also Information

modeling
Information brokering, 49
Information modeling, 3. See also Conceptual

modeling; Knowledge representation
history, 4–14
introduction, 1–4
relationships, 15–17
static aspects, 13–19
Information Resource Dictionary System. See

IRDS
Information systems, 43, 47, 49
ontologies, 52, 53
reference models, 52
Information systems development
adaptability, 44–45, 61
notations, 57
ontological heterogeneity, 57
Inheritance, 4, 6, 297
InstanceOf relationship. See Instantiation
Instantiation, 14, 15, 44, 91–92. See also

Classification
in ConceptBase, 112–115, 130
limitations for modeling, 296–297
multiple, 93
in Telos, 51, 95–96, 106, 191
Instantiation levels, 47, 91–92
Integration
conceptual model-based, 57, 198–199, 247, 357
of information, 10, 43, 45, 49, 330, 338
of metamodels, 72–75
of notations, 57
of processes, 60
of schemas, 12, 43, 45
Intension of concepts, 311

Index 391

Intentions, modeling, 26–34
International Conference on the Entity-

Relationship Approach, 12
Internet Anonymous FTP Archive (IAFA)

template, 45
Interoperability
of databases, 45
goal-based, 60
of information systems, 49
metamodel-based, 43, 50, 51
of modeling environments, 52–53
of software tools, 66, 67

Introspection, 44. See also Self-description
IRDS (Information Resource Dictionary System),

xv, 43, 47–51, 89, 91, 247. See also Data level;
Model level; Notation definition level; Notation
level

in Telos, 96–98, 143–144, 145, 146, 155, 156,
160–162

isA hierarchy. See Generalization
Iscoe, N., 259, 260
ISDN (Integrated Services Digital Network), 172,

215–218, 217f, 218f
ISDOS (Information System Design and

Optimization System), 54
ISO (International Organization for

Standardization), 247, 367
is-of. See Instantiation
Issues, modeling, 26, 27–28
Issue-tracking tools, 260
ITU-T (International Telecommunication Union),

170, 180, 216, 217, 218, 219
Ivari, J., 44

Jaccheri, M. L., 60
Jackson, M., 9
Jacobs, S., 341
Jacobson, I., 12, 47, 54, 57, 359
Jarke, M., 49, 50, 51, 54, 55, 58, 59, 60, 61, 62, 65,

72, 73, 74, 78, 110, 165, 176, 189, 228, 235, 271,
275, 330, 337, 341, 343, 348, 359, 376, 379

Jeusfeld, M. A., 49, 51, 72, 73, 74, 110, 111, 165,
176, 189, 228, 233, 235, 242, 337, 347, 358, 376,
379

Johnen, U., 49, 74
Johnson, R., 310

KAOS, 1, 11, 17–19, 38n5
activities, 23–24, 25
assertions, 17–18, 23–24
dynamics, 23–24
entities, 17
formal semantics, 17
goals, 29, 61
ontology for classifying goals, 28
reified classes and relationships, 17–19
state transitions, 25–26, 27f
temporal operators, 23–24, 25–26, 27f

KBS Hyperbook, 245–254
Kegel, D., 216
Kellner, M. I., 58
Kelly, S., 44, 49, 50, 51, 54, 55, 56, 58, 68
Kerloa, M., 44
Kerola, P., 60
Kessler, G. C., 216
Kethers, S., 74
KIF (Knowledge Interchange Format), 50
Kilov, H., 311
King, R., 9
Kirk, T., 334
Klamma, R., 78, 79
Klas, W., 10, 43, 296
Kleene, S., 56
Klein, H., 53
Klein, M., 269
Klir, G. J., 363
KL-ONE, 10
Knowledge representation, 10, 11, 12, 47
Koller, R., 364, 365
Kolp, M., 60, 310
Konsynski, B., 47, 61
Koskinen, M., 60
Kotteman, J., 47, 61
Koubarakis, M., 44
Kowalski, R. A., 51
KQML, 50
Kramer, B., 11
Kramer, J., 58
Krasner, H., 259, 260
Kremer, R., 49
KRL, 10
Krobb, C., 371
KSIMapper, 49
Kumar, K., 44, 61

Lassila, O., 50, 76, 234
Lee, J., 27
Lefering, M., 49
Lehman, M., 57
Lempp, P., 259
Lenzerini, M., 19, 43, 348
Léonard, M., 311
Lespérance, Y., 25, 26, 34
Levesque, H., 11, 25
Levy, A. Y., 334
Lieberman, H., 320
Liou, Y. I., 260
Locality principle, 2, 3
Locke, John, 3
Logic, predicate, 17–18, 19
Logical information models, 3, 6
Logical perspective on data warehouses, 334, 336–

338, 341, 348, 349f
Lonchamp, J., 59, 60
Lott, C. M., 58
Loucopoulos, P., 12

392 Index

Lubbers, I., 61
Lyytinen, K., 44, 49, 50, 51, 53, 54, 55, 56, 58, 61,

62, 68, 260

MacLean, A., 27
Madhavji, M., 12
Maestro II, 55, 60
Maida, A., 26
Maier, D., 9
Manjunath, B. S., 76
Manola, F., 233
Marquardt, W., 44, 358, 365, 371
Martin, J., 310
Marttiin, P., 5, 58
Maryanski, F., 9
Massonet, P., 29
Materialization, xv, 295–296, 299, 310
attribute propagation, 296, 302, 304, 305–309, 310
of compositions, 308–309
constraints, 314–316
implementation, 312–315, 318–322
T1 propagation, 300, 301f, 305–307, 312–315,
318, 319–320

T2 propagation, 300–301, 307–308, 312–315,
319, 320–321

T3 propagation, 301, 308, 312–315, 319, 322
behavioral semantics, 296, 311–325
class-level semantics, 311–316
class-metaclass correspondence, 296
composition, 301–302, 304–305
formal semantics, 296, 303–309, 316
implementation, 304, 311–325
instance-level semantics, 316–318
intuitive definition, 300–305
materializes meta-attribute, 311–315, 317, 318
multiple, 303, 322–323
need for, 296–299, 309
querying, 324–325
real-world examples, 299, 301–303, 309–310
related work, 310–311
structural semantics, 296, 311–325
two-faceted constructs, 305, 306f, 310
Mayfield, M., 311
Mazza, C., 261, 265, 284
McAllister, A. J., 55
McChesney, I. R., 59
McKay, A., 358
McLeod, D., 3, 9
MECCA (Movie Classification and Categorization

Application), 78–80, 78f
Mechanical engineering, 44
Mediation between representations, 49. See also

Integration
Meeting-scheduling example, 13–37
Mellor, S., 11
Merbeth, G., 55, 60
Mercurio, V. J., 55
Meta-CASE environments, 58

Metadata
applications, 45, 46, 76, 77f, 233, 236, 329–354
formal analysis, 43
generalization hierarchies, 50
in IRDS, 47
management of, 72
materialization, relation to, 310
need for, 43
Metadatabases, 43, 48, 330, 338, 343, 345. See also

Metadata repository
Metadata Coalition, 66
Metadata Engine, 65
Metadata framework, 336–338
Metadata management of data warehouses, 330,

334, 335
Metadata repository, 330, 336–338, 340, 344–345
MetaEdit, 58
MetaEditþ, 49, 51, 56, 58, 68–71, 69f
MetaEngine, 68, 69f
Metaknowledge and metalogic, 43
Meta-metaclasses, 44, 91
in Telos, 96, 97f, 100
Meta-metamodels, 50, 51
in IRDS, 47, 48
Metamodel, chemical process design, 358. See also

CLiP
Metamodel, data quality, 345–348
Metamodel, data warehouse architecture, 337–338
Metamodel, UML class diagram, 66, 67f
Metamodeling, 10, 92
access-oriented, 75–80
applications, 11, 54, 56, 57
goal aspect, 43, 52, 60–62
introduction, 43–46
notational aspect, 43, 50, 51, 56–58, 65–67
ontological aspect, 43, 50, 51, 53–56, 63–65
process aspect, 43, 50, 51, 58–60
services, 44–46
types, 68–80
Metamodels. See also Ontologies
domain-specific, 46, 50, 71, 75–80, 333
evolution of, 55
integration of, 72–75
in IRDS, 47, 48
reuse of, 56, 68, 71
Metaprogramming, 44
MetaView, 55
Method Engineering
common artifact focus, 89–90
declarative, 68–71
definition, xi
descriptive, 72–75
examples, role in teaching, 166
graph-based, 68–71
importance of metamodeling to, 44
integrative, 72–75
modeling life cycle, 90
notation, 57, 65–67

Index 393

Method engineering environments, 48, 49
Method evolution, 62
Method generation, 70
Method-related knowledge, 61
Methods, definition, xi
Meyer, B., 260
Mi, P., 261
Microsoft Repository (MSR), 51, 65–67
MicroStrategy, 342
Miller, E., 233
Miller, J., 261
Minker, J., 271, 277, 284
Minsky, M. L., 10, 361
Mintzberg, H., 34
Misic, M. M., 259
Model analysis, xvi, 219–221
Model checking, 51, 260
Modeling
conflicts, 45
perspectives on, 139
pragmatics, 167

Modeling formalisms, 44–45, 47
Modeling techniques, knowledge about using, 166–

167
Model level, 131, 141, 147, 156–159, 160, 161
Models
correctness of, 219–221
definition, xi
specifying relationships among, 47

Modern Structural Analysis. See Yourdan
method

MOLAP (Multidimensional On-Line Analytical
Processing), 333

Møller-Pedersen, B., 170
Motschnig-Pitrik, R., 72, 296
MPEG-7, 46, 75–80, 76f, 77f, 78f
Multimedia metamodels, 43, 46, 75–80
Multiple classification, 94
Multiple inheritance, pros and cons for modeling

using, 374–376, 378–379
Mylopoulos, J., 9, 11, 12, 34, 47, 51, 60, 72, 91,

171, 189, 233, 236, 271, 295, 296, 357
Myrhaug, B., 5

Nagl, M., 358
Nardi, D., 19, 348
National Library of Medicine, 55
NATURE Project, 54, 60
n-dim system, 49
Neches, R., 53, 55
Nejdl, W., 240, 241, 242, 245
Neumann, P. G., 170
Nihtilä, J., 357
Nissen, H. W., 44, 49, 51, 54, 73, 74
NIST/ECMA model, 58
Nixon, B. A., 229
Nokia, 45
Nonfunctional requirements, 30
in RATS, 173, 182t, 184, 189–190, 199

Nonfunctional requirements (NFR) framework,
30–34. See also Softgoals

goal analysis, 32–34
Norman, R. J., 57, 259
North, D., 311
Notational aspect of metamodeling, 43, 50, 51, 56–

58
Notation-centric metamodeling, 65–67
Notation definition level, 139, 140, 143–144, 171
Notation level, 140, 144–146, 154, 155f, 156–159,

161–162
Notations
formality, 56
goals, relation to, 60, 62
information models, relation to, 2–3
ontologies, relation to, 56, 57, 58, 59
process models, relation to, 58, 59
relationships among as query language

constraints, 90
types of, 56, 58, 59
Nunamaker, J. F. Jr., 259, 261
Nuseibeh, B., 49, 58
Nygaard, K., 5

Oberweis, A., 63
Object facets, 299, 303–304, 310
Object-oriented analysis techniques, 12
Object-oriented databases, 9, 274–275
Object-oriented data models, 7, 9–10
Object-oriented modeling, 14, 49
translation into description logic, 19
Object-oriented programming, 5, 12, 44
Objects, 5–6, 13, 15
Odell, J., 310
Oei, J. L. H., 54, 55
OIM (Open Information Model), 66, 67, 331–333
Oivo, M., 343
OLAP, 329, 333, 336
OLTP systems, 329, 335–336
OMT (Object Modeling Technique), 310
Ontolingua, 50
Ontological aspects of metamodeling, 43, 50, 51, 53–56
Ontological assumptions
in CIM, 9
in entity-relationship model, 7, 47
in modeling languages, 47
in object-oriented approaches, 47
in SADT, 9, 47
Ontologies. See also Metamodels
adaptability, 55
collaborative, 78
domain-based, 29, 53, 54, 55, 73, 79, 261
fundamental, 53, 54
goals, relation to, 29, 60, 62
mapping between, 57
modeling declarative, 68
multiple, 70
notations, relations to, 56, 57, 58, 59
process models, relation to, 58–59

394 Index

Ontology, 10
characterization, 53
construction, principles of, 54
hierarchies, 54
upper, 50
Ontology-centric metamodeling, 63–65
Oquendo, F., 60
Oracle Warehouse Builder, 342
Organizations, modeling, 34. See also Enterprise

modeling
Osterweil, L., 261
O-Telos, 112–117, 379
compared to RDF, 235–236
frames, 244–245, 248
mapped to by RDF, 240–245: examples, 241–242,

245, 246f, 249–254
model of RDF, 234–240
O-Telos-RDF, 240–245, 247, 252
Over, J., 58

Papazoglou, M., 49
Paton, N. W., 168
Patzak, G., 359, 360, 362, 365
Pawlowski, S. D., 257, 285, 286
pdXi (Process Data Exchange Institute), 367
Peckham, J., 9
Penedo, N., 12
Perl, Y., 296
Perry, H., 367
Personalization, 46, 77, 79, 333f, 334
Perspectives. See Viewpoints
Pfe¤er, J., 34
Pfleeger, S. L., 165
Philosophical issues, 3
Physical information models, 3
Physical perspective on data warehouses, 334, 336–

338, 341–343, 348, 349f
Pirotte, A., 295, 296, 310
Planning, 28
Plato, 3
Plexousakis, D., 44
Pohl, K., 59, 60, 229
Positions, modeling, 34, 36
Potts, C., 4, 27, 261
Power types, 310
Pragmatics of modeling, 167
Pratt, M., 44, 53, 54
PRIME (Process-Integrated Modeling Environ-

ment), 60
Process aspects of metamodeling, 43, 50, 51, 58–60
Process compliance, 260–261
Process descriptions, 25, 153
Process design, need for improved, 357
Process integration, 60
Process modeling. See also Business process

engineering
for monitoring requirements development, 261,

263–264
software, 12, 25

Process models, 74, 90, 91
ConceptBase, modeled by, 140, 160–165, 166, 167
descriptive, 59, 160
design decisions, modeling, 167
goals, relation to, 59, 60, 62
notations, relation to, 58, 59
ontologies, relation to, 58–59
prescriptive, 59, 160
Process steps, 367, 372, 373, 374, 377, 378
Prolog, 12
Prototype approach to modeling, 49
PSL/PSA, 55, 59
PSTN (Public Switched Telephone Network), 172,

216
PTT Telecom, 216

Qualities. See Nonfunctional requirements
Quality factors in data warehouses, 338
Queries, model analysis via, xvi, 219–221. See also

ConceptBase; Data warehouse design
Quillian, R., 4
Quix, C., 110, 165, 343, 348, 376, 379

RAMATIC, 55
Ramesh, B., 59, 62, 74, 262, 284
Rationale, design, 27, 62, 170
Rationale, requirements development, 265–266
Rationale, strategic, 36–37
Rational Rose, 49, 58
Rational Unified Process, 59
RATS, 169–229
applications, 221–225, 226–227
client, 176–178
frame generator, 176, 178, 226–227
graphical user interface, 176–177, 199, 226–227
constraints
check, 190–191
for ensuring model consistency, 178, 189, 221
meta-attributes, 191–192, 199
object orientation–based, 187–189, 198–199
permanent, 189–190, 199
rigid, 187–190
soft, 190–192
state classes, 191–192, 199
Telos axioms, 189, 198–199
temporary, 190–191
testing, 220
user-defined constraints and rules, 189–191, 199
development layer, 178–185, 189, 199–215
development models, 178, 193
implementation, 202–215
information retrieval, 211–213
intelligence models, 178, 186–199, 213–215
intermodel consistency, 213–215
negotiation models, 178, 185, 215
requirements documents, 176, 202, 203–205,
210f

requirements objects, 201f, 202, 204, 212t
service definition template, 205–206, 222, 224

Index 395

RATS (cont.)
states and actions, 181, 182t, 185, 187, 189, 193,
199–200, 202

development methodology, 173, 199–202
domain layer, 172, 178, 185–186, 189, 215–219
domain models, 172, 185–186, 215–219
guidance
active 174–175, 186, 192–198
class-specific, 174–175, 192–193
instance-specific, 174–175, 193–195
methodology-related, 174–175, 186, 195–198,
199
object-related, 174–175, 186, 193–195, 197,
199
passive, 174–175, 186, 187–192
intelligence integration, 198–199
methodology guidelines, 179, 181–185
model analysis, 219–221
nonfuntional requirements in, 173, 182t, 184,
189–190, 199, 202, 210

performance of implementation, 228–229
problems with, 228–229
SDL specification, 171, 172, 173, 181, 182t, 184,
185

server, 178–186
Telos, relation to, 171–172, 178, 187, 189
usage, 172–174, 228
use cases in, 173, 182t, 184, 185, 211, 212t

RDD-100, 50
RDF (Resource Description Framework), 76, 233–

239
compared to Telos and O-Telos, 235–236
dual role of constructs, 234, 235, 236
inference engines, 252
mapping to O-Telos, xv–xvi, 240–245, 247:
examples, 241–242, 245, 246f, 249–254

modeled in O-Telos, 234–240
versus RDF Schema, 234–235
resources, 234

RDF Schema, 233–239
classes, 234–235
versus RDF, 234–235
resources, 235, 247
specification, 237–239
summary, 234

Reed, K., 60
Reed, R., 170
Reflection. See Introspection
Reification, 16–17, 18–19
in Telos, 91, 92, 95, 110, 167n1

Relationships. See also Attributes
constraints, 15–16
modeling, 1, 7, 15–17
part-whole, 16, 54
reified, 16–17, 95

Relationships, generic, 295–296. See also
Abstraction mechanisms

Repositories, 48. See also Data warehouses

Requirements
acquisition, 11, 172
analysis, 263, 269
conflicts, 285–290
elicitation, 182t, 183
inconsistency between, 259
interactions, 263, 287
restructuring, 286–287
reuse, 182t
traceability, 74, 170, 172
Requirements, root, 285–290
Requirements development. See also DealScribe
dialog forum, 264, 265, 266f, 273, 281, 282f,

292n1
dialog goals, 258, 262, 265, 266f, 267–269, 273,

278–280, 287–288
dialog metamodel, 258, 261, 263–264, 265–267,

283
tool support, 271–283
dialog monitoring, 264, 266f, 267, 269–270
dialog protocols, 264, 269, 287–290, 292n1
dialog statements, 264, 266f, 267, 272–274, 277f
dialog support system, 258, 262–271, 281, 282f
goal checking, 265, 268–270, 272–274, 275f, 278–

280, 281, 282, 290
goal failure, 267–270, 278–280, 282, 283, 284,

288, 291
goal monitoring, 258, 261–262, 270–271, 280–

281, 282f, 284–292
problems, 262
goal remedies, 268–269, 270
hypothetical statements, 270–271, 281, 282f, 284,

292n4
inconsistency management, 259–261
issue-tracking, 260, 263, 284
problems, 257, 259
protocols, 264, 269, 285–290, 291
Requirements engineering, 1, 9, 11, 12
characterization, 257–258
in telecommunications, 170, 171
traditional, 171
Requirements modeling, 9, 11, 12, 26, 172
Requirements specification, 7, 172
RequisitePro, 174
Resource dependency, 34, 35
Resource identification, metamodel-based, 45–46
Resource indexing, 45, 46
Reusability of models, 228
Reusability of Web resources, 254
Reusable components, 43, 46
Reuse metamodels, 68
Rice, J., 50
Riecken, D., 77
Rijsenbrij, D., 60
RML (Requirements Modeling Language), 11
RM/T, 9
Robey, D., 260
Robinson, W. N., 257, 271, 285, 286

396 Index

Röck, B., 296
ROLAP (Relational On-Line Analytical

Processing), 333
Roles, modeling, 34, 36, 296
Rolland, C., 12, 60
Roman, G.-C., 12
Rombach, H. D., 61
Root Requirements Management, 285–290
Rose, T., 72
Rosemann, M., 53
Ross, D., 8, 9
Ross, J., 311
Rossi, M., 44, 49, 50, 51, 54, 55, 56, 58, 59, 68
Rubenstein, B. L., 259
Rudolf, L., 259
Rumbaugh, J., 12, 47, 54, 57, 310, 359, 379
Russell, Bertrand, 43
Ryan, R., 170

S3 (situation-scenario-success) model, 61
SADT (Structured Analysis and Design

Technique), 8, 8f, 9, 11
Saeki, M., 54
Salancik, G., 34
Salembier, P., 76
Scacchi, W., 261
SCALE, 60
Scenaria, 21, 23
Scenario checking, 260
Schach, S. R., 229
Schäfer, E., 334
Scheer, A.-W., 44, 50, 51, 53, 55, 63, 64, 65, 66
Schema integration, 43, 45
Schmidt, J. W., 12, 47
Schoman, A., 7
Schrefl, M., 43, 296
SCORE (Service Creation in an Object-Oriented

Reuse Environment), 169
Scott, K., 12
Scott, W., 34
SDL (Specification and Description Language),

172–173, 181, 184–185
SDM (Semantic Data Model), 9
Search engines, metamodel-based, 45
Self-description, 75. See also Introspection
Semantic annotation tools, 78
Semantic data models, 9, 11, 12, 44. See also Data

models
Semantic models in KBS Hyperbook, 245, 247
Semantic networks, 4–5, 5f, 10, 11, 92
Semantic Web, xvi, 50, 54, 76, 80, 233, 236
Sequencing, 22–23, 25
Shapiro, S., 26
Sheth, A., 10, 261
Shlaer, S., 12
Sikora, T., 76
Simula, 5, 6f
Sindayamaze, J., 311

Sintek, M., 252
Smalltalk, 5, 9
Smith, E., 3
Smolander, K., 54, 58
Social settings, modeling, xv, 34–37
Softgoals, 30–34, 35, 37
analysis of, 30–31
dependencies, 30, 34, 35
hierarchies, 30–31, 32, 33
Software design, xi, 26–27
Solvberg, A., 9
Sommerville, I., 60, 170
Sorenson, P. G., 54, 55
SPADE, 60
Spaniol, M., 78
Specialization, xv. See also Generalization
Spruit, P., 296
SQL (Structured Query Language), 2, 333
Squirrel, 334
Sravanapudi, A. P., 260
Srivastava, D., 334
Staab, S., 50
Stakeholder communities, 61, 74, 75f
Standish Group, 170
State transitions, 23–24, 25–26, 27f, 153
Static aspects, modeling, 9, 13–19
Staudt, M., 176, 189, 228, 235, 331, 333
STEP, 53, 54, 73
Stereotypes, 45, 58
Storey, V. C., 296, 310
Strategic dependency model, 34–36, 61–62
Strategic rationale model, 36–37
Suciu, D., 49
Sullivan, C. H., 61
Summary Object Interchange Format (SOIF), 45–

46
Sutton, S., 261
Swick, R., 234
Symbol structures, 1, 2, 6, 10
System Encyclopedia Manager, 54

Tabourier, Y., 310
Takahashi, K., 261
Tanca, L., 105, 271
Task dependencies, 34, 35
TAU, 174
Taxis, 9
Technical system modeling, 361–368
Teichroew, D., 55, 58
Telecommunications. See also RATS
heterogeneity of networks, 170
legacy software, 170
services, implementation of, 169–170
Telelogic, 282
TELL-HYPO, 281, 282
Telos, 51, 54, 72–75. See also ConceptBase
abstraction levels, 96–99
axiomatization, 89, 111–117

Index 397

Telos (cont.)
CLiP, use in, 379
ConceptBase, relation to, 89, 90, 91, 98, 101f, 102,
117

constraints and rules, 89, 90, 102, 105–107, 110–
117, 189–191
user-defined, 113, 115–116, 117–118, 119, 120,
121, 129

data warehouse design, use in, 337, 345, 351
formal semantics, 72
frames, 99–100, 117
instantiation, 51, 91–92, 95–96, 108, 109, 110,
112–117, 130, 187

instantiation hierarchy, 72
logical foundation, 105–107
mapping frames to P-predicates, 107–110
materialization in, 296
object reference, 94–99
omega level, 51
predicates, 108, 110–111, 117, 118, 136
RATS, use in, 171–172, 178, 187, 189
RDF, compared to, 235–236
reification in, 91, 92, 95, 110, 167n
self-descriptiveness, 75
statements, 91–92, 96
stratification, 103, 104, 105, 116, 130
structural relations, 91–92, 93, 94, 95–96, 99–100,
108, 109, 110, 112–117, 127–128, 187

uniform representation of objects, 74
Temporal logic, 23–24, 281. See also Time,

modeling
ter Hofstede, A. H. M., 54
Terminological consistency checking, 260
Terminologic logic. See Description logic
TGL 25000 (Technische Güte und Lieferbedin-

gungen), 368, 372–375, 373f, 374f, 377, 379
Thanos, C., 12
Thayer, R., 12
Theodorakis, M., 72
Thörner, J., 180, 219
Time, modeling, 9, 13. See also Temporal logic
Tolvanen, J.-P., 54, 55, 56, 57, 61, 62
Traceability, requirements, 74, 262
Traceability metamodels, 46
Transformation between representations, 49, 51,

54, 57, 59, 71. See also Integration
in ARIS, 65, 66f

Tremblay, J.-P., 54, 55
TRIPLE, 252
Trisolini, S., 348
Tsichritzis, D., 9
TSIMMIS, 334
Turski, W., 57
Type objects, 310–311

UML (Unified Modeling Language), 1, 11–12
actions, 20, 24–25
activities, 20, 20f, 24–25

actors, 20, 21–22, 23
association classes, 16
attributes, 15–16
class diagram metamodel, 66–67
classes, 14, 15, 17, 18f, 158
CLiP class level, model of, 369f
constraints, 17, 20, 21, 23
limitations, xi, 15
multiple modeling notations, 47, 72
process modeling, 59
relationships, 15–17, 21–22
sequencing, 22–23
stereotypes, 45
as system modeling standard, 54, 57
use cases, 20–21, 22f
UMLS (Unified Medical Language System),

55
UPT (Universal Personal Telecommunication),

193–199, 214, 221
URI, 234
Uschold, M., 358
Use cases, 20–21, 22f. See also RATS; UML

Vaduva, A., 331, 333
van der Weide, T. P., 54
van Lamsweerde, A., 11, 26, 29
Vassiliadis, P., 341
Vassiliou, Y., 330
Velthuijsen, H., 169
Vernadat, F., 12
Vessey, I., 260
Vetterli, T., 331, 333
Viewpoints, 78, 296
conflicts, 73
heterogeneous, 49, 74
models as, 90
multiple, xvi, 72–75, 79
Views, 49, 127–130, 330, 336, 338, 344, 345
Violations, 104, 149–150
Vlasblom, G., 60
VODAK, 45, 296
Volkov, S., 271, 285, 286

Walz, D. B., 259, 260
Wand, Y., 53, 56
Warren, D. S., 105
Weber, R., 53, 56
Webster, D., 12
Weibel, S., 240
Welke, K., 44
Welke, R. J., 61
Welty, C., 54
Westerberg, A. W., 49
WHIPS, 334
Whitston, W., 365
Widom, J., 10
Wiederhold, G., 330
Wieringa, R. J., 170, 296

398 Index

Wijers, G., 61
Wile, D., 190
Winograd, T., 10, 51
Wolpers, M., 240, 241, 242, 245
Woolf, B., 310
Workflow modeling, 261, 368–372

XML (Extended Markup Language), 49, 71, 75,
76f, 77, 79, 234

self-descriptiveness, 75

Yang, O., 296
Yourdan, E., 139
Yourdan method
ConceptBase model of, 139–165 (see also Data

flow diagrams; Entity-relationship approach)
data dictionary notation, 146f, 147
data flow diagrams, 90
event types, 145, 146f
internotational constraints, 139, 151–155
intranotational constraints, 148–151
and IRDS, 89
system modeling, 90
Yu, E. S. K., 34, 60, 61, 229

Zdonik, S., 9
Zelkowitz, M., 57, 58
Zhang, A., 56, 61
Zhou, G., 334
Zicari, R., 12
Zilles, S., 12
Zimányi, E., 295, 296, 310

Index 399

	Contents
	Series Foreword
	Introduction
	The Problem
	Structure of the Book
	Theory versus Practice
	Acknowledgments

	Chapter 1. A Sophisticate’s Guide to Information Modeling
	1.1 Introduction
	1.2 A Brief History
	1.3 Modeling Static Aspects of the Application
	1.4 Modeling Dynamics
	1.5 Modeling Goals and Intentions
	1.6 Modeling Social Settings
	1.7 Summary
	Acknowledgments
	Notes
	References

	Chapter 2. Metamodeling
	2.1 Introduction
	2.2 The IRDS Metamodeling Framework
	2.3 Dimensions of Metamodeling
	2.4 Examples of Metamodeling Environments
	2.5 Concluding Remarks
	Acknowledgments
	References

	Chapter 3. Metamodeling and Method Engineering with ConceptBase
	3.1 Introduction
	3.2 Modeling Is Knowledge Representation
	3.3 Universal References to Objects
	3.4 The Telos Frame Syntax
	3.5 A Short Primer in Logic for Databases
	3.6 The Logical Foundation for Telos
	3.7 From Frames to Objects and Vice Versa
	3.8 Telos Predicates and Axioms
	3.9 User-Defined Constraints and Rules in Telos
	3.10 Query Classes
	3.11 Attributes and Parameters in Queries
	3.12 Views as Extended Query Classes
	3.13 Metalevel Formulas
	3.14 Active Rules
	3.15 Engineering the Yourdan Method
	3.16 Discussion and Conclusions
	Notes
	References

	Chapter 4. Conceptual Modeling in Telecommunications Service Design
	4.1 Introduction
	4.2 Usage of the Tool
	4.3 Integration with Other Systems
	4.4 Main Functions of the System
	4.5 Architecture of the Tool
	4.6 Method Engineering
	4.6.2 The Development Models
	4.7 Model Analysis
	4.8 Example Models of the Application
	4.9 Critical Review of the Solution
	4.10 Conclusions
	Notes
	References

	Chapter 5. Metadata for Hypermedia Textbooks From RDF to O-Telos and Back
	5.1 Introduction
	5.2 RDF in a Nutshell
	5.3 Explicitly Modeling RDF in O-Telos
	5.4 Directly Mapping RDF(S) to O-Telos
	5.5 An Application of O-Telos
	5.6 Summary
	Acknowledgments
	References

	Chapter 6. Monitoring Requirements Development with Goals
	6.1 Introduction
	6.2 A Dialog Support System and Metamodel
	6.3 Tool Support for the Dialog Metamodel
	6.4 Development Goals for Managing Inconsistency
	6.5 Conclusions
	Notes
	References

	Chapter 7. Definition of Semantic Abstraction Principles
	7.1 Introduction
	7.2 The Need for Materialization
	7.3 Intuitive Definition
	7.4 Precise Semantics
	7.5 More Examples of Materialization
	7.6 Related Work
	7.7 Implementation of Materialization
	7.8 Conclusion
	Notes
	References

	Chapter 8. Metadatabase Design for Data Warehouses
	8.1 Introduction
	8.2 An Extended Data Warehouse Architecture
	8.3 Managing Data Warehouse Quality
	8.4 Example Scenario
	8.5 Conclusion
	Note
	References

	Chapter 9. A Conceptual Information Model for the Chemical Process Design Lifecycle
	9.1 Introduction
	9.2 The Model Framework CLiP
	9.3 Workflow Modeling within CLiP
	9.4 Representation of Domain Knowledge Using ConceptBase
	9.5 Conclusions
	Acknowledgments
	References

	Contributors
	Index

